
Lessons Learned from Managing a Petabyte

Jacek Becla*
Stanford Linear Accelerator Center

2575 Sand Hill Road, M/S 97
Menlo Park, CA 94025, USA

becla@slac.stanford.edu

Daniel L. Wang*
Stanford Linear Accelerator Center

2575 Sand Hill Road, M/S 97
Menlo Park, CA 94025, USA
danielw@slac.stanford.edu

Abstract

The amount of data collected and stored by the
average business doubles each year. Many
commercial databases are already approaching
hundreds of terabytes, and at this rate, will soon
be managing petabytes. More data enables new
functionality and capability, but the larger scale
reveals new problems and issues hidden in
“smaller” terascale environments. This paper
presents some of these new problems along with
implemented solutions in the framework of a
petabyte dataset for a large High Energy Physics
experiment. Through experience with two
persistence technologies, a commercial database
and a file-based approach, we expose format-
independent concepts and issues prevalent at this
new scale of computing.

1. Introduction

Today, most large databases reside in government and
university laboratories. The largest resides at the Stanford
Linear Accelerator Center (SLAC), a national laboratory
operated by Stanford University. Currently, the main
focus of the laboratory is on BaBar, one of the largest
operating High Energy Physics (HEP) experiments. In its
fifth year of data taking and with over a petabyte of
production data, BaBar continues to actively refine
approaches to managing its vast amount of information.
The experiment’s data set is expected to continue to grow
rapidly in the next several years.

This paper presents problems and solutions in
petascale computing, drawing on experience with the

BaBar data store from the perspective of building,
deploying, tuning, scaling and administering. The
evolution of the system through two major design
iterations is discussed, presenting a unique perspective on
large data set challenges. The first system utilized a
commercial Object Oriented Database Management
System (ODBMS), successfully serving a set of complex
data to an international collaboration. The second system
replaced the database with an open-source, file-based
object persistence, improving many aspects of the system,
but bringing its own challenges and issues.

Chapter 2 explains why HEP is so data intensive,
discussing database related needs and challenges. Chapter
3 describes how these needs and challenges were met
using an ODBMS-based approach. Chapter 4 describes a
simpler, home-grown approach. Chapter 5 highlights the
essence of persistent technology independent experiences,
problems and commonalities. Finally, chapter 6
summarizes the paper.

2. Requirements for HEP computing

HEP experiments often focus their research on one or
several types of events that are very rare. Such studies are
highly statistical: these events are usually generated by
colliding other particles together, however due to their
rareness, thousands or even millions of collisions are
needed to generate one “golden” event—the more golden
events, the more precise the measurements. In addition to
the “ real” data produced by colliding particles, an equally
large data set must be simulated to understand the
physics, background processes, and the detector. In
studying the asymmetry of matter and anti-matter in our
universe, BaBar has registered over 10 billion events and
simulated nearly the same amount since its inception in
1999.

Finding these events usually requires hundreds of
iterations of study, and thus requiring long-term data
persistence. Such studies tend to produce extremely large
data sets by today’s measures. Today’s HEP experiments
are expected to generate a few petabytes in their lifetimes,
while the next generation experiments starting in 2007 at

* For BaBar Computing Group

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 2005 CIDR Conference

CERN (Large Hadron Collider, or LHC) are likely to
reach 20 petabytes.

The problem of storing so much data is only the tip of
the iceberg. Analyzing data involves reading small chunks
of data, each sized in the hundreds of bytes. Searching is
done iteratively, narrowing the set of candidates but
increasing the level of detail each time. Analyses are
performed simultaneously by a large collaboration of
physicists, reaching hundreds or even thousands, usually
working from their local institutes world-wide.

To perform analysis in a timely fashion, data needs to
be efficiently managed. Current technology would require
three years for a single node to finish a single sequential
scan of one petabyte. Therefore, good data structures and
careful organization are most crucial, followed by raw
performance from powerful servers. A huge data set is
large in every dimension: millions of files, thousands of
processors, hundreds of servers. This leads to many
challenging scalability issues, discussed in more detail
throughout this paper.

2.1 Data processing

Data processing in BaBar is broken into several
independent production activities, as shown in Figure 1.

DAQ

xtc CDBConfigDB

PR

BaBar
detector

via CDB

Eventstore

REP SP SkimmingAnalysis

Figure 1 Data flow

The Data Acquisition System (DAQ) is an example of
an activity that requires immediate response time and
round-the-clock reliability, but only limited concurrency
and throughput. Since storing all data produced by the
detector would not be feasible, fast filters reject most
collisions, accepting only about three hundred out of
millions of events per second. Each event is stored in a
home-grown bit-packed form called xtc and is about 30
KB in size. Each xtc file stores a single run which is a
block of events taken with similar detector conditions. A
typical run contains about a million events.

Prompt Reconstruction (PR) reads these xtc files,
reconstructing each collision in quasi-real time and
persisting the results. It is a high volume activity,
requiring hundreds of parallel processes running
continuously to keep up with the data acquisition. As an
important source of feedback for detector tuning, it is also

a low latency activity. Turnaround time has a direct effect
on data quality and must be kept under a few hours.

A similar activity called Reprocessing (REP)
reprocesses (reconstructs) all of the data taken since the
start of the experiment using the latest software with the
latest algorithms. It is done once a year on average.

Simulation Production (SP) is tasked with generating
the simulated data mentioned above, producing about one
event per real event. Unlike PR and REP, each process
generates a different run, which can be stored separately
from others. The main challenge is distribution:
production of SP data is done at many sites around the
world. Comparing simulated and real data is the basis of
all HEP analyses, including BaBar.

To simplify the process of selecting data, and to spare
users from repeatedly filtering the full data sample, all
production data is “skimmed” (filtered) into streams.
Skimming is CPU intensive by nature, requiring heavy
analysis to perform selection. It reads data sequentially,
applying analysis to select events and write them out into
over a hundred separate streams, each defined by different
sets of selection criteria. Each event may pass filters for
multiple streams, thus forming overlapping sets.
Skimming utilizes around 2000 processing nodes to
satisfy its heavy throughput and low-latency
requirements. The massive aggregate I/O makes a highly
parallel system crucial. Other challenges include its
unfriendly I/O load of small-grain reads and writes, its
event duplication problem, and contention with user jobs–
skim shares resources with the user computing pool due to
costs. Production activities other than skimming run in
their own isolated computing environments.

2.2 Data mining

Physicists need a single, integrated data source to do
analyses, their searches for golden events in a haystack of
collisions. The main challenge for the data store is to keep
up in a cost-effective way with needs of thousands of
data-hungry jobs sparsely reading small objects. It is
followed by unpredictability and varying load – jobs are
run in a completely unpredictable way with no easily
discernible data access pattern. A high level of availability
is also required. Any outage is disruptive for hundreds of
users, so downtime has to be kept to a bare minimum. In
addition to the centralized data store, users need their own
persistent space for testing and storing intermediate
results.

