
(Almost) Hands-Off

Information Integration for the Life Sciences
Ulf Leser, Felix Naumann

Department for Computer Science, Humboldt-Universität zu Berlin
Rudower Chaussee 25, 12485 Berlin, Germany

{leser,naumann}@informatik.hu-berlin.de

Abstract
Data integration in complex domains, such as the
life sciences, involves either manual data curation,
offering highest information quality at highest
price, or follows a schema integration and mapping
approach, leading to moderate information quality
at a moderate price. We suggest a radically differ-
ent integration approach, called ALADIN, for the
life sciences application domain. The predominant
feature of the ALADIN system is an architecture
that allows almost automatic integration of new
data sources into the system, i.e., it offers data in-
tegration at almost no cost.
We suggest a novel combination of data and text
mining, schema matching, and duplicate detection
to combat the reduction in information quality that
seems inevitable when demanding a high degree of
automatism. These heuristics can also lead to the
detection of previously unknown or unseen rela-
tionships between objects, thus directly supporting
the discovery-based work of life science research-
ers. We argue that such a system is a valuable con-
tribution in two areas. First, it offers challenging
and new problems for database research. Second,
the ALADIN system would be a valuable knowl-
edge resource for life science research.

1 Introduction
Data integration approaches in the life sciences can be
classified into two broad types. Of the first type are pro-
jects that achieve a high standard of quality in the inte-
grated data through manual curation, i.e., using the ex-
perience and expertise of trained professionals. We call
this type of projects “data-focused”. A prominent example

for this class of integrated systems is Swiss-Prot
[BBA+93], collecting and integrating data on protein
sequences from journal publications, submissions, per-
sonal communications, and other databases by means of
approximately two dozen human data curators. Data-
focused projects are typically managed by domain ex-
perts, e.g., biologists. Database technology plays an only
minor role. All effort is put into acquiring and curing the
actual data that is usually maintained in a text-like man-
ner. If detailed schemata are developed and used, they are
not exposed to the user for structured queries.

Projects of the second type use database technology,
and are typically initiated and managed by computer sci-
entists. These projects, which we call “schema-focused”,
are aimed at providing integration middleware rather than
building concrete databases. They mostly deal with
schema information, using techniques such as schema
integration, schema mapping, and mediator-based query
rewriting. Examples of such schema-focused projects for
the life sciences are TAMBIS [BBB+98] and OPM
[KCMS98]. Both require for each integrated data source
the creation of some sort of wrapper for query processing,
and a detailed semantic mapping between the heterogene-
ous source schemata and a global, mediated schema. The
mappings must be specified in a special language (respec-
tively OPM*QL views and the GRAIL description logic
in the mentioned projects), which makes them inaccessi-
ble for most domain experts. Their focus is exclusively on
schema information and only little attention (and money)
is paid to data values, their consistency, and their correct-
ness.

Data-focused projects are very successful in the bio-
logical scene, but are also quite costly. Schema-focused
systems on the other hand have hardly ever been used for
any serious integration project in public life science re-
search and did not achieve the broad attention they might
have deserved. We believe that the major reason for this
failure lies in their schema-centricity. Creating the neces-
sary semantic mappings is tedious, especially when larger
schemata are involved, requires learning proprietary and
complicated languages, and often leaves biologists with a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 2005 CIDR Conference

mailto:Email@small.medium.large

general feeling of uselessness, because they distrust the
necessary abstraction steps encoded in the global schema.

We propose a novel, third type of integration approach
for the life sciences, which we call ALADIN (ALmost
Automatic Data INtegration). Its essential feature is that
the integration of data sources is an almost automatic
process without greater loss in terms of information qual-
ity. Instead, its automatic mechanisms for finding links
between objects often lead to unexpected findings, which
are of highest importance in a discovery-oriented field,
such as the life sciences.

ALADIN’s architecture consists of several components
that together allow for the automatic integration of het-
erogeneous data sources into a global, materialized re-
pository of biological objects and links between them. Its
architecture and key mechanisms rely on several charac-
teristics of databases in biological and medical research
that are often more a semi-structured, text-centric data
collection than a structured, data-centric database:
• Data sources, especially those containing the most

valuable information, are typically centered on one
primary class of objects, such as genes, proteins, or
DNA sequences.

• The objects of this primary class always have a
unique and publicly visible key—the “accession
number”.

• The primary objects are further described by a set of
nested fields, called annotations. We call these anno-
tations the “secondary objects”. Apart from such an-
notations, relationships among objects within a data
source rarely exist.

• Many of the annotations are text fields, such as de-
scription, functional annotation, source of biomate-
rial, etc. Especially important fields with long strings
are those containing DNA, RNA, or protein se-
quences.

• Databases heavily cross-reference each other, using
the global keys of primary objects together with the
referenced databases as pointers.

• Databases overlap in the objects they represent, stor-
ing sometimes redundant and sometimes conflicting
data.

ALADIN uses a relational database as its basis. It can
integrate every sort of data source for which a relational
representation exists or can be generated, including XML
data and flat-file databases with an appropriate parser. As
data management in the life sciences has matured consid-
erably in the last decade, almost all important databases
are nowadays managed in relational database manage-
ment systems, and XML is common for data exchange.
Furthermore, for almost all flat-file representations there
are freely available parsers for importing the data into an
RDBMS. Thus, our approach encompasses most data
sources in the life science area.

Integration in ALADIN does not depend on predefined
integrity constraints structuring a schema, but uses tech-

niques from schema matching [RB01] and data and text
mining [BN05; DLD+04] to detect the relation containing
the primary objects for each data source, to infer different
types of relationships between relations and objects within
one source, and to infer relationships between objects in
different sources. The system does not rely on any par-
ticular schema for its data sources. Even generic parsers
may be used, such as generic XML-to-relational mapping
tools [NJM03].

ALADIN integrates data sources in a five-step process.
First, it imports a data source into a relational format
using known parsers. From these relational representa-
tions, it then determines the relation (or relations) that
represent the primary objects within a data source. In the
third step, the fields containing annotation for the primary
objects are detected. Here, existing integrity constraints
are exploited, if they are available; otherwise, the rela-
tionships are guessed from data analysis. In the fourth
step, links between the objects of the primary relations of
different data sources are searched for. This step includes
the discovery of predefined cross-references already con-
tained in the original data. Furthermore, links are gener-
ated based on similarity between values of text fields and
based on sequence homology between sequence fields. In
the fifth step, duplicates are detected across different data
sources, thus removing commonplace redundancy.

Once the data is imported into ALADIN, the process is
completely automatic. It results in an integrated informa-
tion system that is best explained in analogy to the Web:
The discovered objects correspond to Web pages, and the
discovered links correspond to HTML links. Users may
traverse this web of biological objects using a generic
front-end very much like they travel the web using their
browser. Just like in the Web, a specialized search engine
can “crawl” the links and index biological objects and
their data and textual annotation, thus providing search
capability. ALADIN also supports structured queries, de-
tects and flags duplicate objects, and adds a wealth of
additional links between objects that are undiscoverable
when looking at databases in isolation.

