
Adaptive Query Processing in the Looking Glass

Shivnath Babu∗

Stanford University
shivnath@cs.stanford.edu

Pedro Bizarro
University of Wisconsin, Madison

pedro@cs.wisc.edu

Abstract

A great deal of work on adaptive query pro-
cessing has been done over the last few years:
Adaptive query processing has been used to de-
tect and correct optimizer errors due to incor-
rect statistics or simplified cost metrics; it has
been applied to long-running continuous queries
over data streams whose characteristics vary over
time; and routing-based adaptive query process-
ing does away with the optimizer altogether. De-
spite this large body of interrelated work, no uni-
fying comparison of adaptive query processing
techniques or systems has been attempted; we
tackle this problem. We identify three families
of systems (plan-based, CQ-based, and routing-
based), and compare them in detail with respect
to the most important aspects of adaptive query
processing: plan quality, statistics monitoring and
re-optimization, plan migration, and scalability.
We also suggest two new approaches to adap-
tive query processing that address some of the
shortcomings revealed by our in-depth analysis:
(1) Proactive re-optimization, where the optimizer
chooses query plans with the expectation of re-
optimization; and (2) Plan logging, where op-
timizer decisions under different conditions are
logged over time, enabling plan reuse as well as
analysis of relevant statistics and benefits of adap-
tivity.

1 Introduction

For more than twenty years most database systems have
used the plan-first execute-next approach to query process-
ing, where an optimizer first picks an efficient plan for a
query, and then this plan is used to execute the query to
completion [34]. One effect of this approach has been to
make database systems critically dependent on the opti-
mizer. Unfortunately, optimizers may make mistakes: they

∗Supported by NSF Grants IIS-0118173 and IIS-9817799.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

may use outdated statistics or invalid assumptions like in-
dependence of attributes, resulting in query plans that are
suboptimal by orders of magnitude [14, 30]. Several fac-
tors have increased the severity of this problem: Users are
now posing more complex queries over larger data sets
than before; queries may now involve data sources, e.g.,
web services, for which no statistics are available; database
systems are being deployed in highly unpredictable and
changeable environments [10, 11, 31].

Adaptive query processing (AQP) is a promising ap-
proach to avoid the performance penalty caused by opti-
mizer mistakes, unknown statistics, and changes in data
and system conditions [28, 30]. With AQP, the optimiza-
tion and execution stages of processing a query are inter-
leaved, possibly multiple times over the running time of
the query. AQP makes query processing more robust to
optimizer mistakes, unknown statistics, and to changes in
conditions over the running time of a query. AQP is part of
the general trend toward autonomic computing, which aims
to minimize human effort in running systems efficiently.

Numerous techniques have been proposed for AQP, and
some have been prototyped in database systems. To the
best of our knowledge, Table 1 lists all techniques that have
been proposed for adaptive processing of a single query
(as opposed to techniques that use the statistics collected
during the execution of the current query change to better
optimize future queries, e.g., [35]). Figure 1 shows a time-
line listing the year in which the first paper describing each
general technique was published. Some important observa-
tions can be made from Table 1 and Figure 1:

• Most of the work on AQP has been done in the past
5-6 years.

• The applicability of AQP has been demonstrated on
real-life data and query workloads. Some of these
techniques are being incorporated into commercial
database systems.

• There are significant differences among the proposed
systems and techniques for AQP: different query se-
mantics, different types of data sources, different cost
metrics and optimization frameworks, and different
scopes of adaptivity including choice of access meth-
ods, plan shapes, pipelining, and memory allocation
across operators.

Since there has been a flurry of activity recently in AQP
systems, now is a good time to juxtapose these systems.



Name Query Type;
Data Type

Brief Description Novel Features

Re-Opt
[28]

SQL; D Re-optimize remaining query if statistics
of materialized subplan differs signifi-
cantly from optimizer’s estimates

First complete AQP prototype based on possible
re-optimization during execution

POP [30] SQL; D Similar to Re-Opt. Avoids unneces-
sary re-optimization and supports re-
optimization within pipelines

(i) Prototyped in a commercial optimizer, (ii)
Shows significant benefits on real workloads

Tukwila
[25]

SQL; N Query optimization for data integration
systems

(i) Adaptivity at both operator and plan levels, (ii)
Event-condition-action rules for AQP

Corrective
Proc. [24]

SQL; N Query processed in stages by partition-
ing data, statistics from previous stages
used to improve plan, final cleanup phase