Finally, BaBar physicists write their analysis code in
C++, so the computing environment must support
accessing and querying data in that language.

2.3 Data distribution

BaBar is a large collaboration of over 600 physicists in 10
different countries. Many countries contribute by
providing dedicated computing resources for the project.
For this reason, a sizable fraction of data population and

mining happens outside SLAC. Although it would be
simpler to concentrate all activities at one location,
activities are distributed, partly for political reasons:
BaBar hardware sponsored by local governments must
stay at their local sites. Initially, most activities were done
entirely at SLAC, which also served as the only analysis
center. However, as the involvement of external sites
increased, many production and user activities were
moved to offload SLAC:
• PR and REP were moved entirely to Italy.
• A large fraction of skimming was moved to Germany

and Italy.

SLAC

…

Padova
Italy

0.4 (xtc)
0.40.2

Bologna
Italy

Oxfordshire
UK

Lyon
France

0.8 0.6 0.2 0.1

All numbers in TB/day

Karlsruhe
Germany

Canada

France

Germany

Italy

UK

US

analysis skimming PR/REP SP

Figure 2 BaBar’s data distribution

Currently, 90% of SP data is produced at 23 sites
outside of SLAC. The number of large analysis centers
increases almost every year, and is currently five, four of
which are located in Europe.

Having major data production activities scattered
around the world complicates the task of managing both
local and world-wide data flow. All data exchange
happens over a WAN, not via tape, and terabytes of data
are moved daily through dedicated cross-Atlantic links.
SLAC itself is connected with an outside world via two
links: one 622Mb/s (OC-12) link to the Energy Sciences
Network (ESNET) and one 1Gb/s link to Internet2. At
any given time, between 30-50% of their capacity is used.

3. First generation: meeting the challenges

The persistency system for the BaBar experiment is
required to store and provide access to multi-petabyte data
set in a cost-effective way. The main challenges are data
organization, scalability sustaining performance, solving
concurrency issues, reliability, administration and
distribution.

3.1 Organizing bulky data

BaBar’s data is logically organized in several domains,
with no direct cross-references. One of the key domains is
the eventstore, the domain discussed most in this paper.
This domain stores the heavily publicized petabyte of data
bulk (events).

Events are organized into collections, which may
contain either events, or pointers to events. With

collections numbering in the hundreds of millions, various
production activities maintained dedicated bookkeeping
systems, which were consolidated and centralized in the
second generation computing model.

Reconstructed events carry much more information
than their corresponding bit-packed versions, and are
therefore split into several components, each of which
carries different level of details. Components vary
significantly in size leading to important implications on
read performance.

Component Size [KB]

raw 100
rec 150
mini 10
micro 4
tag 1
(overhead) 3

Storing the two largest components, raw and rec, is

expensive due to storage and access costs, especially
when analysis rarely needs them. The multi-level, multi-
component access model also proved too cumbersome
and after a few years BaBar shifted to a simpler model
involving only micro, mini and tag.

3.2 Choosing a storage technology

Storing petabytes of data on disk remains prohibitively
expensive compared to tape in terms of operating cost
(power and cooling requirements), durability, and
purchasing cost. Tapes do not consume power or generate
heat when not in use, two increasingly important factors
at data centers. To manage tapes we use IBM’s Mass
Storage System (MSS): High Performance Storage
System (HPSS), storing over 1.3 petabytes of data on
about 13,000 tapes managed by 6 StorageTek tape silos.

With such a large MSS system, a large disk cache is
still essential to deliver data to jobs in reasonable time.
SLAC’s 1.3PB is currently backed by 160TB of disk
cache. The disk cache is implemented on thousands of
physical disks bound into large arrays for simplified
maintenance. In the past, they were managed by
VERITAS File System (VFS), but more recently by Sun’s
Solaris 9 UFS. Both systems support journaling, an
absolute necessity when dealing with extremely large file
systems.

An object oriented approach seems to be the most
natural way to model HEP data, where complex many-to-
many relationships are commonplace. As explained
above, the persistency system has to also provide multi-
petabyte scalability. None of the RDBMSes available in
mid-nineties offered any of these features (and they do not
appear to meet all these requirements even today). The
decision to use an Object Oriented Database Management
System – Objectivity/DB followed recommendations
from a study at CERN [14]. ODBMS technology seemed

to best fit BaBar’s needs of scalability, complexity and
C++ bindings. Also, the thick-client thin-server
architecture and distributed features seemed well suited to
scaling, in contrast with the traditional, server-heavy
RDBMS approach.

3.3 Integrating the system

The commercial ODBMS provided a powerful database
engine including catalog, schema management, data
consistency and recovery, but it was not deployable into a
system of BaBar’s scale without extra effort. Half a
million lines of complex C++ code were required to
customize it and to implement needed features that did not
come with the product.

One of the major features added was an extended
address space. An important requirement is that each
analysis job should be able to access all data. The
Objectivity/DB system allowed only 64K database files
per federation (described later), and each job could access
only one federation during its lifetime. Theoretically, this
allowed storing many petabytes since the database files
could be huge, but database files of that size (~10-20GB)
were very impractical, especially for staging and
distributing. After discussions with the vendor, the latter
limitation of accessing only one federation was removed,
allowing BaBar to implement bridging technology to glue
data spread across multiple federations [11]. This allowed
collections to be transparently accessed across many
federations through a central bridge federation. A bridge
federation contains bridge collections each containing a
list of other collections and the federations in which they
exist. Since Objectivity/DB transactions and local client
caches could not span federations, implementing bridging
also required implementing a complex transaction
management system to transparently and automatically
switch transactions as jobs change federations.

Due to BaBar’s customized storage system, the data
server provided by Objectivity/DB–Advanced
Multithreaded Server (AMS) –was insufficient. Access to
database files needed to be transparent whether they
resided on disk or tape, so we worked closely with the
company to re-architect the AMS. This involved splitting
the product into three separate components: the AMS
protocol layer, the logical file system layer (Objectivity
Open File System, or OOFS), and the physical file system
layer (Objectivity Open Storage Layer, or OOSS), of
which we controlled the latter two [4].

To better utilize a precious disk cache, we worked
with Objectivity on an API that would allow us to plug
compression into their system. Data compression reduced
the disk footprint by half, and client-side decompression
kept server load under control.

Other features added on top of the ODBMS included
clustering and placement strategies, specialized indices,
and administrative tools.

Significant effort was spent tuning and optimizing the
database system from the first day of data taking on [3].
With the detector’s rapidly improving performance, it was
clear that the system had to scale to unforeseen levels. A
dedicated test-bed, occasionally requiring 500 nodes was
established to tackle the performance and scalability
issues. Tuning the system, scaling and understanding
unforeseen bottlenecks required a lot of time, effort and
thorough understanding of the whole system: operating
system, client code, network, and Objectivity/DB
including the AMS.

