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Abstract 
Data integration in complex domains, such as the 
life sciences, involves either manual data curation, 
offering highest information quality at highest 
price, or follows a schema integration and mapping 
approach, leading to moderate information quality 
at a moderate price. We suggest a radically differ-
ent integration approach, called ALADIN, for the 
life sciences application domain. The predominant 
feature of the ALADIN system is an architecture 
that allows almost automatic integration of new 
data sources into the system, i.e., it offers data in-
tegration at almost no cost.  
We suggest a novel combination of data and text 
mining, schema matching, and duplicate detection 
to combat the reduction in information quality that 
seems inevitable when demanding a high degree of 
automatism. These heuristics can also lead to the 
detection of previously unknown or unseen rela-
tionships between objects, thus directly supporting 
the discovery-based work of life science research-
ers. We argue that such a system is a valuable con-
tribution in two areas. First, it offers challenging 
and new problems for database research. Second, 
the ALADIN system would be a valuable knowl-
edge resource for life science research. 

1 Introduction 
Data integration approaches in the life sciences can be 
classified into two broad types. Of the first type are pro-
jects that achieve a high standard of quality in the inte-
grated data through manual curation, i.e., using the ex-
perience and expertise of trained professionals. We call 
this type of projects “data-focused”. A prominent example 

for this class of integrated systems is Swiss-Prot 
[BBA+93], collecting and integrating data on protein 
sequences from journal publications, submissions, per-
sonal communications, and other databases by means of 
approximately two dozen human data curators. Data-
focused projects are typically managed by domain ex-
perts, e.g., biologists. Database technology plays an only 
minor role. All effort is put into acquiring and curing the 
actual data that is usually maintained in a text-like man-
ner. If detailed schemata are developed and used, they are 
not exposed to the user for structured queries. 

Projects of the second type use database technology, 
and are typically initiated and managed by computer sci-
entists. These projects, which we call “schema-focused”, 
are aimed at providing integration middleware rather than 
building concrete databases. They mostly deal with 
schema information, using techniques such as schema 
integration, schema mapping, and mediator-based query 
rewriting. Examples of such schema-focused projects for 
the life sciences are TAMBIS [BBB+98] and OPM 
[KCMS98]. Both require for each integrated data source 
the creation of some sort of wrapper for query processing, 
and a detailed semantic mapping between the heterogene-
ous source schemata and a global, mediated schema. The 
mappings must be specified in a special language (respec-
tively OPM*QL views and the GRAIL description logic 
in the mentioned projects), which makes them inaccessi-
ble for most domain experts. Their focus is exclusively on 
schema information and only little attention (and money) 
is paid to data values, their consistency, and their correct-
ness. 

Data-focused projects are very successful in the bio-
logical scene, but are also quite costly. Schema-focused 
systems on the other hand have hardly ever been used for 
any serious integration project in public life science re-
search and did not achieve the broad attention they might 
have deserved. We believe that the major reason for this 
failure lies in their schema-centricity. Creating the neces-
sary semantic mappings is tedious, especially when larger 
schemata are involved, requires learning proprietary and 
complicated languages, and often leaves biologists with a 
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general feeling of uselessness, because they distrust the 
necessary abstraction steps encoded in the global schema.  

We propose a novel, third type of integration approach 
for the life sciences, which we call ALADIN (ALmost 
Automatic Data INtegration). Its essential feature is that 
the integration of data sources is an almost automatic 
process without greater loss in terms of information qual-
ity. Instead, its automatic mechanisms for finding links 
between objects often lead to unexpected findings, which 
are of highest importance in a discovery-oriented field, 
such as the life sciences. 

ALADIN’s architecture consists of several components 
that together allow for the automatic integration of het-
erogeneous data sources into a global, materialized re-
pository of biological objects and links between them. Its 
architecture and key mechanisms rely on several charac-
teristics of databases in biological and medical research 
that are often more a semi-structured, text-centric data 
collection than a structured, data-centric database: 
• Data sources, especially those containing the most 

valuable information, are typically centered on one 
primary class of objects, such as genes, proteins, or 
DNA sequences. 

• The objects of this primary class always have a 
unique and publicly visible key—the “accession 
number”. 

• The primary objects are further described by a set of 
nested fields, called annotations. We call these anno-
tations the “secondary objects”. Apart from such an-
notations, relationships among objects within a data 
source rarely exist. 

• Many of the annotations are text fields, such as de-
scription, functional annotation, source of biomate-
rial, etc. Especially important fields with long strings 
are those containing DNA, RNA, or protein se-
quences. 

• Databases heavily cross-reference each other, using 
the global keys of primary objects together with the 
referenced databases as pointers. 

• Databases overlap in the objects they represent, stor-
ing sometimes redundant and sometimes conflicting 
data. 

ALADIN uses a relational database as its basis. It can 
integrate every sort of data source for which a relational 
representation exists or can be generated, including XML 
data and flat-file databases with an appropriate parser. As 
data management in the life sciences has matured consid-
erably in the last decade, almost all important databases 
are nowadays managed in relational database manage-
ment systems, and XML is common for data exchange. 
Furthermore, for almost all flat-file representations there 
are freely available parsers for importing the data into an 
RDBMS. Thus, our approach encompasses most data 
sources in the life science area. 

Integration in ALADIN does not depend on predefined 
integrity constraints structuring a schema, but uses tech-

niques from schema matching [RB01] and data and text 
mining [BN05; DLD+04] to detect the relation containing 
the primary objects for each data source, to infer different 
types of relationships between relations and objects within 
one source, and to infer relationships between objects in 
different sources. The system does not rely on any par-
ticular schema for its data sources. Even generic parsers 
may be used, such as generic XML-to-relational mapping 
tools [NJM03]. 