Techniques to exploit properties of data arrival
from remote sources, e.g., sortedness

Query Scr-
ambling [38]

SQL; D, N Dealing with startup delay and burstiness
of remote data sources

Techniques to minimize idle time during query
processing

Pipeline
Sched. [37]

SQL; D, N Scheduling operators in pipelined plans
to reduce query response time

AQP for the response time metric

Conquest
[32]

SQL; D Adaptive distributed query processing Extensive use of triggers for AQP

DQE [9] SQL; D, N Query optimization for data integration Adaptivity at plan and operator-scheduling levels
DEC-Rdb
[1]

SQL; D Starts multiple access methods competi-
tively, chooses best, and stops others

First to explore optimization based on competing
plan choices against each other

Memory
adap. [17]

SQL; D Adaptive allocation of memory to opera-
tors

Prototyped in a commercial system

Redbrick SQL; D Computes intermediate results involving
dimension tables before choosing access
method for fact table

Perhaps the first commercial use of full-blown re-
optimization

Ingres [39] SQL; D Tuples in joins routed to nested-loop join
operators adaptively

Extremely adaptive join ordering

Eddies [4,
18, 29, 33]

SQL,CQ;
D,N,S

Query processing by routing tuples
through a pool of operators

(i) No optimizer, (ii) Routes chosen based on op-
erator exploration, (iii) Fine-grained adaptivity

River [3] Sort; D Adaptive sorting using a machine cluster Established a sorting record
NiagaraCQ
[13]

CQ; D, N Techniques to handle very large numbers
of continuous queries

Adaptive sharing of common subexpressions

StreaMon
[5, 6, 7]

CQ; S Integrated statistics collection and re-
optimization for data stream systems

(i) Sampling-based statistics tracking, (ii) Ef-
ficient approximation algorithms with provable
guarantees

CAPE [41] CQ; S Adaptive operators, scheduling, and dis-
tributed processing

Adaptivity at many levels

Parametric
opt. [16,
19, 20, 22,
23]

SQL; D Handling parameters (e.g., memory size,
user inputs) whose values are unknown
during optimization

An optimization framework to generate plans op-
timal for partitions of the parameter domains, and
defer plan choice until the actual parameter values
are known at run-time

Expected-
cost opt. [15]

SQL; D Finds plan with least expected cost given
distribution of values of parameter(s)

An optimization framework that can be used as an
alternative to parametric optimization

Table 1: Systems and techniques for adaptive processing of a single query. Query type is conventional SQL and/or CQ (for
Continuous Queries). Data type is D (local disk-resident relations), N (network-bound relations), and/or S (data streams).

The main contribution of this paper is a detailed qualita-
tive comparison of the systems in Table 1 with respect to
a wide range of issues related to AQP. To our knowledge,
no previous attempt at comparing different AQP systems
[21, 24, 27, 30] is as exhaustive as the one we present.
Our purpose is not to “bake off” these systems against one
another; instead, we want to bring out their characteris-

tic features and algorithms.1 For example, our compari-
son shows that, in spite of the numerous differences among
these systems, there are many commonalities in the way
they support AQP. To our knowledge, four broad compar-
isons of AQP systems have appeared previously in the lit-

1The title of this paper highlights the analogy between the goals of
this paper and the act of looking in a mirror to find out how we (the AQP
community) look, and how we can improve our appearance.



Figure 1: Publication timeline

erature [21, 24, 27, 30]. All of these comparisons take a
higher level view of AQP than we do, which limits the
depth of their comparisons. On the other hand, we focus
on AQP systems that interleave optimization, execution,
and statistics tracking, possibly multiple times, during the
running time of a single query. This focus enables us to
present a more in-depth and exhaustive comparison than in
[21, 24, 27, 30]. Based on our exhaustive study, we also
suggest two new techniques for AQP to address some of
the remaining shortcomings of current AQP systems.

The rest of this paper is organized as follows. In Sec-
tion 2, we detail the main motivations for current AQP sys-
tems. In Section 3, we identify the core tasks in AQP, par-
tition current AQP systems into three families, and specify
how each of these families handles the core tasks. In Sec-
tion 4, we present a detailed qualitative comparison of the
three system families with respect to a wide range of spe-
cific issues relevant to AQP. In Section 5, we suggest two
new techniques for AQP. We conclude in Section 6.