Clearly, the resulting warehouse of data contains er-
rors in those parts where the system needs to guess, i.e., in
the definition of primary relations and in the linkage of
objects in and across data sources. We expect that the
most pertinent errors will be links that are lost between
relations during the import step and wrong or missed
cross-references between data sources. In consequence,
we do not envisage that the resulting database should be
directly fed into data mining or data analysis algorithms.
However, ALADIN can readily be browsed without any
schema knowledge, which is the method of choice for
accessing databases for most biologists [SMB+04]. The
system develops its strength in scenarios where an explor-
ative approach is necessary, but not in settled environ-
ments where the focus is on automated, large-scale data
analysis with guaranteed quality bounds.

The rest of this paper is organized as follows: In Sec-
tion 2 we describe and evaluate properties of biological
databases and the different approaches to data integration
in the life sciences in more detail. Section 3 outlines the
architecture of ALADIN and sketches its main building
blocks. Section 4 discusses each of these building blocks
in more detail and points out how existing technologies
can be used to achieve the required functionality. Section
5 contains a case study for an integrated system of protein
structure annotation. Finally, Section 6 discusses related
work and summarizes the main challenges of and benefits.

2 Data Integration in the Life Sciences
Data integration in the life sciences has been a topic of
intensive research for many years (see [Ste03] for a recent
survey). It remains a promising area for database re-
searchers, as there is probably no other area in which such
a large number of complex databases is freely available.
Further, the importance of research in life sciences is
constantly growing due to the direct effect on medical
applications and, hence, human health and wellness. This
research depends heavily on data integration, as valuable
information is scattered over literally hundreds of hetero-
geneous and autonomous data sources [Aug01].

Databases in life science research have a number of
characteristics that need to be taken into account when
designing an integration system. Most importantly, life
science databases typically store only one primary type of
object. Objects of this type are described by a rich and
sometimes deeply nested set of annotations. One particu-
larly important type of annotation are cross-references to
other databases [BLM+04]. “Hubs” in the life science
data world, such as Swiss-Prot, provide links to more than
fifty other databases, pointing from the primary object of
Swiss-Prot, i.e., proteins, to further information, such as
protein structure, publications, taxonomic information, the
gene encoding the protein, related diseases, known muta-
tions, etc. These cross-references, internally stored as a
pair (target-database, accession-number) and presented
as hyperlinks on web pages, are used intensively by hu-
mans to collect information. Links are determined in a
number of ways, ranging from completely automatic
methods, for instance based on the computation of simi-
larity between sequences, to fully manual methods requir-
ing the reading and understanding of primary literature.

As observed quite some years ago, links are the natu-
ral first choice for integration approaches [Rob95], as they
connect biological objects, for instance adding the func-
tion to a gene or the cause to a disease. This viewpoint is
strictly different from typical database-oriented integra-
tion approaches whose primary aim is the removal of
semantic redundancy in schemata. For instance, mediator-
based approaches start by designing a semantically non-
redundant global schema and connect elements of this
schema to elements of source schemata to allow for con-
cise querying. However, this task is extremely difficult in

the life sciences, where many of the prime object types
are largely under-defined. Even ubiquitous concepts, such
as a “gene” or a “protein”, are defined differently by dif-
ferent databases. Merging two gene classes into one blurs
these differences, leading to uncertainty of biological
users about what they see.

This uncertainty does not affect the need for duplicate
detection. In many cases, even though definitions are
vague, objects in different databases are commonly con-
sidered as duplicates. For instance, largely the same pro-
teins used to be stored in Swiss-Prot [BBA+93] and PIR
[WHA+02]. Detecting duplicate objects is a valuable task;
however, contrary to typical duplicate detection scenarios,
here duplicates should be only flagged and not merged.

Keeping objects from different sources carefully sepa-
rated and concentrating on linking of objects from differ-
ent sources (where “duplicate” is one type of link) avoids
confusion while offering most of the expected benefits
from data integration: It allows for queries spanning dif-
ferent databases, and it potentially detects previously
unknown links, thereby directly contributing to progress
in life science research.

 Data-focused Schema-focused ALADIN
Focus of
attention

Removal of
redundancy in
data

Removal of
redundancy in
schemata

Detection of
object links

Structure
of data

Semi-structured,
meant for read-
ing and browsing

Structured data,
meant for analy-
sis and queries

Derived struc-
ture, allows for
both querying
and browsing

Cost of
integration

High, manual
data curation and
annotation

Medium; requires
wrapper and
schema mappings

Minimal cost

Examples1 Swiss-Prot,
Omim, Gene-
Cards, …

Tambis, Discov-
eryLink, Bio-
Kleisli

n/a

Table 1: Spectrum of integration approaches

We revisit our classification of integration approaches
based on these observations (see Table 1). The data-
focused approaches disregard schema information and
perform removal of redundancy in data, i.e., merging of
information, manually by human experts. They are of
highest value for the research community, but costly and
grow at a much slower rate than raw experimental data is
produced [RML04]. Schema-focused approaches aim at
minimization of semantic redundancy in schemata, trying
to reduce redundancy in data without having to deal with
the data itself. As pointed out, this approach probably
misses the main need in life science data integration.

Our viewpoint on the most useful type of data integra-
tion is supported by the success of the SRS system for
data integration [ZLAE00]. SRS runs in more than 400

1 We are aware that this comparison can be misleading as
the mentioned schema-focused projects aim at developing
middleware and methods for data integration and are not
actual integrated databases. See also in the text.

installations world-wide, integrating up to 150 databases
into one system2. The system takes flat-file databases as
input. For each database, a parser needs to be written in
the proprietary Icarus programming language to define the
database structure. Using these parsers, SRS computes
indexes that allow for fast search over many databases
with one query. Data from different databases is never
merged, and queries can “join” different databases by
following links taken from especially tagged fields. Thus,
it follows the same design principles as our ALADIN pro-
ject in this respect; however, in SRS all structures and
links need to be explicitly specified and no automatic
integration takes place (see also Section 6.1).

Figure 1. The architecture of ALADIN.

3 System Architecture
ALADIN builds on a local data warehouse that integrates
heterogeneous data sources. Its architecture (see Figure 1)
is derived from the characteristics of the life sciences
domain as described in the previous section: It is intended
for browsing, focused on the discovery of unseen relation-
ships between objects, and at the same time allows for
searching and structured queries.