ALADIN integrates data sources in a five-step process. 
First, it imports a data source into a relational format 
using known parsers. From these relational representa-
tions, it then determines the relation (or relations) that 
represent the primary objects within a data source. In the 
third step, the fields containing annotation for the primary 
objects are detected. Here, existing integrity constraints 
are exploited, if they are available; otherwise, the rela-
tionships are guessed from data analysis. In the fourth 
step, links between the objects of the primary relations of 
different data sources are searched for. This step includes 
the discovery of predefined cross-references already con-
tained in the original data. Furthermore, links are gener-
ated based on similarity between values of text fields and 
based on sequence homology between sequence fields. In 
the fifth step, duplicates are detected across different data 
sources, thus removing commonplace redundancy. 

Once the data is imported into ALADIN, the process is 
completely automatic. It results in an integrated informa-
tion system that is best explained in analogy to the Web: 
The discovered objects correspond to Web pages, and the 
discovered links correspond to HTML links. Users may 
traverse this web of biological objects using a generic 
front-end very much like they travel the web using their 
browser. Just like in the Web, a specialized search engine 
can “crawl” the links and index biological objects and 
their data and textual annotation, thus providing search 
capability. ALADIN also supports structured queries, de-
tects and flags duplicate objects, and adds a wealth of 
additional links between objects that are undiscoverable 
when looking at databases in isolation. 

Clearly, the resulting warehouse of data contains er-
rors in those parts where the system needs to guess, i.e., in 
the definition of primary relations and in the linkage of 
objects in and across data sources. We expect that the 
most pertinent errors will be links that are lost between 
relations during the import step and wrong or missed 
cross-references between data sources. In consequence, 
we do not envisage that the resulting database should be 
directly fed into data mining or data analysis algorithms. 
However, ALADIN can readily be browsed without any 
schema knowledge, which is the method of choice for 
accessing databases for most biologists [SMB+04]. The 
system develops its strength in scenarios where an explor-
ative approach is necessary, but not in settled environ-
ments where the focus is on automated, large-scale data 
analysis with guaranteed quality bounds. 



The rest of this paper is organized as follows: In Sec-
tion 2 we describe and evaluate properties of biological 
databases and the different approaches to data integration 
in the life sciences in more detail. Section 3 outlines the 
architecture of ALADIN and sketches its main building 
blocks. Section 4 discusses each of these building blocks 
in more detail and points out how existing technologies 
can be used to achieve the required functionality. Section 
5 contains a case study for an integrated system of protein 
structure annotation. Finally, Section 6 discusses related 
work and summarizes the main challenges of and benefits. 

2 Data Integration in the Life Sciences 
Data integration in the life sciences has been a topic of 
intensive research for many years (see [Ste03] for a recent 
survey). It remains a promising area for database re-
searchers, as there is probably no other area in which such 
a large number of complex databases is freely available. 
Further, the importance of research in life sciences is 
constantly growing due to the direct effect on medical 
applications and, hence, human health and wellness. This 
research depends heavily on data integration, as valuable 
information is scattered over literally hundreds of hetero-
geneous and autonomous data sources [Aug01]. 

Databases in life science research have a number of 
characteristics that need to be taken into account when 
designing an integration system. Most importantly, life 
science databases typically store only one primary type of 
object. Objects of this type are described by a rich and 
sometimes deeply nested set of annotations. One particu-
larly important type of annotation are cross-references to 
other databases [BLM+04]. “Hubs” in the life science 
data world, such as Swiss-Prot, provide links to more than 
fifty other databases, pointing from the primary object of 
Swiss-Prot, i.e., proteins, to further information, such as 
protein structure, publications, taxonomic information, the 
gene encoding the protein, related diseases, known muta-
tions, etc. These cross-references, internally stored as a 
pair (target-database, accession-number) and presented 
as hyperlinks on web pages, are used intensively by hu-
mans to collect information. Links are determined in a 
number of ways, ranging from completely automatic 
methods, for instance based on the computation of simi-
larity between sequences, to fully manual methods requir-
ing the reading and understanding of primary literature. 

As observed quite some years ago, links are the natu-
ral first choice for integration approaches [Rob95], as they 
connect biological objects, for instance adding the func-
tion to a gene or the cause to a disease. This viewpoint is 
strictly different from typical database-oriented integra-
tion approaches whose primary aim is the removal of 
semantic redundancy in schemata. For instance, mediator-
based approaches start by designing a semantically non-
redundant global schema and connect elements of this 
schema to elements of source schemata to allow for con-
cise querying. However, this task is extremely difficult in 

the life sciences, where many of the prime object types 
are largely under-defined. Even ubiquitous concepts, such 
as a “gene” or a “protein”, are defined differently by dif-
ferent databases. Merging two gene classes into one blurs 
these differences, leading to uncertainty of biological 
users about what they see. 

This uncertainty does not affect the need for duplicate 
detection. In many cases, even though definitions are 
vague, objects in different databases are commonly con-
sidered as duplicates. For instance, largely the same pro-
teins used to be stored in Swiss-Prot [BBA+93] and PIR 
[WHA+02]. Detecting duplicate objects is a valuable task; 
however, contrary to typical duplicate detection scenarios, 
here duplicates should be only flagged and not merged. 

Keeping objects from different sources carefully sepa-
rated and concentrating on linking of objects from differ-
ent sources (where “duplicate” is one type of link) avoids 
confusion while offering most of the expected benefits 
from data integration: It allows for queries spanning dif-
ferent databases, and it potentially detects previously 
unknown links, thereby directly contributing to progress 
in life science research. 

 
 Data-focused  Schema-focused ALADIN 
Focus of 
attention 

Removal of 
redundancy in 
data 

Removal of 
redundancy in 
schemata 

Detection of 
object links 

Structure 
of data  

Semi-structured, 
meant for read-
ing and browsing 

Structured data, 
meant for analy-
sis and queries 

Derived struc-
ture, allows for 
both querying 
and browsing 

Cost of 
integration 

High, manual 
data curation and 
annotation 

Medium; requires 
wrapper and 
schema mappings 

Minimal cost 

Examples1 Swiss-Prot, 
Omim, Gene-
Cards, … 

Tambis, Discov-
eryLink, Bio-
Kleisli 

n/a 

Table 1: Spectrum of integration approaches 
 

We revisit our classification of integration approaches 
based on these observations (see Table 1). The data-
focused approaches disregard schema information and 
perform removal of redundancy in data, i.e., merging of 
information, manually by human experts. They are of 
highest value for the research community, but costly and 
grow at a much slower rate than raw experimental data is 
produced [RML04]. Schema-focused approaches aim at 
minimization of semantic redundancy in schemata, trying 
to reduce redundancy in data without having to deal with 
the data itself. As pointed out, this approach probably 
misses the main need in life science data integration. 