2 Motivations for AQP
In this section we detail the main motivations for AQP.

1. Correcting Optimizer Mistakes: There are many
reasons why an optimizer may make a mistake while
costing physical plans for a query, picking a plan that
performs significantly worse than the best plan. The
usual culprit is the unavailability of statistics about at-
tribute correlations and skewed attribute distributions.
Since collecting statistics is an expensive operation in
a database system, statistics may not be kept up-to-
date, which also may contribute to optimizer mistakes.
The severity of optimizer mistakes and the usefulness
of AQP in solving this problem are demonstrated in
[24, 25, 26, 28, 30] using synthetic and real-life data
sets and query workloads. For example, in [30] AQP
is shown to improve the performance of real-life com-
plex queries by an order of magnitude.

2. Coping with Unknown Statistics: With the growing
popularity of web services, it has become much easier

to make any data source available online [40]. Now
a database system may have to execute a query in-
volving one or more sources for which no statistics
are available. A plan-first execute-next approach is of
limited use in this environment, and AQP may be the
only reasonable approach. AQP is also important in
data integration systems and other data management
systems that support queries over autonomous remote
sources, e.g., see [9, 24, 25, 26, 33, 38].

3. Reacting to Changes in Input Characteristics and
System Conditions: Continuous queries, which are
common in data stream systems [10, 11, 31], are long-
running queries, so input characteristics may change
during the running time of a continuous query. For
example, stream arrival may be bursty, alternating un-
predictably between periods of slow arrival and peri-
ods of extremely fast arrival [38]. Also, system con-
ditions, e.g., the memory available to a single contin-
uous query, may vary significantly over the query’s
running time. AQP is important to maintain good per-
formance in these contexts as shown in [5, 29].

3 Adaptive Query Processing Families

In this section we identify the core tasks in AQP, then parti-
tion the systems in Table 1 into three families, and specify
how each of them handles the core AQP tasks. Broadly
speaking, the traditional plan-first execute-next approach
to query processing involves three tasks as described next
and also shown in Figure 2:

1. Optimization, in which an optimizer chooses a plan to
execute a given query. To choose the plan, the op-
timizer uses statistics (e.g., table sizes, histograms)
available on the input data.

2. Execution, in which an executor runs the plan chosen
by the optimizer to completion to produce the query
result.



Executor:
Runs chosen plan

chosen
plan

statistics
Current

Query

Optimizer:
Chooses best plan

runstats

Creates/updates statistics
Statistics Tracker:

requests statistics
for costing plans

Tables sizes,
histograms

Figure 2: The traditional approach to query processing

Executor:
Runs chosen plan

for costing plans

statistics
Current

Query

Optimizer:
Chooses best plan

subexpressions
query

Statistics on Statistics Tracker:
Creates/updates statistics

and system conditions

runstats

re−optimize

chosen plan
with extra

operators to
track statistics

and trigger
re−optimization

Original +

statistics
observed

requests statistics

if required

Figure 3: AQP in plan-based systems

3. Statistics tracking, in which a statistics tracker main-
tains the statistics used by the optimizer. Usually, a
database administrator invokes the statistics tracker
both to create new statistics and to bring existing ones
up-to-date, e.g., using a “runstats” command as in Fig-
ure 2.

Recall from Section 1 that an AQP system may interleave
optimization, execution, and statistics tracking during the
processing of a query. That is, an AQP system may re-
optimize a query, possibly multiple times, during the run-
ning time of the query. (We will hereafter use the terms
AQP and re-optimization interchangeably.) Broadly, we
can divide the AQP systems in Table 1 into three families,
which we term plan-based, routing-based, and CQ-based,
described next.

3.1 Plan-based Systems

Plan-based AQP systems extend the plan-first execute-next
approach by monitoring the execution of the current plan
and re-optimizing whenever observed plan properties (e.g.,
intermediate result sizes) or system conditions (e.g., avail-
able memory) differ significantly from the estimates made
by the optimizer while choosing the plan. Roughly, as

shown in Figure 3, this extension can be captured by ex-
tending statistics tracking to include plan properties and
system conditions during query execution, along with some
criteria to trigger re-optimization based on the values ob-
served. The systems listed from Re-Opt to Redbrick in Ta-
ble 1 are plan-based AQP systems.