ALADIN, unlike previous approaches, is strictly ori-
ented towards an almost maintenance free data integration
procedure. From this principle, a number of design re-
quirements are derived: Integration of new data sources
should need only minimal human intervention. Specifi-
cally, the integration process should not require the defini-
tion of semantic relationships between schema elements
and it should not require the manual specification of ob-

ject links and duplicates. Instead, such relationships
should be automatically guessed from the data without
human intervention. The system should not assume that
the data sources come with a clear definition of object
types, as such definitions would require custom data im-
porters. Thus, the process must automatically detect sev-
eral things:
• The primary objects within data sources
• the (secondary) objects and fields containing annota-

tion for the primary objects,
• formerly known and unknown links between objects

in different data sources, and
• duplicate objects within and across different data

sources.
Clearly, relying so much on automatic methods comes

at a price; the detection algorithms are likely to make
mistakes: There will be missing links (false negatives)
and wrong links (false positives). There will be unrecog-
nized secondary objects, undetected duplicates, and in the
worst case, no or only an incorrect primary relation is
found for a source. This effect seems unattractive for
database researchers, but is a common situation in infor-
mation retrieval and data mining applications. The stan-
dard procedure in such situations is to estimate the
amount of errors of the system using performance meas-
ures, such as precision and recall. We show in Section 6
how such measures can be estimated using an existing
integrated database.

However, “guessing” the various types of links also
leads to the detection of unseen relationships between
objects. Such discovery is a main feature of ALADIN. We
think useful “guesswork” is achievable using a mixture of
data integration, text mining, information retrieval, and
data mining techniques.

We now list the main components of the architecture
in the order they will typically be used when adding the
data of a new source into the system. In this section we
give the big picture by concentrating on how the compo-
nents work together (see Figure 2); details for the individ-
ual components are given in the next section. There, we
also show how far research in related work has advanced
in achieving the components.

Data import. Each data source needs to be imported
into the relational database system. In cases where no
downloadable import method exists, this is the one point
where ALADIN does require human work. However, our
experience in integration projects [BLM+04; RMT+04]
shows that this situation is rare, and when it occurs it is
sufficient for ALADIN to use a quick-and-dirty parser. No
elaborate schema design or re-design is necessary.

Discovery of primary objects. Once a data source is
imported, we need to identify its primary objects stored in
the primary relation. Intuitively, primary relations contain
data about the main objects of interest in the source, such
as “proteins” or “diseases”. Usually these relations store a
primary key but no foreign keys—they are the “sinks” of

2 See http://srs.ebi.ac.uk

Figure 2. Integration steps in ALADIN.

the graph of foreign-key constraints (for details see Sec-
tion 4.2). Their discovery cannot rely on predefined integ-
rity constraints, as they often do not exist and generic
parsers often cannot generate constraints due to missing
semantic knowledge. In consequence, integrity constraints
are used if they are known, but missing ICs are automati-
cally detected by analyzing any known schema informa-
tion and the attribute values. Primary relations are the
focal point of the next discovery step.

Discovery of secondary objects. In this step, the pre-
viously detected network of integrity constraints is revis-
ited, taking the identified primary relations as additional
input. For each primary relation, the set of (possibly
nested) dependent objects and attributes is determined.
Secondary objects store additional information about
primary objects. Additionally, cardinalities of relation-
ships are determined in this step. At the end of this step,
the internal structure of a newly imported data source is
known (of course, there might be errors). Note that until
this point, no data or metadata from other data sources
was involved. This ability is important to allow for effi-
cient incremental addition of new data sources.

Link discovery. In the fourth step we search for at-
tributes that are cross-references to objects in other data
sources. We assume that cross-references always point to
primary objects in other databases as these are the only
objects with stable and public IDs. Thus, the results from
the second step are necessary input to determine all possi-

ble link targets. This assumption is an obvious pruning
possibility to cope with the theoretic requirement of com-
paring all pairs of attributes from all sources. Other prun-
ing strategies that rely on attribute value distributions and
statistics are discussed in Section 4.4. These statistics
need to be computed only once for each data source and
can then be reused for subsequently added data sources.

Duplicate detection. In analogy to the previous link
discovery step, in the fifth step we search for a special
kind of “links” between primary objects in different data
sources, i.e., those indicating that the database objects
represent the same real world object. Such duplicate links
are established if two objects are sufficiently similar ac-
cording to some similarity metric (see Section 4.5). Lit-
erature defines several domain-independent similarity
measures usually based on edit distance. Knowledge of
duplicates enhances the users browsing and querying
experience by avoiding redundant information and com-
bining complementary data about an object.

Browse, search, and query engine. Once data is in-
tegrated into the system, we provide three modes of ac-
cessing the data. Browsing simply displays objects and
different kinds of links (to secondary objects, to related
objects, to duplicates) that users can follow. Search al-
lows a full-text search on all stored data and a focused
search restricted to certain partitions of the data (only
certain data sources, only certain fields, etc.). Finally,
querying allows full SQL queries on the schemata as

imported. All three access modes are supported by appro-
priate user interfaces.

Metadata repository: The process of discovering
new structures and links produces much metadata that is
stored in a central repository. In the spirit of the “Corpus”
in the Revere project [HED+03], it contains not only
known and discovered schemata, but also information
about primary and secondary relations, statistical meta-
data, and sample data to improve discovery efficiency.
Finally, a large part of storage space will be consumed by
the discovered links on the object level.

In this section we have described the discovery steps
as an iterative process. Of course in an implementation of
such a system, there is high potential for parallelization
and combination of these steps. In particular the discovery
of primary and secondary objects can go hand in hand in a
single processing step. Figure 2 summarizes this section
by representing the overall architecture and pointing out
how the components collaborate to achieve (almost)
hands-off data integration.

4 System Components
In this section we describe the components of ALADIN in
more detail, point out existing technology, and name open
challenges.

4.1 Data Import

The task of the data import component is to read a data
source into a relational database. It is neither necessary
that the relational schema or its elements conform to any
standard, nor is it necessary that integrity constraints, such
as UNIQUE, PRIMARY KEY, or FOREIGN KEY, are
present in the schema. Subsequent steps add this informa-
tion wherever possible.

Therefore, a variety of known import procedures can
be used. We believe that they encompass most of the
major life science databases and give some examples that
support this claim3:
• Some databases, such as Swiss-Prot, the GeneOntol-

ogy, or EnsEmbl, provide direct relational dump files.
• For text-based exports, in many cases readily

downloadable parses are available. For instance,
Genbank, Swiss-Prot, or the NCBI Taxonomy Data-
base can be read by the BioPerl and BioSQL pack-
ages.

• Some databases provide parsers with their export
files, such as the OpenMMS parser for the Protein
Structure Database (PDB) or the ArrayExpress pars-
ers for the MGED XML format for microarray data.

3 For space limitations we omit URLs or references for
these databases. A search in the web using the database
name and the keywords mentioned in the text find the
appropriate web site.

• Databases exported as XML files can be parsed using
a generic XML shredder. This XML parsing is for in-
stance helpful to import protein-interaction data from
the BIND database or pathway data from KEGG.

Until today, we have met only very few sources for
which no parser exists. For instance, we are not aware of
any parser for the CATH or SCOP databases on protein
classification; however, their format is trivial to parse.
Again, as ALADIN has almost no expectations to the re-
sulting schema, straight-forward mappings to tables are
sufficient.