Finally, a transient-persistent abstraction layer was
implemented early in the development phase to contain
persistency-specific code. This layer isolated the bulk of
the BaBar code from the details of persistency
implementation with a small performance hit (~2%). With
this fundamental decoupling, hundreds of users were
shielded from persistency details, facilitating a reduced
impact as the features described above were implemented.

3.4 Coping with server load

BaBar computing makes extreme demands on its servers.
For instance, a single PR federation often needs to handle
data injection from hundreds of nodes and sustain over
15MB/sec of write throughput. Data analysis routinely
needs to deliver 200MB/sec to over 1,500 jobs. In one
case, a single server (host) was observed to sustain a
thousand open files and over 15,000 open TCP
connections. Coping with such loads requires powerful
and robust servers.

Clients access data remotely through the AMS
provided by Objectivity/DB. The AMS was designed
specifically to serve Objectivity/DB data, serving
database pages directly with no caching. NFS and AFS
are somewhat problematic alternatives. NFS often times
out under heavy load, and AFS has several issues related
to client cache synchronization and token renewal. Many
small institutes prefer the simpler NFS access because of
its low overhead under a light load.

 AMS load depends on the number of clients, as well
as their access patterns. One of the important “ features” of
Objectivity/DB is that it opens a TCP connection for each
opened database file per client. In our environment that
translates to tens, often hundreds of connections to the
server per client. This large number of connections
saturates a CPU which must linearly search a file
descriptor table containing many thousands of entries to
handle each I/O request. Tuning the AMS was limited by
the Objectivity/DB protocol, but we had the freedom to
do modifications in the OOFS and OOSS layers.

Improvements in the OOFS and OOSS layers included
separating TCP file descriptors from database file
descriptors, closing inactive files, and sharing fi le
descriptors of the fi les opened by multiple clients. Due to
thread synchronization around the single fi le descriptor
table, we ran four AMS servers per host to efficiently

utilize the 4-CPU servers. Each quarter of a compute farm
was then redirected to a different AMS server. Another
important change was to increase the default limit of open
file descriptors on UNIX from 1 to 8 K.

An automatic load balancer was implemented to
efficiently balance the load and reduce “hot spots.” It
measures the load on data servers and redirects clients
accordingly. While it is also capable of duplicating data,
this feature is turned off to avoid excessive staging. It is
designed to work with immutable data, which is sufficient
for analysis. We have not found a reliable way to apply it
to mutable data yet.

The lock server was another bottleneck, especially
since each federation had only one lock server, and
Objectivity/DB’s implementation was single-threaded.
Unfortunately, in this case, we had no access to modify it,
so we resorted to less invasive techniques such as
reducing the offered lock traffic (explained in detail later)
and using faster hardware. Bridge technology (also
explained later) further alleviated lock server contention.

3.5 Sustaining performance

HEP jobs require heavy computation; and are therefore
expected to be CPU, rather than I/O bound—the average
CPU efficiency should be above 90% for both data
population and data analysis.

Even though the jobs did heavy computation, both
data population and data mining dealt with a lot of I/O.
Data population often produced over 2 terabytes per day,
and data analysis often read 10 times that amount. In
many cases, thousands of jobs competed for server time
or disk bandwidth. To keep the farms CPU-bound,
numerous measures were taken.

Not only were disks and servers strained by thousands
of simultaneous jobs, but the high load also resulted in
randomized access patterns at the disk level. This was
often seen in data analysis, even though data placement
and clustering algorithms provided spatial locality for data
that is frequently accessed together. Turning off read-
ahead in VFS alleviated the problem somewhat; however,
the poor performance of small random reads on disk
continues to be a major problem without an efficient
solution.

Data population is an organized activity. Its heavy
write bandwidth requirements were achieved by client-
side cache size tuning and transaction length
randomization such that clients flush data to disk only
during commits and only a few clients commit at any
given time.

Parallelism is another way to improve performance.
During data population we parallelized event and run
processing. Different events within a run were processed
by different nodes. The optimal number of nodes
participating in processing a single run was about 150;
with larger numbers, startup and shutdown times
dominated. Different runs were processed by independent

farms, each farm had dedicated sets of client and server
hardware. To enable this in PR, feedback calculations for
the detector were extracted and run independently from
the rest of PR.

In data analysis, parallelism is achieved with a batch
system. Since all BaBar applications are single-threaded,
each job can utilize only one CPU, so users may
implement parallelism by initiating multiple jobs
simultaneously. Each job process a subset of total data
sample to be analysed and the results (selected events) can
then be combined into a single collection. This is “quick
and dirty” parallelism, but very convenient for analyzing
large data sets.

3.6 Dealing with concurrency

Concurrent access to data is possible using transactions
and locking mechanisms provided by the database engine.
In Objectivity/DB, locking occurs at the granularity of a
container. A container is a logical section of a database.
Each database maps to a single file. A consistent set of
databases forms a federated database. Each federation has
a catalog (database metadata) and schema (definitions of
the various object classes) and delegates lock and
transaction handling to one lock server (may be shared).

Generally in PR, more than a hundred nodes process
the same run and write to the same set of output streams.
Each job writes to the same set of databases, but to its
dedicated containers. The only shared resources are
collection navigation metadata, and some internal
structures maintained by Objectivity/DB, such as a
database catalog or a page table for each database. Jobs
contend for both these resources when creating
collections, databases, and containers. Contention on
collection metadata was removed by precreating
collections in a single job. Contention on Objectivity/DB
metadata was removed by centralizing the pre-creation of
databases and containers and assigning them to jobs
through a CORBA server [2].

Contention on collection metadata is also a problem in
data analysis. Thousands of analysis processes access the
data, often in competition with skimming, which itself
heavily reads and writes the data. Internal Objectivity/DB
resources are not an issue due to the relatively small
volume of written data, but collection metadata is a
bottleneck. It is organized in an efficient directory-like
tree-structure, but the contention comes because many
tree-nodes share containers. (Container opening has
significant overhead, and databases can have a limited
number of containers.) Rearranging the tree nodes into
different containers and providing access to central nodes
inside separate mini-transactions reduced but did not
eliminate the contention. Eliminating it requires removing
all dependencies on a central index when updating.

Introducing bridge technology and spreading data
across many federations, lock servers, and database
catalogs helped reduce lock contention, but the collection

metadata problem resurfaced in the bridge federation. For
that reason, some users found it more convenient to
bypass the bridge federation, and maintain their own
bookkeeping of collection-to-federation mappings.