3.2 Routing-based Systems

Routing-based AQP systems, represented by Eddies [4]
and River [3] in Table 1, represent an innovative approach
to AQP. They avoid a traditional optimizer, and in fact,
eliminate query plans altogether. (Joins in the Ingres sys-
tem were processed using a similar approach [39].) In-
stead, routing-based systems process queries by routing tu-
ples through a pool of operators, ensuring that most tuples
follow the most efficient routes. As shown in Figure 4,
the tuple router integrates both optimization and statis-
tics tracking using the single primitive of selective routing
of tuples along alternate routes. Most tuples exploit the
route that is most efficient currently, while the rest explore
other routes. The Eddies architecture has been extended to
support continuous queries [29], primitives for state man-
agement [18, 33], distributed processing [36], and routing
based on tuple content [8].



statistics
Current

Executor:
Pool of operators

selectivities,
Operator

Tuple Router:
Integrated optimizer
and statistics tracker

operator pool

choose efficient routes
routes tuples through

uses statistics to

costs

observed
statistics

Query or
continuous query

Figure 4: AQP in routing-based systems

Executor:
Runs chosen plan

chosen
plan

statistics
Current

Optimizer:
Chooses best plan

Statistics Tracker:
Monitors statistics

Stream rates,

for efficiency
combined in part specified by optimizer

and system conditions

Continuous
query

which
statistics

to track

re−optimize

requests statistics
for costing plans

stream data
distributions

Figure 5: AQP in CQ-based systems

3.3 CQ-based Systems

Continuous-Query-based, or CQ-based, AQP systems sup-
port AQP for continuous queries, prevalent in data stream
systems. (Routing-based systems also support continuous
queries [12, 29].) CAPE [41], NiagaraCQ [13], and Strea-
Mon [7] are the CQ-based systems in Table 1. AQP in CQ-
based systems is shown in Figure 5. Like plan-based sys-
tems, CQ-based systems use query plans and an optimizer.
However, their focus is on arbitrary changes in stream char-
acteristics and system conditions during the running time
of a continuous query, rather than mistakes in statistics for
a given query plan. For example, the optimizer may in-
form the statistics tracker about all statistics that it used
when considering alternative plans, and the tracker mon-
itors for changes in these statistics [5]. To minimize the
run-time overhead, CQ-based systems use sampling-based
techniques for statistics tracking, and combine statistics
tracking with query execution whenever possible [5, 6, 7].

3.4 Summary and Details
Table 2 provides a detailed summary of the three families
in terms of the problem addressed, the objectives, the as-
sumptions made, and the general approach to the core tasks
of AQP.

4 Comparison of the System Families
We now present a comparison of the three AQP system
families with respect to a wide range of specific issues rel-
evant to AQP. This section is organized as follows:

• One distinctive feature of routing-based systems that
sets it apart from plan-based and CQ-based systems
is the absence of an optimizer. We begin by listing
the pros and cons of using an optimizer in an adaptive
environment (Section 4.1).

• We then discuss the techniques used by different sys-
tems to track statistics required for AQP (Section 4.2).
While each system family currently uses a different
technique, most techniques have broad applicability
that translates across the system families.

• We then discuss techniques specific for re-
optimization in the system families, specifically,
knowing when to re-optimize, doing the re-
optimization, and switching to a new plan if
required (Section 4.3).

• We wrap up the comparison with a look at per-
formance issues in AQP, namely, quality of re-



Plan-based CQ-based Routing-based
Problem
addressed

(i) Not all input statistics are
known initially (ii) System con-
ditions (e.g., memory availability)
may change over time

(i) No input statistics known ini-
tially (ii) Input statistics and sys-
tem conditions may change over
time

(i) No input statistics known ini-
tially (ii) Input statistics and sys-
tem conditions may change over
time

Objectives Detect and correct situations
where optimizer picks an ineffi-
cient plan

Ensure that plan is efficient for
current input statistics and system
conditions

Ensure that tuples follow efficient
routes

Assumptions Given correct estimates of statis-
tics and system conditions, opti-
mizer can find an efficient plan

(i) Statistics required by optimizer
can be estimated during execu-
tion (ii) Given correct estimates of
statistics and system conditions,
optimizer can find an efficient plan

Efficient routes can be found by
exploring different routes

Executor (i) Pipelined and non-pipelined
plans (ii) Plans contain operators
to track statistics and trigger re-
optimization if required

Pipelined plans only (because op-
erators in continuous query plans
must be non-blocking [2])

Routes through operators simu-
late pipelined plans

Optimizer Conventional optimizer that
also adds additional operators
to track statistics and trigger
re-optimization if required

May use conventional optimizer
or approximation algorithms
that are guaranteed to find
near-optimal plans