4.2 Discovery of Primary Relations

As described in the introduction, most life science data-
bases are centered on only one type of (primary) object.
The task of the second step is to detect this type in the
relational representation without relying on any support
from the parsers. We call this type the primary relation
for the data source; cases with more than one primary
relation are seldom and discussed later.

Finding the primary relation relies on a set of heuristic
rules using only the schema and the actual data as input.
The rules are derived from our experiences with the inte-
gration life science databases [BLM+04; LLRC98;
RMT+04]. Concrete examples are given in Section 5. The
output of the algorithm is the name of the primary relation
and a set of properties and guessed relationships between
the tables of the data source

As the first step, the algorithm detects “unique” attrib-
utes by issuing a SQL query for each attribute in the
schema that has no known UNIQUE constraint. Attributes
that are unique are marked as such.

Primary objects of a life science database usually are
biologically or medically important objects, such as se-
quences, proteins, diseases, or genes. These objects and
their description are long lasting and the target for data-
base cross-referencing. Therefore, these objects carry a
stable, publicly visible accession number as ID. We have
observed that accession numbers usually contain alpha-
numeric characters, whereas internal IDs generated by the
parsers to connect relations consist only of digits. There-
fore, we analyze for each unique attribute whether each of
its values contains at least one non-digit character and is
at least four characters long4. As accession numbers
within one database usually all have the same length, we
finally require the values of the attribute to differ by at
most 20 percent in length.

Attributes fulfilling these conditions are marked as ac-
cession number candidates. Each table may have only one
accession number candidate; if more than one candidate
was found, only the one with the longer average field
length is considered.

4 These are the shortest accession numbers we are aware
of (used in the PDB database).

Next, the algorithm tries to deduce foreign key rela-
tionships and their cardinalities. Note that foreign key
relationships are directed and represent either a 1:1 or a
1:N relationship5. Existing foreign key constraints are
found using the data dictionary. Then, all unique attrib-
utes are considered as potential targets for such a relation-
ship and all attributes are considered as potential sources.
The values of each potential source are compared to the
values of each potential target. If the values of a potential
source are a true subset of the values of a potential target,
we assume a 1:N relationship, i.e., the source attribute is a
foreign key of the target attribute. If the values of a poten-
tial source are the same set as the values of a potential
target, we assume a 1:1 relationship. More sophisticated
techniques are described for instance in [KM92; MLP02].

Clearly, this algorithm is prone to make mistakes, e.g.,
if many dictionary tables are used to define the set of
allowed values for an attribute. Those tables typically
have as primary key integer numbers from 1 to the num-
ber of tuples in the table. As these sets are quite similar,
confusion about which is the primary key for a foreign
key representing the value-restricted attribute may arise.
However, note that for this confusion to happen, all values
of the foreign key must also appear in the primary key
attribute. This case happens only if the number of values
in two dictionary tables are identical – a rather rare event.

The next step chooses the primary relation from the
set of tables containing an accession number candidate.
Therefore, the network formed by the guessed foreign key
relationships is analyzed. We choose as the primary rela-
tion the table with highest in-degree of all tables contain-
ing an accession number candidate. This heuristic is based
on the observation that life science databases contain
mostly fields that describe some primary objects. These
fields are often multi-valued and structured, e.g., lists of
scientific references, lists of database cross-references, or
lists of keywords describing the function of a protein in a
controlled vocabulary. If such a field is single-valued, for
instance to store the sequence of a large stretch of DNA in
a separate table, then there is a 1:1 relationship with the
primary relation as target. If a field is multi-valued, then
the primary relation either has a 1:N relation to the table
containing the field or it has a M:N relationship, appear-
ing as 1:M, to a bridge table. Thus, many tables necessar-
ily point to the primary relation.

The detected primary relation and the set of relation-
ships are used as input for the third step.

In some cases data sources have more than one pri-
mary relation. For instance, the EnsEmbl database focuses
both on sequenced clones and the genes lying on those
clones [HBB+02]. Such cases require a more complex
metric for finding primary relations, using for instance the
difference of the in-degree of a relation to the average in-
degree. Schema information, for instance schema ele-

5 M:N relationships from a conceptual model appear as
two 1:N relationships in the relational representation.

ments containing the substring “ID” in their name or
elements that match partially to another schema element,
could also help. In the following, we further assume that
there is only one primary relation for each data source.

4.3 Discovery of Secondary Relations

Having discovered the primary relation of a data source,
we need to connect the objects in this relation to the other
relations in the data source. This step determines the de-
scription and annotation that is displayed together with a
primary object in the web interface (see next).

We revisit the set of relationships we have detected in
the previous step. We compute the path(s) from the pri-
mary relation to each of the other relations of the data
source using transitivity of relationships, ignoring direc-
tion and cardinality. In theory, no such path needs to exist,
as the relations of the data source could fall into non-
overlapping partitions. However, this would imply that a
data source stores two completely unrelated sets of infor-
mation – a situation we have yet to encounter. Note that
this situation is different from a database having more
than one primary relation, as those relations will always
be connected – establishing this connection is probably
one of the main purposes of such a database.

The paths are stored in the metadata repository. As de-
scribed earlier, those paths are used to join together the
information that is presented as belonging to an object. If
multiple paths exist, all are stored. The paths may also be
used to guide the construction of structured queries.

4.4 Link Discovery

There are two kinds of links between objects that we want
to discover in this step: explicit links and implicit links.

First, among life sciences databases there are many
existing, explicit cross-references. Usually such a cross-
reference is stored as the accession number of the object it
points to together with an indication of the database hold-
ing this object. Often, both are encoded into one string,
such as in “ENSG00000042753” or “Uniprot:P11140”.
Thus, already here string matching techniques are needed,
for instance for finding common substrings. Because
cross-references use public, globally unique, and stable
identifiers – in contrast to keys within databases – target
candidates are exactly the previously discovered unique
fields in primary relations of other databases.

Second, in the biological universe there are many rela-
tionships between objects that are not explicitly stored.
We discover such implicit relationships by searching for
similar data values among the sources. Similarity, and
especially sequence similarity, is a ubiquitous indication
for object relationships in the life sciences. For instance,
similarity between protein sequences or protein structures
is the most important way of inferring the function of a
new protein [AMS+97]. Of course, not all attributes are
promising targets for a comparison, either because simi-
larity doesn’t mean anything (similarity of keys), or be-

cause similarity is not detectable by comparing single
values (similarity of 3D protein structures). We currently
focus on three specific types of comparisons. First, the
values of attributes containing DNA, RNA, or protein
sequences are compared to each other. Finding sequence
fields is simple, as those contain only strings over a fixed
alphabet (A, C, T, G for genes). Second, attributes con-
taining longer text strings, such as textual descriptions,
can be analyzed by using techniques from information
retrieval and text mining. In particular, methods for find-
ing names of biological entities in natural text can be used
for extracting names that are matched with unique fields
of primary relations potentially holding the name of ob-
jects [CSA04; HBP+05]. Third, life science researches are
increasingly aware of the importance of using standard-
ized vocabularies across databases. Such vocabularies,
called ontologies in this area, are now widely used for
annotating gene function (Gene Ontology), microarray
data (MGED ontology), and will be used for proteomics
data (PSI-MI ontology). The resulting values make excel-
lent links, connecting proteins with similar function or
experiments with similar parameters, provided that the
ontologies are themselves integrated as data sources.