Other tunings were needed to improve concurrency,
especially in PR farms. One such tuning involved
minimizing container naming. Container naming involves
an extra lock on another shared resource, a page table.
Another tuning was reducing database name lookup
(which requires an expensive catalog access) by caching
id-to-name mappings and using ids whenever possible.
The last important tuning was presizing containers to their
expected final size. Growing a container requires locking
the database’s page table, and therefore is too expensive
to be done simultaneously by hundreds of writing clients

Scaling to BaBar’s heavy concurrency needs can be
summed up in one directive: Minimize contention around
shared resources. This means making updates as fast as
possible, or planning ahead and pooling the updates into a
single large update.

3.7 Availability

Data needs to be highly available. Since BaBar is a large
international collaboration with users scattered across
many time zones, there is no good time of the day (or
night) to take the database offline. Unfortunately,
software and hardware faults still happen, so BaBar’s
computing must have measures in place to minimize their
impact.

3.7.1 Durability

All event data is potentially valuable–new algorithms can
reveal insights in data previously thought uninteresting—
so it must be backed-up. Production data is thus written to
tapes as soon as it is generated. Disk faults are backed by
tape, and the tapes containing the most demanded data are
duplicated in multiple regional centers. Faulty eventstore
tapes can be rebuilt from tapes containing raw detector
data (xtc format), which are stored in exactly two places,
SLAC and Padova, Italy. Frequently changing metadata is
backed up to HPSS during scheduled weekly outages.
This metadata includes database catalogs, collection
metadata, database identifier allocation, and user access
control information. It is relatively small, measured in
tens of megabytes. On the other hand, user data is not
backed up because it is considered scratch data for
debugging and testing; it comprises less than five percent
of the total data sample. The remaining data is immutable.

Large fractions of the event data are multiply
duplicated in offsite analysis centers. This improves
safety and pushes data closer to remote users.

At SLAC, major services like lock, journal, and
catalog servers are backed up by uninterruptible power
systems, but data servers remain prone to power outages.
Unexpected power outages are the primary reason for
seriously exercising our database backup system, which
happens about once a year. Hardware problems often

follow each power outage resulting in prolonged database
outages. During one major power outage, damaged
hardware kept the database system offline for over 24
hours.

3.7.2 Planned and unplanned outages

Some administration tasks require exclusive access to a
federation, thus necessitating an outage. Killing thousands
of jobs, many of which have been running for hours or
even days is not a viable option and is used only before
planned major outages. An inhibit system was thus
developed to facilitate these administrative tasks. The
inhibit system stalls all clients between transactions
instead of killing them, using the fact that each BaBar
application is required to commit its transaction
periodically. Jobs stalled in this fashion do not keep any
locks, which is enough for most administration tasks.

Short regular outages are scheduled weekly, to
perform necessary administration operations like backing
up metadata. The overall achieved uptime is about 98%,
with most of the remaining 2% downtime caused by
scheduled and unscheduled power outages. Bridge
technology has helped to achieve the high uptime:
administrators can take down one federation at a time
while the rest (over 99% of the total data sample) are still
available.

3.7.3 Platform unreliability

The problem of unreliable platforms appeared when we
first bought a large batch of commodity machines to be
used in PR. The problem turned out to be a vendor-
specific hardware problem which caused random reboots
(~4% of machines every day) and frequent hardware
failures. This visibly reduced overall efficiency and
forced us to look for new ways to manage recovery from
crashes and the resulting orphan locks associated with
unusable machines. Today, the number of crashes of
commodity hardware used as clients is well under control,
although still far from zero.

3.8 Using the data

Another interesting problem for large data sets is how to
make all of it available and usable. The BaBar eventstore
is not a closed archive—it is live data that is collected and
served to physicists to support their cutting-edge research.
This section offers overviews on how event data is
published, accessed, and indexed.

3.8.1 Publishing

The system makes data available primarily via
Objectivity/DB AMS data servers. Data comes from DAQ
in the form of xtc files, which PR reconstructs to be
inserted into the eventstore. From there, individuals and
other BaBar groups access the data, often deriving
additional event data to be inserted. Individuals read and
write data in real-time, but the publishing of production
data is often delayed by a few days. Data produced over a

week’s time may take two days to be published due to
contention with shared eventstore constructs, although the
turnaround time remains impressive compared to previous
HEP experiments. Since the BaBar eventstore experiences
constant usage, lock collisions happen frequently during
the two steps for publishing: attaching the db file and
adding the collections to the index.

Partly because of this resource contention, BaBar data
is distributed geographically. As a member of the BaBar
collaboration, a physicist may access data via a variety of
data centers, which are categorized into two groups,
according to their capabilities and responsibilities. Tier A
sites such as SLAC form the core of BaBar computing.
Large scale analysis and processing is split up among
these sites, and they are open to any BaBar collaborator.
The entirety of BaBar data is available through Tier A
sites. Tier C sites are much smaller, have much less data,
and are almost exclusively managed and used by local
users. Many of them still participate in producing
simulated data.

3.8.2 Accessing

All production data is truly read-only, protected by setting
appropriate permission bits on database files. Groups’ and
individuals’ data is stored in private databases, providing
writable scratch space. Custom C++ code implements
access control as well, preventing inadvertent
modifications of other users’ data. Each user can freely
read other users’ data, but cannot update/delete it, unless
explicit permission is granted by an administrator.

The Objectivity/DB product provides C++ bindings
for making queries, along with a data definition language
for describing persistent objects. Because of portability
issues in writing persistence-specific code, the BaBar
computing policy specifies that analysis code be kept on
the transient side of the persistent-transient interface. To
access persistent data, this analysis code is modularized
and plugged into a framework system for controlling and
providing access to event data. This Event Analysis
Framework is modeled as a pipeline of modules which
receive and process event data in turn. With the ability to
reorder, reconfigure, enable and disable modules via Tcl
scripts, users generally use published framework binaries,
adding and removing event filters and customizing their
jobs without recompiling.

Unfortunately, in the ODBMS implementation, the
BaBar eventstore could not be accessed outside of the
framework system. All the database customizations were
done within the framework, and so no tools had been
provided to manipulate the data outside of the pipeline
model. Because of this limitation, physicists often
extracted the data out of the eventstore to the ntuple
format for simpler data manipulation.

3.8.3 Indexing
 Eventstore data is not indexed. The most natural place to
use indices would be for event selection (tag data).

Usually, tens of attributes (out of over 500 possible) are
examined for each event, which would require complex
multi-dimensional indices. With these complexities, the
strategy is to cluster these attributes into a separate
component (“ tag”) and placing tag components for events
in sequence.

It is well worth noting that most jobs that run on
eventstore data spend most of their time analyzing sets of
events for selection or statistics. Considering that jobs
need to be crafted to avoid the 48-hour limit of CPU time,
a single job would overwhelm the server if the “query”
was processed there.

To combat the high computational cost of selecting
events, the skimming activity filters event collections into
many smaller subsets according to common
characteristics. Every six months, all data is read and
skimmed according to the latest requests by various
analysis working groups. With this advanced pre-fi ltering
technology, selection rates on the skimmed data exceed
30% where they were previously less than 10% or even
under 1%.