Our viewpoint on the most useful type of data integra-
tion is supported by the success of the SRS system for 
data integration [ZLAE00]. SRS runs in more than 400 
                                                           
1 We are aware that this comparison can be misleading as 
the mentioned schema-focused projects aim at developing 
middleware and methods for data integration and are not 
actual integrated databases. See also in the text. 



installations world-wide, integrating up to 150 databases 
into one system2. The system takes flat-file databases as 
input. For each database, a parser needs to be written in 
the proprietary Icarus programming language to define the 
database structure. Using these parsers, SRS computes 
indexes that allow for fast search over many databases 
with one query. Data from different databases is never 
merged, and queries can “join” different databases by 
following links taken from especially tagged fields. Thus, 
it follows the same design principles as our ALADIN pro-
ject in this respect; however, in SRS all structures and 
links need to be explicitly specified and no automatic 
integration takes place (see also Section 6.1). 

 

 
Figure 1. The architecture of ALADIN. 

3 System Architecture 
ALADIN builds on a local data warehouse that integrates 
heterogeneous data sources. Its architecture (see Figure 1) 
is derived from the characteristics of the life sciences 
domain as described in the previous section: It is intended 
for browsing, focused on the discovery of unseen relation-
ships between objects, and at the same time allows for 
searching and structured queries.  

ALADIN, unlike previous approaches, is strictly ori-
ented towards an almost maintenance free data integration 
procedure. From this principle, a number of design re-
quirements are derived: Integration of new data sources 
should need only minimal human intervention. Specifi-
cally, the integration process should not require the defini-
tion of semantic relationships between schema elements 
and it should not require the manual specification of ob-

ject links and duplicates. Instead, such relationships 
should be automatically guessed from the data without 
human intervention. The system should not assume that 
the data sources come with a clear definition of object 
types, as such definitions would require custom data im-
porters. Thus, the process must automatically detect sev-
eral things:  
• The primary objects within data sources  
• the (secondary) objects and fields containing annota-

tion for the primary objects, 
• formerly known and unknown links between objects 

in different data sources, and  
• duplicate objects within and across different data 

sources. 
Clearly, relying so much on automatic methods comes 

at a price; the detection algorithms are likely to make 
mistakes: There will be missing links (false negatives) 
and wrong links (false positives). There will be unrecog-
nized secondary objects, undetected duplicates, and in the 
worst case, no or only an incorrect primary relation is 
found for a source. This effect seems unattractive for 
database researchers, but is a common situation in infor-
mation retrieval and data mining applications. The stan-
dard procedure in such situations is to estimate the 
amount of errors of the system using performance meas-
ures, such as precision and recall. We show in Section 6 
how such measures can be estimated using an existing 
integrated database. 

However, “guessing” the various types of links also 
leads to the detection of unseen relationships between 
objects. Such discovery is a main feature of ALADIN. We 
think useful “guesswork” is achievable using a mixture of 
data integration, text mining, information retrieval, and 
data mining techniques. 

We now list the main components of the architecture 
in the order they will typically be used when adding the 
data of a new source into the system. In this section we 
give the big picture by concentrating on how the compo-
nents work together (see Figure 2); details for the individ-
ual components are given in the next section. There, we 
also show how far research in related work has advanced 
in achieving the components. 

Data import. Each data source needs to be imported 
into the relational database system. In cases where no 
downloadable import method exists, this is the one point 
where ALADIN does require human work. However, our 
experience in integration projects [BLM+04; RMT+04] 
shows that this situation is rare, and when it occurs it is 
sufficient for ALADIN to use a quick-and-dirty parser. No 
elaborate schema design or re-design is necessary. 

Discovery of primary objects. Once a data source is 
imported, we need to identify its primary objects stored in 
the primary relation. Intuitively, primary relations contain 
data about the main objects of interest in the source, such 
as “proteins” or “diseases”. Usually these relations store a 
primary key but no foreign keys—they are the “sinks” of                                                            

2 See http://srs.ebi.ac.uk 



Figure 2. Integration steps in ALADIN. 

the graph of foreign-key constraints (for details see Sec-
tion 4.2). Their discovery cannot rely on predefined integ-
rity constraints, as they often do not exist and generic 
parsers often cannot generate constraints due to missing 
semantic knowledge. In consequence, integrity constraints 
are used if they are known, but missing ICs are automati-
cally detected by analyzing any known schema informa-
tion and the attribute values. Primary relations are the 
focal point of the next discovery step. 

Discovery of secondary objects. In this step, the pre-
viously detected network of integrity constraints is revis-
ited, taking the identified primary relations as additional 
input. For each primary relation, the set of (possibly 
nested) dependent objects and attributes is determined. 
Secondary objects store additional information about 
primary objects. Additionally, cardinalities of relation-
ships are determined in this step. At the end of this step, 
the internal structure of a newly imported data source is 
known (of course, there might be errors). Note that until 
this point, no data or metadata from other data sources 
was involved. This ability is important to allow for effi-
cient incremental addition of new data sources. 

Link discovery. In the fourth step we search for at-
tributes that are cross-references to objects in other data 
sources. We assume that cross-references always point to 
primary objects in other databases as these are the only 
objects with stable and public IDs. Thus, the results from 
the second step are necessary input to determine all possi-

ble link targets. This assumption is an obvious pruning 
possibility to cope with the theoretic requirement of com-
paring all pairs of attributes from all sources. Other prun-
ing strategies that rely on attribute value distributions and 
statistics are discussed in Section 4.4. These statistics 
need to be computed only once for each data source and 
can then be reused for subsequently added data sources. 