Conceptually, to discover all such links, we need to
look at each pair of attributes among two databases. How-
ever, substantial pruning can be applied based on data
characteristics. For instance, the attribute representing the
target of a cross-reference is always a primary key in the
respective table. Further, attributes with few distinct val-
ues should be excluded from being a link source, as are
attributes with purely numeric values to avoid misinter-
pretation of surrogate keys.

All links prior to this step result in “normal” joins,
whereas here we must store the discovered links on the
object level in the metadata repository to avoid repeated
discovery and computation at query time.

The link discovery task is closely related to schema
matching, especially to those projects using instance-
based techniques. Schema matching discovers correspon-
dences between elements of heterogeneous schemata. The
resulting mappings between schemata improve the overall
performance of query answering in terms of how much
data can be accessed and how relevant it is to the query.
Examples of schema matching projects are iMAP
[DLD+04], similarity flooding [MGR02], and Clio’s
schema matcher [NHT+02].

4.5 Duplicate Detection

The links mentioned in the previous section connect ob-
jects based on individual data values, in particular based
on pairs of similar attribute values. The underlying as-
sumption is that the objects are somehow connected if
they have similar, non-trivial attribute values. Another
interesting relationship between objects is duplicity. Not
only do many sources overlap in their intension, but also
in their extension, storing data about same real world

objects. For instance, the last years have seen an explo-
sion in databases storing data on observed or predicted
protein interaction, such as BIND, MIND, WIT, or Reac-
tome. These databases have largely overlapping content,
i.e., they partly store the same interactions. However, the
data is differently modeled, and there are differences in
the set of attributes that are managed in each database.

Duplicate detection techniques are well known in the
relational database world. However, duplicate detection in
the biological domain cannot rely on well-structured and
fine-granular attribute values to identify duplicates. In-
stead, values of unstructured text fields must be analyzed,
and the heterogeneous and only partly overlapping model
of the data must be accounted for.

Duplicate detection in semi- and unstructured data is
more difficult than in the relational case. It is not a priori
clear, which attribute values of one object to compare
with which attribute value of the other object. Thus,
common similarity measures employed to identify dupli-
cates cannot be applied immediately. Methods consider-
ing the nested structure of objects [WN04] and applying
more advanced similarity measures taken from then in-
formation retrieval are currently developed [BN05].

Knowledge about duplicates is very useful in an envi-
ronment such as ALADIN. First, duplicates might comple-
ment each other: One source knows one thing about an
object; the other source might know some additional in-
formation. Also, duplicates provide a chance to choose
between alternatives. In answering a query, only one
representative of each duplicate cluster can be returned.
On the other hand, duplicates give rise to data conflicts.
Different sources might contradict each other in the data
they store about an object. Usually it is up to the experts
to decide which of the values (or both) is correct. Espe-
cially the life sciences domain produces many such con-
tradicting values, due to the different experimental meth-
ods to obtain the values. Exploring such contradictions is
of great interest to biologists. A concrete example of the
importance of duplicate detection is given in the case
study (Section 5).

4.6 Data Access Engine

The data access component connects users with the data.
Users have three modes of access, namely browsing,
searching and querying. Browsing and searching capabili-
ties are usually already offered by the Web front ends of
the individual sources, albeit only on their own data. Ex-
plicit cross references between data source are realized as
HTML links, allowing users to browse from one source to
the other. The ALADIN browser provides uniform access
to all stored data. It can follow not only cross-references,
but all four types of relationships between objects:
1. Same relation. Trivially, users can jump from object

to object within a relation.

2. Dependency. Users can follow links to secondary
objects to obtain more information about a certain ob-
ject.

3. Duplicates. Users can follow links to other database
objects that talk about the same real world object.
Conflicts are highlighted, and data lineage is shown.

4. Linked. Finally, users can follow links between data
sources, from one object to another.

Search allows a full-text search on all stored data and
a focused search restricted to certain vertical (e.g., a sin-
gle attribute-type) and horizontal partitions (e.g., only on
primary objects) of the data. Ranking algorithms order the
search results based on similarity of the result to the
query. Searching requires efficient indexes on very large
amounts of data. For this goal, we rely on commercial
vendor software on top of a database, such as DB2’s
Search Extender or Oracle 10g’s regular expression
search capabilities.

Posing queries against such a vast, semi-structured
and semi-connected database, is a difficult task. Of par-
ticular importance is to rank results according to certainty
values derived from the different discovery steps during
data import. The situation is similar to that of peer-data-
management-systems, where different data sources are
connected with mappings. Answers to queries against a
data source at one peer are answered by querying data
stored locally, but also by following mappings and re-
trieving information at the other peers.

All three access modes are supported by appropriate
user interfaces. In particular the SQL interface must be
simple enough to allow even novice users to formulate
meaningful queries. The query interface of the COLUMBA
prototype [RMT+04] is a good example allowing users
iterative query refinement by adding more and more filter
conditions.

5 A Case Study on Protein Data
Many of the design decisions of ALADIN are based on
experiences drawn from integration projects in the life
sciences domain that the authors pursued in the past.
Here, we shortly discuss the most recent one, the
COLUMBA project [RMT+04] 6.

COLUMBA is an integrated, relational data warehouse
that annotates protein structures taken from the Protein
Data Bank (PDB) with data on classification of structures,
protein sequence and sequence features, functional anno-
tation of proteins, participation in metabolic pathways,
and some more. The workflow of integration consists of
the steps data import, mapping of source schemata into
the COLUMBA target schema, and connecting PDB entries
to data from other databases through cross-references.

Developing the data import routines takes relatively
little time. All but two of the data sources in COLUMBA
are available either directly as dump files or as flat-files

6 See http://www.columba-de.de

together with a proper parser. The two exceptions, i.e., the
protein classification databases CATH and SCOP, consist
mostly of a hierarchy of classes of protein domains and
links to the actual proteins; writing a parser took only a
few hours in both cases. This experience shows that rely-
ing on a relational database as starting point for the hands-
off integration process is a reasonable assumption.