While the eventstore database was free of indices,
non-eventstore databases, particularly the Conditions
Database (CDB, which stores detector conditions) [6],
relies heavily on indices. The most common queries in the
CDB are partial-range queries over two dimensions. So
common were these queries that generic two-dimensional
indexing implementations were too inefficient. Using
certain characteristics of CDB data allowed us to build an
efficient, customized B-tree algorithm.

3.9 Administration

Some say that 1 full-time person is needed to manage
each terabyte of data [7]. For BaBar, the level of effort
needed to maintain the petabyte system was less then
three full time database administrators. Initially,
administration required a lot of human interventions—too
many by our measures. These interventions were slowly
automated, reducing tedium and opportunities for user
error, but the system continued to grow more complex
with new features like bridge federations. Most of the
biggest challenges of administration were touched on in
the previous sections. They include (in order of
importance):
• hardware and software failures
• metadata management
• data distribution
• manual load balancing
• lock collisions

3.9.1 Hardware and software failures

Hardware and software failures continue to be
problematic. In a system with over 3000 physical disks,
hardware failures are not uncommon. Even with
enterprise server hardware, a disruptive hardware crash
(e.g. disk array controller) still happens more than once a

month, on average. Disk failures are more common,
averaging about 3.5 disks per month, but generally have a
low impact because of RAID 5 redundancy. On the
software side, AMS failures occur about once a month in
one of over a hundred servers, generally as fallout from a
new AMS feature.

3.9.2 Metadata management

Though bridge technology solved the address space
problems, it also led to the proliferation of federations.
With 120 federations in analysis, moving (“sweeping”)
data from production farms to analysis federations was a
daunting task. Another complication was a collection
count that exceeded the original design by several orders
of magnitude. This was primarily because of three factors
which themselves were beyond the specification: (a) a
large number of data streams, (b) a large number of
skims, and (c) constantly improving detector and collider
performance. With so many federations and collections,
keeping their metadata consistent while data moved from
production farm to analysis was a real challenge in terms
of volume and concurrency.

Occasionally database files were temporarily or
permanently unavailable. Because no simple mapping
existed between database files and collections, users had
no easy way of avoiding afflicted data sets. Sometimes a
user’s job would crash after many hours, and the user
would find that an unavailable database file was the cause
only after extended help from a database administrator.

3.9.3 Data Distribution

Distributing data across multiple servers, federations, and
sites requires dedicated tools. Within SLAC, the local
data distribution strategy takes advantage of the HPSS
catalog to minimize the actual copying of databases.
Databases from PR, for example, can be published for
analysis by simply updating the target federation’s
catalog. By centrally managing database ids, database
files could be quickly moved between federations without
destroying external references in dependent databases.

World-wide data distribution of BaBar’s challenging
data volume utilized grid technology. Shipping production
data between SLAC and the site in Lyon, France, for
example, was done through the Storage Resource Broker
(SRB) [12]. BaBar has also been investigating the Globus
Toolkit [5] for Simulation Production.

Wide data distribution also complicated data quality.
External sites were not always up-to-date with the
database system: uninformed operators sometimes
removed journal files with “rm” and copied dirty database
files. Without reliable and fast QA tools, these mishaps
caused administrative headache.

3.9.4 Others

Due to frequently changing hot spots, data had to be
almost constantly rebalanced to reduce bottlenecks and
improve system performance. The automatic load

balancing discussed earlier was only available in late
2003, so before that, data was balanced manually. Manual
balancing was effective, but its heavy cost in database
administrator effort was too large to sustain.

Finally, lock collisions were a constant problem. As
mentioned before, collection publishing frequently
conflicted with user access. Users also had locking
conflicts with their own jobs. Stubborn locks left by dead
jobs stymied many users until they referred to a FAQ or
an administrator. With high turnover in students working
on BaBar, the user pool needed frequent assistance.

3.10 Summary of experiences

Mammoth size and complexity requirements forced
BaBar to look for innovative approaches to managing its
data. Using a commercial database system provided a
basic persistence model, but brought new challenges as
well. BaBar was the first in the HEP community to use an
object database, and globally alone in scaling to a
petabyte.

With these unknowns and a changing set of
requirements, BaBar built significant flexibility into its
data management software. This foresight allowed the
system to quickly adapt to many issues in performance,
volume, organization, administration, and functionality.
Though it was clearly overdesigned in certain aspects, the
extra effort was an overall benefit. A few requirements
were not anticipated, such as the high collection count.
Thus the flexibility to accommodate those issues did not
exist, and coping with them required reengineering during
user operation. Designing the right amount of adaptability
is difficult in any situation, and BaBar’s especially
volatile analysis needs rewarded the extra effort.

Initial deployment was rocky, impeded by many
scalability and performance problems, requiring many
tunings and optimizations to stabilize the system. The
original requirements were met quickly, but rapid
expansion and constantly changing requirements kept the
data store operating near the edge of its capabilities
throughout the past 5 years of production.

BaBar’s vibrant research effort continues to demand
more data, more quickly from the detector, as well as
higher levels of data service. The first generation
eventstore was undoubtedly a great success, providing
storage and service throughput well beyond its original
design goals. Data rates, for example, were several times
higher than originally designed. Hundreds of users
analyzed data in BaBar. Its complexity and size has put it
beyond today's scalability frontier: in 2003, it was larger
than the largest 200 relational databases combined,
earning the grand prize in Winter Corporation’s TopTen
Program (a survey of world’s largest databases).

Further details on this ODBMS-implementation can
be found in [1], [2], and [3].

4. Second generation: refactoring

Experience is often considered the best teacher. When a
project is finished, its developers invariably ponder how
much better it could have been, had they known then what
they know now. Thus, as BaBar’s first persistence system
matured and stabilized, thoughts began shifting from
“how can we fix X?” to “ if the system was like Y, then
would X exist?” Research is necessarily forward thinking,
and with an increasingly stable system, developers were
able to design and implement BaBar’s second computing
model.

4.1 Motivation

Migrating BaBar’s large computing system was not a
decision made lightly, requiring many months of
discussion by BaBar management and staff. The idea
itself began circulating in 2002, soon after the LHC
experiments at CERN decided not to use Objectivity/DB
for persistence. Their choice was not based on the
perceived technical feasibility, but rather on the
uncertainty of Objectivity Inc.’s long term viability.
Because the ODBMS market had grown far slower than
expected, the company’s sustainability in a difficult
economic climate and over the LHC’s operating lifetime
(15-20 years) was deemed too uncertain. Following the
LHC’s decision had other benefits including: (a) greater
reuse of skills for physicists switching experiments, and
(b) reducing the number of systems to be supported.

As the only commercial software in a sea of 5 million
lines of home-grown C++, Objectivity/DB was the only
non-source-accessible component. Though support was
excellent, their priorities and release cycle did not always
align with BaBar’s. Dependence on their libraries, for
example, locked an otherwise open system in certain
compilers and operating systems. Monetary cost was also
an important factor.