Duplicate detection. In analogy to the previous link 
discovery step, in the fifth step we search for a special 
kind of “links” between primary objects in different data 
sources, i.e., those indicating that the database objects 
represent the same real world object. Such duplicate links 
are established if two objects are sufficiently similar ac-
cording to some similarity metric (see Section 4.5). Lit-
erature defines several domain-independent similarity 
measures usually based on edit distance. Knowledge of 
duplicates enhances the users browsing and querying 
experience by avoiding redundant information and com-
bining complementary data about an object. 

Browse, search, and query engine. Once data is in-
tegrated into the system, we provide three modes of ac-
cessing the data. Browsing simply displays objects and 
different kinds of links (to secondary objects, to related 
objects, to duplicates) that users can follow. Search al-
lows a full-text search on all stored data and a focused 
search restricted to certain partitions of the data (only 
certain data sources, only certain fields, etc.). Finally, 
querying allows full SQL queries on the schemata as 



imported. All three access modes are supported by appro-
priate user interfaces. 

Metadata repository: The process of discovering 
new structures and links produces much metadata that is 
stored in a central repository. In the spirit of the “Corpus” 
in the Revere project [HED+03], it contains not only 
known and discovered schemata, but also information 
about primary and secondary relations, statistical meta-
data, and sample data to improve discovery efficiency. 
Finally, a large part of storage space will be consumed by 
the discovered links on the object level. 

In this section we have described the discovery steps 
as an iterative process. Of course in an implementation of 
such a system, there is high potential for parallelization 
and combination of these steps. In particular the discovery 
of primary and secondary objects can go hand in hand in a 
single processing step. Figure 2 summarizes this section 
by representing the overall architecture and pointing out 
how the components collaborate to achieve (almost) 
hands-off data integration. 

4 System Components 
In this section we describe the components of ALADIN in 
more detail, point out existing technology, and name open 
challenges. 

4.1 Data Import 

The task of the data import component is to read a data 
source into a relational database. It is neither necessary 
that the relational schema or its elements conform to any 
standard, nor is it necessary that integrity constraints, such 
as UNIQUE, PRIMARY KEY, or FOREIGN KEY, are 
present in the schema. Subsequent steps add this informa-
tion wherever possible. 

Therefore, a variety of known import procedures can 
be used. We believe that they encompass most of the 
major life science databases and give some examples that 
support this claim3: 
• Some databases, such as Swiss-Prot, the GeneOntol-

ogy, or EnsEmbl, provide direct relational dump files. 
• For text-based exports, in many cases readily 

downloadable parses are available. For instance, 
Genbank, Swiss-Prot, or the NCBI Taxonomy Data-
base can be read by the BioPerl and BioSQL pack-
ages. 

• Some databases provide parsers with their export 
files, such as the OpenMMS parser for the Protein 
Structure Database (PDB) or the ArrayExpress pars-
ers for the MGED XML format for microarray data. 

                                                           

                                                          
3 For space limitations we omit URLs or references for 
these databases. A search in the web using the database 
name and the keywords mentioned in the text find the 
appropriate web site. 

• Databases exported as XML files can be parsed using 
a generic XML shredder. This XML parsing is for in-
stance helpful to import protein-interaction data from 
the BIND database or pathway data from KEGG. 

Until today, we have met only very few sources for 
which no parser exists. For instance, we are not aware of 
any parser for the CATH or SCOP databases on protein 
classification; however, their format is trivial to parse. 
Again, as ALADIN has almost no expectations to the re-
sulting schema, straight-forward mappings to tables are 
sufficient. 

4.2 Discovery of Primary Relations 

As described in the introduction, most life science data-
bases are centered on only one type of (primary) object. 
The task of the second step is to detect this type in the 
relational representation without relying on any support 
from the parsers. We call this type the primary relation 
for the data source; cases with more than one primary 
relation are seldom and discussed later. 

Finding the primary relation relies on a set of heuristic 
rules using only the schema and the actual data as input. 
The rules are derived from our experiences with the inte-
gration life science databases [BLM+04; LLRC98; 
RMT+04]. Concrete examples are given in Section 5. The 
output of the algorithm is the name of the primary relation 
and a set of properties and guessed relationships between 
the tables of the data source  

As the first step, the algorithm detects “unique” attrib-
utes by issuing a SQL query for each attribute in the 
schema that has no known UNIQUE constraint. Attributes 
that are unique are marked as such. 

Primary objects of a life science database usually are 
biologically or medically important objects, such as se-
quences, proteins, diseases, or genes. These objects and 
their description are long lasting and the target for data-
base cross-referencing. Therefore, these objects carry a 
stable, publicly visible accession number as ID. We have 
observed that accession numbers usually contain alpha-
numeric characters, whereas internal IDs generated by the 
parsers to connect relations consist only of digits. There-
fore, we analyze for each unique attribute whether each of 
its values contains at least one non-digit character and is 
at least four characters long4. As accession numbers 
within one database usually all have the same length, we 
finally require the values of the attribute to differ by at 
most 20 percent in length. 

Attributes fulfilling these conditions are marked as ac-
cession number candidates. Each table may have only one 
accession number candidate; if more than one candidate 
was found, only the one with the longer average field 
length is considered. 

 
4 These are the shortest accession numbers we are aware 
of (used in the PDB database). 



Next, the algorithm tries to deduce foreign key rela-
tionships and their cardinalities. Note that foreign key 
relationships are directed and represent either a 1:1 or a 
1:N relationship5. Existing foreign key constraints are 
found using the data dictionary. Then, all unique attrib-
utes are considered as potential targets for such a relation-
ship and all attributes are considered as potential sources. 
The values of each potential source are compared to the 
values of each potential target. If the values of a potential 
source are a true subset of the values of a potential target, 
we assume a 1:N relationship, i.e., the source attribute is a 
foreign key of the target attribute. If the values of a poten-
tial source are the same set as the values of a potential 
target, we assume a 1:1 relationship. More sophisticated 
techniques are described for instance in [KM92; MLP02]. 