The import generates a relational representation of a
data source using a source- and parser-specific schema.
However, we decided to store only a fraction of all data in
COLUMBA to keep queries simple and fast. In the
COLUMBA target schema each data sources has its own
subschema. The extraction and transformation from the
initial data source schema into the target schema is cur-
rently hard-coded, and its development required a large
fraction of the overall effort. First, understanding the
schemata is very difficult, as they are often poorly docu-
mented and frequently use metadata-like structures that
cannot be understood by looking only at the schema
[Mil98]. Second, transforming the data requires opera-
tions that are beyond current schema mapping languages
[MHH00]. Transformations in COLUMBA are therefore
carried out by a mixture of SQL and Java.

COLUMBA focuses on high-quality data, thus the tedi-
ous and manually specified transformation is a necessary
step. However, ALADIN aims at automatic data integration
accepting some compromises in terms of quality. Our
experience from reengineering more than a dozen rela-
tional life science schemata makes us convinced that the
heuristics described in Section 4.2 and 4.3 are justified.
As an example, consider a fraction from the BioSQL
schema used for storing imported data from Swiss-Prot
and EMBL (see Figure 3)7.

In the full schema, there are three tables with an in-
degree above five: BioEntry for storing the primary ob-
jects, OntologyTerm for storing functional descriptions,
and SeqFeature storing a meta-representation of sequence
features (not visible in the Figure). Of those, only BioEn-
try has an accession number candidate (accession), whose
values are mixed characters and integers and all have the
same length. The other fields in BioEntry are either non-
unique (e.g. taxon_id), have no alphanumeric character
(e.g. bioentry_id), or have varying length (e.g. name).
Thus, this table would correctly be identified in ALADIN
as the primary relation. Secondary relations could be
correctly connected to the primary relation once the pri-
mary key – foreign key constraints are detected by analyz-
ing the scope of the different attributes storing surrogate
keys. In BioSQL, dictionary tables for various types of
keywords are filled only with those terms that are actually
referenced, and no two dictionary tables have an equal
number of tuples (in the current release). Thus, relation-
ships could be correctly guessed.

In the next step in COLUMBA, protein structures are
connected to annotations using either existing cross-

7 See http://obda.open-bio.org.

Figure 3. Part of the BioSQL schema. Arrows indicate candidates for primary relations
and for cross-references.

references or by sequence similarity. This step seems to
be straight-forward, but is not for two reasons. First, many
of the secondary databases are maintained by human data
curators and there is a considerable backlog in annotating
structures. This backlog appears as missing links in
COLUMBA. Automatic methods for computing database
links are therefore a very important aspect. Second, in
many cases there is more than one source linking two
databases. For instance, there exist at least five different
sets of links from Swiss-Prot to PDB [Mar04]. These sets
overlap, but also differ to a considerable degree. Ranking
of results based on the strength of evidence is thus a very
important feature to support users adequately.

Our heuristic for connecting objects across databases
can be demonstrated again using the BioSQL schema with
its fields for linking out to other databases. The target of
existing cross-references, the accession field, would be
identified as potential target for links from other sources
because of its characteristics (see preceding). The source
of external cross-references in BioSQL is the field
DBRef.accession, where external Ids are indeed stored as
described in Section 4.4. Note that we would not be able
to use the information in the attribute DBRef.database
(which specifies the target database), because we analyze
only single attributes, not combinations. However, we
also do not need this information, as matching the values
of DBRef.accession against all unique fields of primary

relations automatically would find the correct target data-
base.

The BioSQL schema also contains several attributes
whose values are excellent candidates for finding implicit
links, such as OntologyTerm.Term_definition, linking into
biological ontologies, BioEntry.description, linking to
disease or gene-focused databases, and Biose-
quence.Biosequence_str, containing the actual DNA or
protein sequence.

Finally, duplicate detection is an important step in
COLUMBA, because the protein structures from the PDB
are actually available in three different flavors: the origi-
nal PDB files, a cleansed version available with a parser
[BBF+01], and another cleansed version available as
dump files [BDF+03]. These three versions, even though
derived from the same data set, differ greatly due to dif-
ferent cleansing procedures. Selecting the proper value for
each data field is an important problem [MLF04]. Detect-
ing duplicate objects is easy in this case, because the
original PDB accession number is available in all three
representations. Duplicate detection becomes more diffi-
cult for gene and disease data, for which many more and
more heterogeneous databases are available than for pro-
tein structure [LLRC98].

Apart from the databases integrated into COLUMBA,
we have also studied a number of other databases, espe-
cially in the area of genomic maps [LLRC98] and gene

expression databases [MSZ+01]. We are convinced that
the heuristics described earlier work very well in most of
the cases, although we have no proof for this claim yet.
The COLUMBA database shall serve as a “learning” test set
for estimating the performance of ALADIN’s various
analysis algorithms. Thus, precision and recall methods
for finding primary relations, secondary relations, cross-
references, and duplicates can be derived.

6 Conclusions
We have proposed the ALADIN architecture and frame-
work as a novel approach to data integration in the life
sciences. It is designed for (almost) hands-off data inte-
gration, relying on a mixture of techniques from database,
data mining, and information retrieval. We argued that
this approach is feasible, because life science databases
share certain properties that can be cast into effective
heuristics for an automatic execution of most tasks neces-
sary to achieve data integration.

ALADIN offers clear added-value to the biological user
when compared to the current data landscape. It enables
structured queries crossing several databases for users
knowing the schemata (and offers support for those who
do not), suggests a wealth of new relationships inter-
linking all areas of the life sciences, and offers ranked
search capabilities across databases for users that prefer
Google-style retrieval.

We make one more important point regarding queries
across different databases and across different object
types. Consider a query for all genes of a certain species
on a certain chromosome that are connected to a disease
via a protein whose function is known. For each of the
object types in the query, several potential data sources
exist, as there are several potential sources for the links
connecting the objects. However, no current data integra-
tion system is capable of dealing with this variability in a
transparent fashion; instead, the database administrator
usually decides which source to integrate, thus leaving no
freedom of decision to the end user. In contrast, ALADIN
helps the user in several ways: First, as integration re-
quires almost no manual intervention, integrating all data-
bases is feasible. Second, duplicates are detected auto-
matically, thus reducing the redundancy in the result.
Third, data sources concentrating on links, such as Integr8
or DBLink, can be integrated as well with almost no ef-
fort. Finally, query results can be ordered based on the
number, consistency, and length of different paths be-
tween two objects, as suggested in [BLM+04].

We conclude the paper with a survey of related work
and an overview of bottlenecks and challenges to our
proposal.

6.1 Related work

The problem of data integration in the life sciences has
been explored for many years. Various types of integra-

tion middleware and methods have been proposed. Dis-
coveryLink is an extension of IBM’s DB2 database sys-
tem that is capable deploying wrappers to access data
outside of the database through SQL from inside DB2
[HSK+01]. Many wrappers exist for life science data-
bases, accessing the data either locally or via the Internet.
OPM offers an object-oriented data model and the query
language OPM*QL, which can join to remote databases
for which an OPM wrapper exists [CKMST98]. TAMBIS
maps data source schemata into a global schema formu-
lated in the description logic GRAIL, thus allowing for
more semantics in queries [BBB+98]. All these projects
have in common that they focus on schema information
and do not make use of data in any fashion.