Object databases are problematic for BaBar in other
ways. The overhead of database semantics on usability
and manageability was too high, considering that nearly
all of the workload was on read-only data. Data seemed
“ locked away” from physicists, and was non-trivial for
administrators to migrate between machines or setup on a
physicist’s laptop.

Finally, the existing transient-persistent abstraction
layer within BaBar software made migration a practical
possibility. Such a layer was crucial in mitigating any
lock-in to a single persistence technology, and allowed
enough freedom to consider alternatives.

4.2 Design goals

The second computing model aimed to select the best
features from the original implementation and leave
behind the most troublesome. Users still wanted a high
performance, flexible, scalable, and unified computing
environment, but disliked the overhead of network

connectivity, database semantics, and the central point of
failure. Yet the new design had to minimize user impact.
BaBar was not going to interrupt researching the origins
of the universe or give up its mammoth amount of
existing analysis code.

BaBar wanted to eliminate dependence on commercial
software, and so chose ROOT I/O [13], an open-source,
almost BSD-licensed persistence technology that had
wide acceptance in the HEP community. ROOT I/O
lacked many standard ODBMS features, never claiming
to be a “database,” but early tests indicated that it could
be adapted to meet BaBar’s demands.

Improving data administration was another goal. Users
found the array of database files representing their data
unnecessarily difficult to manage. They eschewed the
organization of database files as clustering constructs for
their data, whose logical structure depended on
collections storing references to events with references to
data objects. The new computing model simplified the
mapping, defining the one-collection-one-set-of-fi les
model. This model also simplified exporting data and
facilitated unconnected laptop analysis.

The last major goal was to reduce the complexity of
the system. The same physicists confused by the need for
the many files were also annoyed that the many data
servers, lock servers, transactions, and database semantics
seemed not to help but rather hinder their analyses.

4.3 ROOT I/O

ROOT I/O provides data persistence for the ROOT data
analysis framework, and can be characterized by its light-
weight, “ raw” interface to persistent objects. Persistent
classes are defined very similarly to Objectivity/DB, with
the added benefit that member fields may be marked as
non-persistent. This is a marked benefit when using the
persistent classes directly, although users of the BaBar
framework are shielded from persistence details. A key
disadvantage, however, is ROOT I/O’s lack of true object
referencing (ROOT has since developed a limited form of
object references, but BaBar does not use them).

A major benefit to using ROOT I/O for persistence is
the availability of the data under the CINT C++
interactive interpreter used by ROOT. Interactive use was
among the motivations to migrate, and it is hoped that its
convenience will allow BaBar users to work more closely
with their data. Interactive manipulation of ROOT I/O has
been immensely useful to developers, but has also proven
to require extra diligence in developing interactive-
accessible code. As of this writing, interactive access is
still very new to users, but it is hoped to become a
disruptive technology that will energize and spur different
ways of analysis. Still, there remains the danger of writing
code too close to persistence—interactive analysis is
necessarily aware of the details of ROOT. Finally, ROOT
I/O persistence provides built-in data compression,
encoding a batch of objects of the same class in a single

compressed unit. Compared to compression at the level of
database fi les in the first generation system, ROOT
provides compression at a finer granularity made possible
by its unique model of clustering persistent objects.

4.4 Kanga: an abstraction layer above ROOT

To successfully migrate BaBar’s existing analysis and
processing software to a new persistence technology,
significant effort was required. The Kanga system was
implemented to fill-in the essential functionality that the
previous ODBMS provided, and to replace the existing
ODBMS-dependent layer of code.

The Kanga system provides its own persistence layer
that implements object-references/pointers, basic schema
evolution, and transient-persistent object binding on top
of ROOT I/O. Because object-referencing operates on a
low level in object persistence, client code had to be
shielded from direct interaction with ROOT, so all
accesses had to be made through the Kanga persistence
system. Transient-persistent object binding was also
integrated into Kanga where it was previously a separate
abstraction layer from the ODBMS. Kanga is accessible
inside the ROOT CINT environment, giving the
interactive user access to its enhanced functionality.

It is interesting to note that although Kanga’s object
referencing system is limited, BaBar data can be modeled
adequately. It is a characteristic of BaBar event data that
objects of a particular event do not reference data in
different events, so more flexible, more generic object
references are not necessary.

Another key characteristic of Kanga is that it does not
attempt to provide any database features. Data must be
persisted in a very specific fashion, and ROOT files
themselves cannot be updated, only appended. However,
BaBar’s model of data collection, processing, and access
(read-only after data is persisted) was such that it did not
suffer too greatly. In fact, the feature-light characteristics
have yielded lower overhead and overall performance
benefits in current practice.

One example of the tradeoffs of Kanga is in its
management of collections. In the ODBMS, data from
many collections were stored in a single database file.
Kanga defines the model: one fi le contains data for only
one collection. One can then manage collections easily as
files in a file system. Data production can run in parallel,
creating “sub-collections” which are later merged into
much larger collections. Since the collections are merged,
there are less collections overall, which makes
management easier. Unfortunately, large collections,
some exceeding 2GB, are difficult to manage by the end
user. Jobs running over these collections exceeded the
batch system’s CPU limits, and more aggressive data
quality efforts needed to mark some sub collections as
“bad” due to discovered errors in their processing and
production. To handle these cases and provide greater
overall convenience, a new syntax for selecting

collections was needed to select subsets of collections,
shifting the problem of too many collections to a new
problem of implementing and debugging a syntax for
selecting parts of them.

4.5 A new data server: Xrootd

In considering the new computing model’s persistence
technology, ROOT I/O, client/server data access was an
important issue. Data servers in the new system needed to
reliably serve tape-resident data backed by local disk
caches. The bundled data server, rootd, was insufficient
for BaBar’s needs, so it was thus re-architected into a
more performant solution, using past experience with
Objectivity/DB’s AMS and the rootd source as references.
The resulting effort is called Xrootd [8], [16].

Xrootd was built specifically to address some of the
larger problems encountered with the AMS daemon. The
AMS protocol specified one TCP connection per file per
client. With clients typically accessing many fi les, and
sometimes failing to close their connections, this caused
not only server overhead, but administrative headache.
AMS daemon restarts were highly disruptive, as the
protocol had no inherent failover or fault-recovery
provisions. The Xroot protocol uses only one connection
per client, and has specific features for fault-tolerance and
load balancing.