Clearly, this algorithm is prone to make mistakes, e.g., 
if many dictionary tables are used to define the set of 
allowed values for an attribute. Those tables typically 
have as primary key integer numbers from 1 to the num-
ber of tuples in the table. As these sets are quite similar, 
confusion about which is the primary key for a foreign 
key representing the value-restricted attribute may arise. 
However, note that for this confusion to happen, all values 
of the foreign key must also appear in the primary key 
attribute. This case happens only if the number of values 
in two dictionary tables are identical – a rather rare event.  

The next step chooses the primary relation from the 
set of tables containing an accession number candidate. 
Therefore, the network formed by the guessed foreign key 
relationships is analyzed. We choose as the primary rela-
tion the table with highest in-degree of all tables contain-
ing an accession number candidate. This heuristic is based 
on the observation that life science databases contain 
mostly fields that describe some primary objects. These 
fields are often multi-valued and structured, e.g., lists of 
scientific references, lists of database cross-references, or 
lists of keywords describing the function of a protein in a 
controlled vocabulary. If such a field is single-valued, for 
instance to store the sequence of a large stretch of DNA in 
a separate table, then there is a 1:1 relationship with the 
primary relation as target. If a field is multi-valued, then 
the primary relation either has a 1:N relation to the table 
containing the field or it has a M:N relationship, appear-
ing as 1:M, to a bridge table. Thus, many tables necessar-
ily point to the primary relation. 

The detected primary relation and the set of relation-
ships are used as input for the third step.  

In some cases data sources have more than one pri-
mary relation. For instance, the EnsEmbl database focuses 
both on sequenced clones and the genes lying on those 
clones [HBB+02]. Such cases require a more complex 
metric for finding primary relations, using for instance the 
difference of the in-degree of a relation to the average in-
degree. Schema information, for instance schema ele-
                                                           
5 M:N relationships from a conceptual model appear as 
two 1:N relationships in the relational representation. 

ments containing the substring “ID” in their name or 
elements that match partially to another schema element, 
could also help. In the following, we further assume that 
there is only one primary relation for each data source. 

4.3 Discovery of Secondary Relations 

Having discovered the primary relation of a data source, 
we need to connect the objects in this relation to the other 
relations in the data source. This step determines the de-
scription and annotation that is displayed together with a 
primary object in the web interface (see next). 

We revisit the set of relationships we have detected in 
the previous step. We compute the path(s) from the pri-
mary relation to each of the other relations of the data 
source using transitivity of relationships, ignoring direc-
tion and cardinality. In theory, no such path needs to exist, 
as the relations of the data source could fall into non-
overlapping partitions. However, this would imply that a 
data source stores two completely unrelated sets of infor-
mation – a situation we have yet to encounter. Note that 
this situation is different from a database having more 
than one primary relation, as those relations will always 
be connected – establishing this connection is probably 
one of the main purposes of such a database. 

The paths are stored in the metadata repository. As de-
scribed earlier, those paths are used to join together the 
information that is presented as belonging to an object. If 
multiple paths exist, all are stored. The paths may also be 
used to guide the construction of structured queries. 

4.4 Link Discovery 

There are two kinds of links between objects that we want 
to discover in this step: explicit links and implicit links. 

First, among life sciences databases there are many 
existing, explicit cross-references. Usually such a cross-
reference is stored as the accession number of the object it 
points to together with an indication of the database hold-
ing this object. Often, both are encoded into one string, 
such as in “ENSG00000042753” or “Uniprot:P11140”. 
Thus, already here string matching techniques are needed, 
for instance for finding common substrings. Because 
cross-references use public, globally unique, and stable 
identifiers – in contrast to keys within databases – target 
candidates are exactly the previously discovered unique 
fields in primary relations of other databases. 

Second, in the biological universe there are many rela-
tionships between objects that are not explicitly stored. 
We discover such implicit relationships by searching for 
similar data values among the sources. Similarity, and 
especially sequence similarity, is a ubiquitous indication 
for object relationships in the life sciences. For instance, 
similarity between protein sequences or protein structures 
is the most important way of inferring the function of a 
new protein [AMS+97]. Of course, not all attributes are 
promising targets for a comparison, either because simi-
larity doesn’t mean anything (similarity of keys), or be-



cause similarity is not detectable by comparing single 
values (similarity of 3D protein structures). We currently 
focus on three specific types of comparisons. First, the 
values of attributes containing DNA, RNA, or protein 
sequences are compared to each other. Finding sequence 
fields is simple, as those contain only strings over a fixed 
alphabet (A, C, T, G for genes). Second, attributes con-
taining longer text strings, such as textual descriptions, 
can be analyzed by using techniques from information 
retrieval and text mining. In particular, methods for find-
ing names of biological entities in natural text can be used 
for extracting names that are matched with unique fields 
of primary relations potentially holding the name of ob-
jects [CSA04; HBP+05]. Third, life science researches are 
increasingly aware of the importance of using standard-
ized vocabularies across databases. Such vocabularies, 
called ontologies in this area, are now widely used for 
annotating gene function (Gene Ontology), microarray 
data (MGED ontology), and will be used for proteomics 
data (PSI-MI ontology). The resulting values make excel-
lent links, connecting proteins with similar function or 
experiments with similar parameters, provided that the 
ontologies are themselves integrated as data sources. 

Conceptually, to discover all such links, we need to 
look at each pair of attributes among two databases. How-
ever, substantial pruning can be applied based on data 
characteristics. For instance, the attribute representing the 
target of a cross-reference is always a primary key in the 
respective table. Further, attributes with few distinct val-
ues should be excluded from being a link source, as are 
attributes with purely numeric values to avoid misinter-
pretation of surrogate keys. 

All links prior to this step result in “normal” joins, 
whereas here we must store the discovered links on the 
object level in the metadata repository to avoid repeated 
discovery and computation at query time. 