The Sequence Retrieval System (SRS) is a system for
integrated access to biological flat-file databases
[ZLAE00]. Each database must be wrapped by a specific
parser written in the proprietary Icarus programming
language. Primary and secondary relations as well as
database cross-references need to be explicitly specified
in the parser code, which contrasts to our approach where
this information is deduced automatically. SRS does not
treat duplicate data. Unlike ALADIN, SRS is essentially a
schema-driven approach; like ALADIN, SRS focuses on
cross-references.

An interesting system is the GenMapper, which inte-
grates data from more than forty data sources into a 4-
table schema [DR04]. GenMapper also concentrates on
cross-references; however, no attempt is made to find
implicit relationships and data import requires the defini-
tion of manual mappings into the four-table target
schema. A similar approach, although with a more elabo-
rate model of target schemata, defined using the Protégé
knowledge base system, is BioMediator [SMB+04]. Re-
cently, two projects proposed a star-schema-like integra-
tion model for the life science domain, where information
from various sources is connected to a central class using
database cross-references. Our COLUMBA database
[RMT+04] integrates twelve protein-related databases,
whereas the EnsMart project aims at a more generic solu-
tion [KKS04]. ALADIN has in common with these projects
that data is integrated only via cross-references; however,
the research focus of those approaches is completely dif-
ferent.

Apart from individual algorithms and techniques al-
ready cited at appropriate places, in the database research
area, the project closest to our proposal is probably the
Revere project [HED+03]. Based on the PDMS called
Piazza, the specific user interface generator Mangrove,
and a corpus of metadata and tools thereon are added. The
user interface displays unstructured or semi-structured
data and entices users to add more structure (and thus
semantics) to the data. With more semantics, more inter-
esting queries are answerable with more underlying data.

6.2 Challenges and Bottlenecks

Our proposal for building a new type of data integration
system that mostly relies on data characteristics instead of
schema information leaves open several questions, the
most important one being “Will it work?”. Although most
of the discovery steps presented here rely on existing
algorithms and techniques that have been successfully
applied in many different application domains, the ALA-
DIN system is a true challenge in terms of size, number,
and complexity of the data sources to be integrated. How
well these techniques interoperate in a complex domain
such as the life sciences is yet to be found out. In particu-
lar, errors in earlier steps propagate and might influence
the quality of later results. For instance, incorrectly identi-
fying the primary or secondary relations leads to incorrect
targets for the link discovery. Incorrect links in turn influ-
ence the precision of duplicate detection.

Nevertheless, we believe that the particular nature of
life science data sources and prior experiences offer good
arguments for optimism. We also plan to incorporate user
feedback into the query interface. Users browsing the data
or query results from ALADIN might indicate that a link
between two objects or even between two schema ele-
ments was inserted incorrectly. Thus, especially false
links between relations can be removed quickly.

Correspondence with users of the COLUMBA database
ensures that the functionality provided by ALADIN suits
typical biologists well and provides added-value at small
to zero maintenance cost. For instance, typical microarray
experiments produce a set of 50-100 genes. Biologists
then manually browse a large number of web sites follow-
ing hyper links for each gene. Such browsing, enriched
with many more links, reduced redundancy due to dupli-
cate detection, and the full capability of SQL queries
would be perfectly supported by ALADIN.

One important issue not addressed in the paper is that
of performance. While we point out that data sources can
be incrementally added, each addition in its own involves
an enormous number of calculations. Because we assume
no schema, in principle each inclusion step involves cal-
culations on all data of the source: Data import makes at
least one pass over the data. Discovery of primary and
secondary objects conceptually performs a sort on each
attribute and then a join-operation on each pair of attrib-
utes from different relations. Link discovery first employs
schema matching techniques (with differing complexity)
on all attributes of all data sources and then conceptually
again a join operation on all matching attributes. In all,
the efficiency of adding a new data source will be low,
but much better than manually adding a new source and
establishing connections between its data and the data of
the other already integrated sources. Furthermore, sam-
pling can be used, and there are various heuristics for
eliminating attributes from consideration for the different
tasks.

Another subtle problem is that of data changes. In
principle, all links must be recomputed even if only a
small fraction of the data of a data source changes. This
re-computation is clearly infeasible. We envisage a
threshold on the number of changes to a data source be-
fore a new analysis is carried out.

In summary, we believe that the ALADIN system offers
both interesting challenges to the database community and
high value to the life science community. We plan to take
up these challenges in the near future.

References
[AMS+97] Altschul, S. F., Madden, T. L., Schaffer, A. A.,

Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997).
"Gapped BLAST and PSI-BLAST: a new generation of pro-
tein database search programs." Nucleic Acids Research
25(17): 3389-402.

[Aug01] Augen, J. (2001). "Information technology to the res-
cue!" Nature Biotechnology 19(6).

[BBB+98] Baker, P. G., Brass, A., Bechhofer, S., Goble, C.,
Paton, N. and Stevens, R. (1998). "TAMBIS: Transparent
Access to Multiple Bioinformatics Information Sources". 6th
Int. Conf. on Intelligent Systems for Molecular Biology,
Montreal, Canada, AAAI Press, Menlo Park.

[BBF+01] Bhat, T. N., Bourne, P., Feng, Z., Gilliland, G., Jain,
S., Ravichandran, V., Schneider, B., Schneider, K., Thanki,
N., Weissig, H., et al. (2001). "The PDB data uniformity
project." Nucleic Acids Res 29(1): 214-8.

[BN05] Bilke, A. and Naumann, F. (2005). "Schema Matching
using Duplicates". International Conference on Data Engi-
neering, Tokyo, Japan (to appear).

[BLM+04] Bleiholder, J., Lacroix, Z., Murthy, H., Naumann, F.,
Raschid, L. and Vidal, M.-E. (2004). "BioFast: Challenges
in Exploring Linked Life Science Sources." SIGMOD Re-
cord 33(2).

[BBA+93] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter,
M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud,
K., O'Donovan, C., Phan, I., et al. (2003). "The SWISS-
PROT protein knowledgebase and its supplement TrEMBL
in 2003." Nucleic Acids Research 31(1): 365-70.

[BDF+03] Boutselakis, H., Dimitropoulos, D., Fillon, J.,
Golovin, A., Henrick, K., Hussain, A., Ionides, J., John, M.,
Keller, P. A., Krissinel, E., et al. (2003). "E-MSD: the Euro-
pean Bioinformatics Institute Macromolecular Structure Da-
tabase." Nucleic Acids Research 31(1): 458-62.

[CSA04] Chang, J. T., Schutze, H. and Altman, R. B. (2004).
"GAPSCORE: finding gene and protein names one word at a
time." Bioinformatics 20(2): 216-25.