Protocol Manager

Protocol Layer

FS Physical Layer

FS Logical Layer

FS Implementation

application

xrd

oss

fs mss

xroot authentication

optional

} xrootd

}
ofs authorization

Figure 3 Xrootd architecture

The Xroot protocol utilizes a connection as an
asynchronous pathway supporting multiple independent
and overlapping operations. In this way, it uses each
connection as multiple logical connections, removing the
wasteful use of network connections. I/O for each
independent operation can be segmented, preventing a
large transfer from necessarily blocking other operations.
Fault tolerance is facilitated through explicit redirection
and deferral. Redirection allows the server to perform
dynamic load-balancing as well as fault-handling.
Deferral is a server-originated message that effectively
pauses the client for a particular time period. It is used to
allow clients to gracefully continue through server restarts
or other maintenance, or to delay clients while data is

staged. Deferral allows server maintenance without
disrupting thousands of active jobs, and this ability itself
makes the in-house data server development effort
worthwhile.

An Xrootd server instance has two components: the
Xrootd data server daemon and the olb load balancer
(reused from AMS plug-in). Each server instance can be
configured as redirector or data host. Instances configured
as redirectors serve no data, but are well-known to the
clients. Data hosting instances serve data but do not
redirect. Using a combination of the two, clients can be
load balanced among the data hosting instances.

Xrootd’s dynamic nature significantly eases
administration. New Xrootd data host instances
automatically register themselves with the redirectors and
are immediately available to stage in data and serve it to
clients. This behavior happens automatically upon the
daemon’s startup without additional administrative
attention. Many other high-performance features are
available in Xrootd, but are beyond the scope of this
paper.

Overall, the Xrootd server has shown itself to satisfy
its design expectations. On modest dual-CPU hardware, a
single data hosting instance has easily handled over a
thousand clients and over two thousand open files
simultaneously. Redirector instances handle over five-
thousand redirects per second. With its robust
architecture, Xrootd easily saturates its disk and memory
bandwidth at below 50% CPU usage.

4.6 Bookkeeping

The ROOT-based eventstore lacks a central catalog, so a
separate bookkeeping system is needed to track all
collections and files. Bookkeeping shields users from
many unimportant details, presenting groups of
collections and files to users as named data sets. Data
from activities like PR, REP, and SP is tracked in this
system, while a QA group uses the same system to mark
the data which may become part of an official data set.
Another responsibility of the bookkeeping system is to
manage tasks. This part of the system shepherds a task
from definition to completion. This includes generating
batch job configuration files, tracking the splitting of
larger jobs, the submittal to the batch queue, monitoring
job status, and the resubmittal of failed jobs.

The technology that best fits bookkeeping is an
RDBMS. As with the eventstore, the specifics are
abstracted, allowing more than one RDBMS
implementation to be used. Some large centers, like
SLAC (which has an Oracle site-license) use Oracle,
while most small institutes opt for an open-source
alternative, MySQL. The core database resides at SLAC,
but is mirrored at around ten other sites not including the
laptops of more adventurous users. All updates to the core
are done on SLAC’s instance, and replicas trigger their
own synchronization (usually daily), flagging missing

collections afterwards and downloading them
automatically. External sites keep additional, non-
synchronized local information specific to their local
installations.

To reduce the dependency on central servers, jobs
never talk directly to the bookkeeping system. Instead, all
bookkeeping operations are done in advance: a query is
sent, and the response is fed to the job in form of a site-
independent configuration file.

The main goal is to provide a compact, simple catalog
for users to find the most common data quickly, while
allowing access to the full archive when needed. The
bookkeeping system, now around 3GB in size, is
currently being used for central production, data
distribution, and analysis, but the task management
component is only used for central production and has yet
to be deployed for analysis use.

4.7 Other improvements

Apart from the major features already discussed, several
features were implemented independently. Where
skimming produced pointer collections in the first
generation, a more flexible specification scheme was
implemented, allowing the production of deep-copy,
partial-copy, or pointer collections on a per-skim basis.
With this feature, events are now duplicated by a factor of
3.2, trading off space for increased data locality and I/O
performance.

Load-on demand is a feature intended to reduce data
pressure when reading back event data. It operates as a
thin abstraction layer between objects and their referents,
faulting in the latter only when referenced. This sort of
architecture is sensible when the object access is
expensive and dynamic, adding only a minor overhead in
the worst case. Load-on-demand has shown promise, but
it is unclear whether the current pipelined analysis model
will benefit, since most analysis jobs are based on preset
processing sets which seem to read most of the data
anyway.

Another independent feature is a facility for
monitoring data servers. This project offers centralized
views of measurements on BaBar’s data servers, allowing
administrators to more easily and quickly understand the
system’s basic health. Using the Ganglia package [10],
the system is able to gather, store and present through web
interface measurements such as CPU load, disk I/O and
networking Alerting capability has been added on. Such
information is expected to reduce downtime by speeding
troubleshooting and diagnosis, and perhaps even prevent
downtime and improve efficiency by making it simple to
see destabilizing factors before they disrupt the larger
system.

4.8 Have we met the challenge?

Initial experiences with the system have included teething
problems, but things have been positive. The system was

built with an aggressive schedule, allocating relatively
little time and resources to implementing the core
features. Some well intentioned efforts to ease things in
one area have complicated things in another.

To ease collection management, the new system
adhered to a one-collection-one-set-of-fi les model.
Instead of using database files as raw storage blocks, each
file now belonged to only one collection. One could then
move collections as easily as files, without being forced to
utilize special tools. Yet this improvement carried with it
some problems. Skimming and other production activities
needed to merge their output collections to prevent the
pre-merge number of collections (~millions) from
straining the file system, the mass storage system, and
other metadata bookkeeping systems. This improved
analysis efficiency and reduced collection count by an
order of magnitude, but increased each collection’s size.
At the same time, improved data quality began marking
parts of collections as “bad.” These two factors motivated
the implementation of a more complex scheme to select
events at a finer granularity within collections. The
increased convenience and flexibility of this scheme has
been well worth the added complexity.

The new system has been impressive in many ways.
Administrators have found data and server management to
be simpler. Users are excited about the analysis
possibilities with interactive access, and relieved to not
worry about database semantics. Though the more-
complex, non-eventstore database was not migrated as
part of this larger effort, work is already underway in
evaluating its migration to a non-commercial alternative.
Further development and tuning of the larger system are
still taking place, but the system as a whole is now in
wide use.

5. Lessons for future implementation

Managing large data sets requires unconventional
techniques and poses major challenges which do not
appear in smaller-scale systems. In the past five years we
have learned how to build and manage large system for
managing a petabyte data set, encountering such aspects
as integrating client and server software, running large-
scale computing farms, and administering databases.
Experience in two different persistency mechanisms—a
commercial ODBMS and a hybrid RDBMS/file-based
solution—puts us in a unique position to recognize
common data management themes. We have found that
the largest of these are: (a) providing access, and (b)
scaling the system.

5.1 Providing access

Efficient and convenient access to data is one of the
primary goals of a data management system. Having a
hierarchy backed by tertiary storage allowed the system to
handle the bulk, but the heavy access load continues to be
a challenge. The small, fine-grained random disk access

that is typical in BaBar is especially challenging to the
disk-based cache. Poor disk performance is a major
bottleneck “solvable” only by buying more and more
hardware.