The link discovery task is closely related to schema 
matching, especially to those projects using instance-
based techniques. Schema matching discovers correspon-
dences between elements of heterogeneous schemata. The 
resulting mappings between schemata improve the overall 
performance of query answering in terms of how much 
data can be accessed and how relevant it is to the query. 
Examples of schema matching projects are iMAP 
[DLD+04], similarity flooding [MGR02], and Clio’s 
schema matcher [NHT+02]. 

4.5 Duplicate Detection 

The links mentioned in the previous section connect ob-
jects based on individual data values, in particular based 
on pairs of similar attribute values. The underlying as-
sumption is that the objects are somehow connected if 
they have similar, non-trivial attribute values. Another 
interesting relationship between objects is duplicity. Not 
only do many sources overlap in their intension, but also 
in their extension, storing data about same real world 

objects. For instance, the last years have seen an explo-
sion in databases storing data on observed or predicted 
protein interaction, such as BIND, MIND, WIT, or Reac-
tome. These databases have largely overlapping content, 
i.e., they partly store the same interactions. However, the 
data is differently modeled, and there are differences in 
the set of attributes that are managed in each database. 

Duplicate detection techniques are well known in the 
relational database world. However, duplicate detection in 
the biological domain cannot rely on well-structured and 
fine-granular attribute values to identify duplicates. In-
stead, values of unstructured text fields must be analyzed, 
and the heterogeneous and only partly overlapping model 
of the data must be accounted for. 

Duplicate detection in semi- and unstructured data is 
more difficult than in the relational case. It is not a priori 
clear, which attribute values of one object to compare 
with which attribute value of the other object. Thus, 
common similarity measures employed to identify dupli-
cates cannot be applied immediately. Methods consider-
ing the nested structure of objects [WN04] and applying 
more advanced similarity measures taken from then in-
formation retrieval are currently developed [BN05]. 

Knowledge about duplicates is very useful in an envi-
ronment such as ALADIN. First, duplicates might comple-
ment each other: One source knows one thing about an 
object; the other source might know some additional in-
formation. Also, duplicates provide a chance to choose 
between alternatives. In answering a query, only one 
representative of each duplicate cluster can be returned. 
On the other hand, duplicates give rise to data conflicts. 
Different sources might contradict each other in the data 
they store about an object. Usually it is up to the experts 
to decide which of the values (or both) is correct. Espe-
cially the life sciences domain produces many such con-
tradicting values, due to the different experimental meth-
ods to obtain the values. Exploring such contradictions is 
of great interest to biologists. A concrete example of the 
importance of duplicate detection is given in the case 
study (Section 5). 

4.6 Data Access Engine 

The data access component connects users with the data. 
Users have three modes of access, namely browsing, 
searching and querying. Browsing and searching capabili-
ties are usually already offered by the Web front ends of 
the individual sources, albeit only on their own data. Ex-
plicit cross references between data source are realized as 
HTML links, allowing users to browse from one source to 
the other. The ALADIN browser provides uniform access 
to all stored data. It can follow not only cross-references, 
but all four types of relationships between objects: 
1. Same relation. Trivially, users can jump from object 

to object within a relation. 



2. Dependency. Users can follow links to secondary 
objects to obtain more information about a certain ob-
ject. 

3. Duplicates. Users can follow links to other database 
objects that talk about the same real world object. 
Conflicts are highlighted, and data lineage is shown. 

4. Linked. Finally, users can follow links between data 
sources, from one object to another. 

Search allows a full-text search on all stored data and 
a focused search restricted to certain vertical (e.g., a sin-
gle attribute-type) and horizontal partitions (e.g., only on 
primary objects) of the data. Ranking algorithms order the 
search results based on similarity of the result to the 
query. Searching requires efficient indexes on very large 
amounts of data. For this goal, we rely on commercial 
vendor software on top of a database, such as DB2’s 
Search Extender or Oracle 10g’s regular expression 
search capabilities. 

Posing queries against such a vast, semi-structured 
and semi-connected database, is a difficult task. Of par-
ticular importance is to rank results according to certainty 
values derived from the different discovery steps during 
data import. The situation is similar to that of peer-data-
management-systems, where different data sources are 
connected with mappings. Answers to queries against a 
data source at one peer are answered by querying data 
stored locally, but also by following mappings and re-
trieving information at the other peers. 

All three access modes are supported by appropriate 
user interfaces. In particular the SQL interface must be 
simple enough to allow even novice users to formulate 
meaningful queries. The query interface of the COLUMBA 
prototype [RMT+04] is a good example allowing users 
iterative query refinement by adding more and more filter 
conditions. 

5 A Case Study on Protein Data 
Many of the design decisions of ALADIN are based on 
experiences drawn from integration projects in the life 
sciences domain that the authors pursued in the past. 
Here, we shortly discuss the most recent one, the 
COLUMBA project [RMT+04] 6. 

COLUMBA is an integrated, relational data warehouse 
that annotates protein structures taken from the Protein 
Data Bank (PDB) with data on classification of structures, 
protein sequence and sequence features, functional anno-
tation of proteins, participation in metabolic pathways, 
and some more. The workflow of integration consists of 
the steps data import, mapping of source schemata into 
the COLUMBA target schema, and connecting PDB entries 
to data from other databases through cross-references. 

Developing the data import routines takes relatively 
little time. All but two of the data sources in COLUMBA 
are available either directly as dump files or as flat-files 
                                                                                                                     
6 See http://www.columba-de.de 

together with a proper parser. The two exceptions, i.e., the 
protein classification databases CATH and SCOP, consist 
mostly of a hierarchy of classes of protein domains and 
links to the actual proteins; writing a parser took only a 
few hours in both cases. This experience shows that rely-
ing on a relational database as starting point for the hands-
off integration process is a reasonable assumption. 