[CKMST98] Chen, I.-M. A., Kosky, A. S., Markowitz, V. M.,
Szeto, E. and Topaloglou, T. (1998). "Advanced Query
Mechanisms for Biological Databases". 6th Int. Conf. on In-
telligent Systems for Molecular Biology, Montreal, Canada,
AAAI Press, Menlo Park.

[DLD+04] Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y. and
Domingos, P. (2004). "iMAP: Discovering Complex Map-
pings between Database Schemas". SIGMOD Conference,
Paris, France.

[DR04] Do, H.-H. and Rahm, E. (2004). "Flexible Integration of
Molecular-biological Annotation Data: The GenMapper Ap-
proach". Int. Conf. on Extending Database Technology,
Heraklion, Greece.

[HSK+01] Haas, L. M., Schwarz, P. M., Kodali, P., Kotlar, E.,
Rice, J. and Swope, W. C. (2001). "DiscoveryLink: A Sys-
tem for Integrated Access to Life Sciences Data Sources."
IBM Systems Journal 40(2): 489-511.

[HBP+05] Hakenberg, J., Bickel, S., Plake, C., Brefeld, U.,
Zahn, H., Faulstich, L., Leser, U. and Scheffer, T. (2004).
"Systematic Feature Evaluation for Gene Name Recogni-
tion." BMC Bioinformatics, to appear.

[HED+03] Halevy, A. Y., Etzioni, O., Doan, A., Ives, Z., Mad-
havan, J., McDowell, L. and Tatarinov, I. (2003). "Crossing
the Structure Chasm". 1st Conference on Innovative Data
Systems Research (CIDR), Asilomar, CA.

[HBB+02] Hubbard, T., Barker, D., Birney, E., Cameron, G.,
Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T.,
et al. (2002). "The Ensembl genome database project." Nu-
cleic Acids Research 30(1): 38-41.

[KKS04] Kasprzyk, A., Keefe, D., Smedley, D., London, D.,
Spooner, W., Melsopp, C., Hammond, M., Rocca-Serra, P.,
Cox, T. and Birney, E. (2004). "EnsMart: a generic system
for fast and flexible access to biological data." Genome Re-
search 14(1): 160-9.

[KM92] Kivinen, J. and Mannila, H. (1992). "Approximate
Dependency Inference from Relations". International Con-
ference on Database Theory.

[KCMS98] Kosky, A. S., Chen, I.-M. A., Markowitz, V. M. and
Szeto, E. (1998). "Exploring Heterogeneous Biological Da-
tabases: Tools and Applications". 6th Int. Conf. on Extend-
ing Database Technology, Valencia, Spain.

[LLRC98] Leser, U., Lehrach, H. and Roest Crollius, H. (1998).
"Issues in Developing Integrated Genomic Databases and
Application to the Human X Chromosome." Bioinformatics
14(7): 583-590.

[MSZ+01] Mangalam, H., Stewart, J., Zhou, J., Schlauch, K.,
Waugh, M., Chen, G., Farmer, A. D., Colello, G. and Wel-
ler, J. W. (2001). "GeneX: An Open Source Gene Expres-
sion Database and Integrated Tool Set." IBM Systems Jour-
nal 40(2): 552-569.

[MLP02] Marchi, F. D., Lopes, S. and Petit, J.-M. (2002). "Effi-
cient Algorithms for Mining Inclusion Dependencies". Int.
Conf. on Extending Database Technology (EDBT).

[Mar04] Martin, A. C. (2004). "PDBSprotEC: a Web-accessible
database linking PDB chains to EC numbers via SwissProt."
Bioinformatics 20(6): 986-8.

[MGR02] Melnik, S., Garcia-Molina, H. and Rahm, E. (2002).
"Similarity Flooding: A Versatile Graph Matching Algo-
rithm and Its Application to Schema Matching". Int. Conf.
on Data Engineering (ICDE).

[Mil98] Miller, R. J. (1998). "Using Schematically Heterogene-
ous Structures". ACM SIGMOD Int. Conference on Man-
agement of Data 1998, Seattle, Washington.

[MHH00] Miller, R. J., Haas, L. M. and Hernandez, M. A.
(2000). "Schema Mapping as Query Discovery". 26th Con-
ference on Very Large Database Systems, Cairo, Egypt,
ACM Press, New York.

[MLF04] Mueller, H., Leser, U. and Freytag, J. C. (2004). "Min-
ing for Patterns in Contradictory Data". Workshop on In-
formation Quality in Information Systems, Paris, France.

[NHT+02] Naumann, F., Ho, C.-T., Tian, X., Haas, L. M. and
Megiddo, N. (2002). "Attribute Classification Using Feature
Analysis". Int. Conf. on Data Engineering (ICDE).

[NJM03] Naumann, F., Josifivski, V. and Massmann, S. (2003).
"Super-Fast XML Wrapper Generation in DB2 (demo)". Int.
Conference on Data Engineering (ICDE), Bangalore, India.

[RB01] Rahm, E. and Bernstein, P. A. (2001). "A survey of
approaches to automatic schema matching." The VLDB
Journal 10(4): 334-350.

[Rob95] Robbins, R. J. (1995). "Information Infrastructure for
the Human Genome Project." IEEE Engineering in Medicine
and Biology 14(6): 746-759.

[RML04] Rother, K., Michalsky, E. and Leser, U. (2004). "How
well are protein structures annotated in annotation data-
bases." Submitted.

[RMT+04] Rother, K., Müller, H., Trissl, S., Koch, I., Steinke,
T., Preissner, R., Frömmel, C. and Leser, U. (2004).
"COLUMBA: Multidimensional Data Integration of Protein
Annotations". Int. Workshop on Data Integration in the Life
Sciences (DILS), Leipzig, Germany, Spinger.

 [SMB+04] Shaker, R., Mork, P., Brockenbrough, J. S., Donel-
son, L. and Tarczy-Hornoch, P. (2004). "The BioMediator
System as a Tool for Integrating Biologic Databases on the
Web". Workshop on Information Integration on the Web
(IIWeb04), Toronto, CA.

[Ste03] Stein, L. D. (2003). "Integrating biological databases."
Nature Rev Genet 4(5): 337-45.

[WN04] Weis, M. and Naumann, F. (2004). "Detecting Dupli-
cate Objects in XML Documents". Workshop on Informa-
tion Quality in Information Systems, Paris, France.

[WHA+02] Wu, C. H., Huang, H., Arminski, L., Castro-Alvear,
J., Chen, Y., Hu, Z. Z., Ledley, R. S., Lewis, K. C., Mewes,
H. W., Orcutt, B. C., et al. (2002). "The Protein Information
Resource: an integrated public resource of functional anno-
tation of proteins." Nucleic Acids Research 30(1): 35-7.

[ZLAE00] Zdobnov, E. M., Lopez, R., Apweiler, R. and Etzold,
T. (2000). "The EBI SRS Server - Recent Developments."
Bioinformatics 18(2): 368-373.