Nowadays, disk capacity is growing at an impressive
rate. The MB/$ ratio is rapidly going up, while the
number of disk heads per MB is going down. Disks of a
given capacity are cheaper, but slower. Their
characteristics are therefore more like tape, offering good
performance for sequential reads of large chunks (~1MB),
but glacial performance for sparse, random reads of small
chunks (<1KB). Access at the latter operating point is far
from optimal for a disk, but it is the most common access
in HEP (and many other applications). The disk-memory
performance gap continues to widen. Memory is still too
expensive to be used in bulk to replace disks.

0.001byte/sec

1byte/sec

1KB/sec

1MB/sec

1GB/sec

Request size

T
hr

ou
gh

pu
t

main memory

disk

tape

100bytes 1KB 1MB 1GB

typical HEP
request size

Figure 4 Current performance gap in memory systems

One potential solution to this problem is to de-
randomize disk access. Techniques like pre-fetching or
data train would be effective ways to schedule the disk,
but they require an understanding of the access patterns.
An effort is underway to trace and understand Xrootd
access patterns for this purpose. Another way of achieving
de-randomization is to use hints from applications to
schedule less random access. Applications often know in
advance what they will access, but scheduling efficient
reads across multiple applications may not be trivial.

5.2 Scaling the system

When dealing with petascale data sets, scalability issues
come up everywhere: number of servers, files, persistent
objects, connections to servers, crashes, lines of code, and
so on. Managing such data sets is a challenge easily
underestimated. Very large systems are complicated by
nature, therefore the simpler the solution, the better. At
this scale, managing the metadata of the data set itself
becomes a major problem that requires special
consideration in the early stages of design. Being a

pioneer at this scale, BaBar did not appreciate this at the
beginning.

With so much hardware in use, availability is another
big challenge. Having a large number of nodes, servers,
farms, disks, and tapes means that the system experiences
frequent failures. To combat this, systems should
minimize dependencies on central servers, use reliable
server hardware and software, reduce failure impact (e.g.
by replicating), and invest heavy effort in fault recovery
mechanisms. Using commodity hardware reduces cost,
but care must be taken to meet minimum reliability and to
recover from the increased number of failures.

Distribution of data and computing load is crucial for
performance at this scale. Files need to be distributed
across many servers, or even sites. To reduce the server
load, a thin-server/thick-client architecture can be used, as
the load can be pushed off servers and distributed across
many clients, reducing overall server cost. Load balancing
is required to take full advantage of available server
capacity, but it must be automated.

Mammoth data stores have necessarily specific and
non-generic needs. Since such systems push the limits of
technology, it is highly important to design carefully and
control complexity. Needed features should be
implemented robustly, and unnecessary features should be
dropped for simplicity. These systems are often the first
of their kind, so built-in flexibility is also important to
allow adaptation to the continually evolving requirements
and use cases.

Finally, systems of this size must account for physical
considerations. Running large computing farms requires
dealing with lots of heat, power demand, and floor
weight. These three are among most serious challenges
for people maintaining hardware at SLAC and
collaborating sites.

6. Conclusions

Currently there is very little, if any, literature that covers
management of a petascale database simply because there
are no other databases today of that scale. With the
amount of data collected and stored by the average
business doubling each year [7], petabyte systems will be
popular in a few years. Building such systems is very
expensive, and wrong decisions might be very costly;
therefore any practical experience with this new scale of
computing is invaluable.

This paper presented our experience with managing
BaBar’s petabyte data store—the world’s largest database.
The experience has already proved useful for many, such
as intelligence and law enforcement agencies [9]. The
paper highlights design choices, describes the toughest
challenges, points out unexpected surprises, and provides
advice on the building, deploying and administering of a
very large data set. Experience with two different
persistence technologies (one commercial and one open-
source) has allowed us to expose format-independent

aspects and themes. The immense scale of the data set
magnified nearly every aspect of data management in
both technologies. Keeping data structures, workflow, and
overall design simple is crucial. The inclusion of non-
essential features is costly and will remain unappreciated
by the real users. Planning for change makes inevitable
migrations practical. BaBar’s data sample will continue to
grow rapidly in the next few years, and we expect to
continue building our understanding of beyond-petabyte
data sets.

7. References

[1] J. Becla at al, “On the Verge of One Petabyte – the
Story Behind the BaBar Database System”, in CHEP
proceedings, La Jolla, USA, March 2003

[2] J. Becla, I. Gaponenko, “Optimizing Parallel Access
to the BaBar Database Using CORBA Servers” , in
CHEP proceedings, Beijing, China, September 2001

[3] J. Becla, “ Improving Performance of Object Oriented
Databases, BaBar Case Studies” , in CHEP
proceedings, Padova, Italy, January 2000

[4] J. Becla, A. Hanushevsky, “Creating Large Scale
Database Servers” , 9th IEEE International
Symposium on High Performance Distributed
Computing, Pittsburgh, Pennsylvania, August 2000

[5] I. Foster, “What is the Grid? A Three Point
Checklist” , in GRIDToday, July 20, 2002, available
at: http://www.globus.org/research/papers.html

[6] I. A. Gaponenko, D. N. Brown, “CDB – Distributed
Conditions Database of the BaBar Experiment” , in
CHEP proceedings, Interlaken, Switzerland,
September 2004

[7] Gartner, Inc. Monthly Research Review, December
2001, available at:
http://www4.gartner.com/1_researchanalysis/mrr/120
1mrr.pdf

[8] A. Hanushevsky, “The Next Generation Root File
Server” , in CHEP proceedings, Interlaken,
Switzerland, September 2004

[9] G. Huang, “Managing Antiterror Databases” , in
Technology Review, June 2003

[10] M. Massie at al, “The Ganglia Distributed
Monitoring System: Design, Implementation, and
Experience” , Parallel Computing, May 2004

[11] S. Patton at al, “Support in the BaBar Objectivity
Database for Multiple Federations” , in CHEP
proceedings, Beijing, China, September 2001

[12] A. Rajasekar, “Storage Resource Broker – Managing
Distributed Data in a Grid” , in Computer Society of
India Journal, October 2003, available at:
http://www.npaci.edu/dice/srb/Pappres/Pappres.html

[13] ROOT I/O homepage: http://root.cern.ch
[14] J. Shiers at al, RD45 – “A Persistent Object Manager

for HEP”, CERN/LHCC 96-15, Feb 22, 1996,
available at:

http://wwwasd.web.cern.ch/wwwasd/rd45/reports/lcr
b_mar96

[15] R. Whiting. “Tower of Power” . In Information Week,
February 11, 2002, available at:
http://www.informationweek.com/story/IWK200202
08S0009

[16] Xrootd homepage. http://xrootd.slac.stanford.edu