The import generates a relational representation of a 
data source using a source- and parser-specific schema. 
However, we decided to store only a fraction of all data in 
COLUMBA to keep queries simple and fast. In the 
COLUMBA target schema each data sources has its own 
subschema. The extraction and transformation from the 
initial data source schema into the target schema is cur-
rently hard-coded, and its development required a large 
fraction of the overall effort. First, understanding the 
schemata is very difficult, as they are often poorly docu-
mented and frequently use metadata-like structures that 
cannot be understood by looking only at the schema 
[Mil98]. Second, transforming the data requires opera-
tions that are beyond current schema mapping languages 
[MHH00]. Transformations in COLUMBA are therefore 
carried out by a mixture of SQL and Java. 

COLUMBA focuses on high-quality data, thus the tedi-
ous and manually specified transformation is a necessary 
step. However, ALADIN aims at automatic data integration 
accepting some compromises in terms of quality. Our 
experience from reengineering more than a dozen rela-
tional life science schemata makes us convinced that the 
heuristics described in Section 4.2 and 4.3 are justified. 
As an example, consider a fraction from the BioSQL 
schema used for storing imported data from Swiss-Prot 
and EMBL (see Figure 3)7. 

In the full schema, there are three tables with an in-
degree above five: BioEntry for storing the primary ob-
jects, OntologyTerm for storing functional descriptions, 
and SeqFeature storing a meta-representation of sequence 
features (not visible in the Figure). Of those, only BioEn-
try has an accession number candidate (accession), whose 
values are mixed characters and integers and all have the 
same length. The other fields in BioEntry are either non-
unique (e.g. taxon_id), have no alphanumeric character 
(e.g. bioentry_id), or have varying length (e.g. name). 
Thus, this table would correctly be identified in ALADIN 
as the primary relation. Secondary relations could be 
correctly connected to the primary relation once the pri-
mary key – foreign key constraints are detected by analyz-
ing the scope of the different attributes storing surrogate 
keys. In BioSQL, dictionary tables for various types of 
keywords are filled only with those terms that are actually 
referenced, and no two dictionary tables have an equal 
number of tuples (in the current release). Thus, relation-
ships could be correctly guessed.  

In the next step in COLUMBA, protein structures are 
connected to annotations using either existing cross-

 
7 See http://obda.open-bio.org. 



Figure 3. Part of the BioSQL schema. Arrows indicate candidates for primary relations 
and for cross-references. 

references or by sequence similarity. This step seems to 
be straight-forward, but is not for two reasons. First, many 
of the secondary databases are maintained by human data 
curators and there is a considerable backlog in annotating 
structures. This backlog appears as missing links in 
COLUMBA. Automatic methods for computing database 
links are therefore a very important aspect. Second, in 
many cases there is more than one source linking two 
databases. For instance, there exist at least five different 
sets of links from Swiss-Prot to PDB [Mar04]. These sets 
overlap, but also differ to a considerable degree. Ranking 
of results based on the strength of evidence is thus a very 
important feature to support users adequately. 

Our heuristic for connecting objects across databases 
can be demonstrated again using the BioSQL schema with 
its fields for linking out to other databases. The target of 
existing cross-references, the accession field, would be 
identified as potential target for links from other sources 
because of its characteristics (see preceding). The source 
of external cross-references in BioSQL is the field 
DBRef.accession, where external Ids are indeed stored as 
described in Section 4.4. Note that we would not be able 
to use the information in the attribute DBRef.database 
(which specifies the target database), because we analyze 
only single attributes, not combinations. However, we 
also do not need this information, as matching the values 
of DBRef.accession against all unique fields of primary 

relations automatically would find the correct target data-
base.  

The BioSQL schema also contains several attributes 
whose values are excellent candidates for finding implicit 
links, such as OntologyTerm.Term_definition, linking into 
biological ontologies, BioEntry.description, linking to 
disease or gene-focused databases, and Biose-
quence.Biosequence_str, containing the actual DNA or 
protein sequence. 

Finally, duplicate detection is an important step in 
COLUMBA, because the protein structures from the PDB 
are actually available in three different flavors: the origi-
nal PDB files, a cleansed version available with a parser 
[BBF+01], and another cleansed version available as 
dump files [BDF+03]. These three versions, even though 
derived from the same data set, differ greatly due to dif-
ferent cleansing procedures. Selecting the proper value for 
each data field is an important problem [MLF04]. Detect-
ing duplicate objects is easy in this case, because the 
original PDB accession number is available in all three 
representations. Duplicate detection becomes more diffi-
cult for gene and disease data, for which many more and 
more heterogeneous databases are available than for pro-
tein structure [LLRC98]. 

Apart from the databases integrated into COLUMBA, 
we have also studied a number of other databases, espe-
cially in the area of genomic maps [LLRC98] and gene 



expression databases [MSZ+01]. We are convinced that 
the heuristics described earlier work very well in most of 
the cases, although we have no proof for this claim yet. 
The COLUMBA database shall serve as a “learning” test set 
for estimating the performance of ALADIN’s various 
analysis algorithms. Thus, precision and recall methods 
for finding primary relations, secondary relations, cross-
references, and duplicates can be derived. 

6 Conclusions 
We have proposed the ALADIN architecture and frame-
work as a novel approach to data integration in the life 
sciences. It is designed for (almost) hands-off data inte-
gration, relying on a mixture of techniques from database, 
data mining, and information retrieval. We argued that 
this approach is feasible, because life science databases 
share certain properties that can be cast into effective 
heuristics for an automatic execution of most tasks neces-
sary to achieve data integration. 

ALADIN offers clear added-value to the biological user 
when compared to the current data landscape. It enables 
structured queries crossing several databases for users 
knowing the schemata (and offers support for those who 
do not), suggests a wealth of new relationships inter-
linking all areas of the life sciences, and offers ranked 
search capabilities across databases for users that prefer 
Google-style retrieval. 

We make one more important point regarding queries 
across different databases and across different object 
types. Consider a query for all genes of a certain species 
on a certain chromosome that are connected to a disease 
via a protein whose function is known. For each of the 
object types in the query, several potential data sources 
exist, as there are several potential sources for the links 
connecting the objects. However, no current data integra-
tion system is capable of dealing with this variability in a 
transparent fashion; instead, the database administrator 
usually decides which source to integrate, thus leaving no 
freedom of decision to the end user. In contrast, ALADIN 
helps the user in several ways: First, as integration re-
quires almost no manual intervention, integrating all data-
bases is feasible. Second, duplicates are detected auto-
matically, thus reducing the redundancy in the result. 
Third, data sources concentrating on links, such as Integr8 
or DBLink, can be integrated as well with almost no ef-
fort. Finally, query results can be ordered based on the 
number, consistency, and length of different paths be-
tween two objects, as suggested in [BLM+04]. 

We conclude the paper with a survey of related work 
and an overview of bottlenecks and challenges to our 
proposal. 

6.1 Related work 

The problem of data integration in the life sciences has 
been explored for many years. Various types of integra-

tion middleware and methods have been proposed. Dis-
coveryLink is an extension of IBM’s DB2 database sys-
tem that is capable deploying wrappers to access data 
outside of the database through SQL from inside DB2 
[HSK+01]. Many wrappers exist for life science data-
bases, accessing the data either locally or via the Internet. 
OPM offers an object-oriented data model and the query 
language OPM*QL, which can join to remote databases 
for which an OPM wrapper exists [CKMST98]. TAMBIS 
maps data source schemata into a global schema formu-
lated in the description logic GRAIL, thus allowing for 
more semantics in queries [BBB+98]. All these projects 
have in common that they focus on schema information 
and do not make use of data in any fashion. 

The Sequence Retrieval System (SRS) is a system for 
integrated access to biological flat-file databases 
[ZLAE00]. Each database must be wrapped by a specific 
parser written in the proprietary Icarus programming 
language. Primary and secondary relations as well as 
database cross-references need to be explicitly specified 
in the parser code, which contrasts to our approach where 
this information is deduced automatically. SRS does not 
treat duplicate data. Unlike ALADIN, SRS is essentially a 
schema-driven approach; like ALADIN, SRS focuses on 
cross-references.  

An interesting system is the GenMapper, which inte-
grates data from more than forty data sources into a 4-
table schema [DR04]. GenMapper also concentrates on 
cross-references; however, no attempt is made to find 
implicit relationships and data import requires the defini-
tion of manual mappings into the four-table target 
schema. A similar approach, although with a more elabo-
rate model of target schemata, defined using the Protégé 
knowledge base system, is BioMediator [SMB+04]. Re-
cently, two projects proposed a star-schema-like integra-
tion model for the life science domain, where information 
from various sources is connected to a central class using 
database cross-references. Our COLUMBA database 
[RMT+04] integrates twelve protein-related databases, 
whereas the EnsMart project aims at a more generic solu-
tion [KKS04]. ALADIN has in common with these projects 
that data is integrated only via cross-references; however, 
the research focus of those approaches is completely dif-
ferent. 

Apart from individual algorithms and techniques al-
ready cited at appropriate places, in the database research 
area, the project closest to our proposal is probably the 
Revere project [HED+03]. Based on the PDMS called 
Piazza, the specific user interface generator Mangrove, 
and a corpus of metadata and tools thereon are added. The 
user interface displays unstructured or semi-structured 
data and entices users to add more structure (and thus 
semantics) to the data. With more semantics, more inter-
esting queries are answerable with more underlying data. 



6.2 Challenges and Bottlenecks 

Our proposal for building a new type of data integration 
system that mostly relies on data characteristics instead of 
schema information leaves open several questions, the 
most important one being “Will it work?”. Although most 
of the discovery steps presented here rely on existing 
algorithms and techniques that have been successfully 
applied in many different application domains, the ALA-
DIN system is a true challenge in terms of size, number, 
and complexity of the data sources to be integrated. How 
well these techniques interoperate in a complex domain 
such as the life sciences is yet to be found out. In particu-
lar, errors in earlier steps propagate and might influence 
the quality of later results. For instance, incorrectly identi-
fying the primary or secondary relations leads to incorrect 
targets for the link discovery. Incorrect links in turn influ-
ence the precision of duplicate detection.  

Nevertheless, we believe that the particular nature of 
life science data sources and prior experiences offer good 
arguments for optimism. We also plan to incorporate user 
feedback into the query interface. Users browsing the data 
or query results from ALADIN might indicate that a link 
between two objects or even between two schema ele-
ments was inserted incorrectly. Thus, especially false 
links between relations can be removed quickly. 

Correspondence with users of the COLUMBA database 
ensures that the functionality provided by ALADIN suits 
typical biologists well and provides added-value at small 
to zero maintenance cost. For instance, typical microarray 
experiments produce a set of 50-100 genes. Biologists 
then manually browse a large number of web sites follow-
ing hyper links for each gene. Such browsing, enriched 
with many more links, reduced redundancy due to dupli-
cate detection, and the full capability of SQL queries 
would be perfectly supported by ALADIN. 

One important issue not addressed in the paper is that 
of performance. While we point out that data sources can 
be incrementally added, each addition in its own involves 
an enormous number of calculations. Because we assume 
no schema, in principle each inclusion step involves cal-
culations on all data of the source: Data import makes at 
least one pass over the data. Discovery of primary and 
secondary objects conceptually performs a sort on each 
attribute and then a join-operation on each pair of attrib-
utes from different relations. Link discovery first employs 
schema matching techniques (with differing complexity) 
on all attributes of all data sources and then conceptually 
again a join operation on all matching attributes. In all, 
the efficiency of adding a new data source will be low, 
but much better than manually adding a new source and 
establishing connections between its data and the data of 
the other already integrated sources. Furthermore, sam-
pling can be used, and there are various heuristics for 
eliminating attributes from consideration for the different 
tasks. 

Another subtle problem is that of data changes. In 
principle, all links must be recomputed even if only a 
small fraction of the data of a data source changes. This 
re-computation is clearly infeasible. We envisage a 
threshold on the number of changes to a data source be-
fore a new analysis is carried out. 

In summary, we believe that the ALADIN system offers 
both interesting challenges to the database community and 
high value to the life science community. We plan to take 
up these challenges in the near future. 
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