(i) No conventional optimizer (ii)
Greedy optimization via selective
tuple routing

Statistics
Tracker

Conventional statistics along with
statistics on query subexpressions
collected during execution

Estimate all statistics (e.g., opera-
tor selectivities, costs) relevant to
current optimization

Operator-level selectivities and
costs maintained during execu-
tion

Table 2: Model, goals, assumptions, and approach of the three system families

Concern Using an Optimizer (Plan- and CQ-based systems) No Optimizer (Routing-based systems)
Effect on plan
quality

(+) Can consider large complex plan spaces
(-) Susceptible to estimation errors (optimizer
mistakes)

(+) Routing is based on observed (accurate) statis-
tics (-) Routing algorithms are usually greedy and
designed for smaller, simpler plan spaces

Complexity (-) Optimizers are very complex modules (+) Simple primitive for re-optimization
Run-time
overhead

(-) Context switching between optimizer and ex-
ecutor (-) Plan enumeration and costing may be
invoked multiple times

(-) Overhead of routing (-) Have to ensure contin-
uously that routes correspond to valid plans

Table 3: Advantages (“+”) and disadvantages (“-”) of using a conventional optimizer

optimization, run-time overhead, robustness to thrash-
ing, and scalability (Section 4.4).

We use tables throughout this section to provide detailed
comparisons for all the above issues.

4.1 Pros and Cons of Using an Optimizer

Recall from Section 3.2 that routing-based systems do not
use conventional optimizers or query plans. Table 3 sum-
marizes the advantages (indicated by “+”) and disadvan-
tages (indicated by “-”) of using a full-blown optimizer in
an adaptive environment.

4.2 Tracking Statistics

In Sections 3.1–3.3, we saw why different AQP systems
need to track statistics during query execution. Statistics
are tracked either to verify that the actual values observed
during execution match optimizer estimates, or to obtain
run-time values for use in future optimization steps. Some

statistics can be observed directly from the execution of
the plan in a plan-based or CQ-based system, or from the
flow of tuples along the current best path in a routing-based
system. For example, to track the cardinality of a query
subexpression that happens to be materialized by the cur-
rent plan, the system just counts the tuples in the material-
ized result.

However, we may want to track statistics that cannot be
observed directly from the current plan. To do so, the sys-
tem can process input data using one or more additional
plans or routes apart from the current best one. This addi-
tional processing may be devoted solely to the purpose of
tracking statistics, or it may be integrated into regular query
processing so that no redundant work is done.

To illustrate the above points, we list four techniques
used in current AQP systems for tracking statistics during
query execution:

1. Observation: [28, 30] Observation is used commonly
in plan-based systems where statistics (e.g., cardinali-



Technique Computational Overhead Accuracy of Estimation Coverage of Statistics
Observation Depends what statistics are

collected
High because statistics col-
lected are actual observations

Restricted to what can be ob-
served from plan

Exploration Depends on fraction of tuples
sent along less efficient paths

Susceptible to bias in routing
decisions and to correlations

Limited by the large number
of alternative routes

Competition Redundant processing of data High because statistics col-
lected are actual observations

Low, only limited number of
competing plans can be run

Profiling Extra work on a random sam-
ple of the data

(i) Depends on sampling frac-
tion (ii) Unbiased estimates

Broad coverage of statistics
based on a sample of the data
(e.g., conditional selectivities
can be estimated)

Table 4: Analysis of the four common techniques for tracking statistics, with respect to three key properties

ties, random samples, histograms) are collected on tu-
ples that pass through selected points in a query plan.

2. Exploration: [4] Exploration is used in routing-based
systems where a fraction of input tuples are routed
along routes different from the current best route
to track operator selectivities and costs along these
routes.

3. Competition: [1] Competition is similar to explo-
ration, but it routes the same set of tuples along multi-
ple competing routes (or plans) in order to track oper-
ator selectivities and costs using the same input data.

4. Profiling: [5] Profiling differs from exploration and
competition in that a fraction of tuples are processed
by all operators solely to collect statistics.

Table 4 analyzes these techniques with respect to three key
properties: Computational overhead, accuracy of estima-
tion, and coverage. The coverage of a technique character-
izes the number of different statistics that can be estimated
simultaneously using that technique. While competition
and profiling are intrusive techniques in the sense that they
require changes to the operators to avoid generating false
positives or false negatives in the query result, both obser-
vation and exploration are nonintrusive techniques. Fur-
thermore, current implementations of exploration and pro-
filing support pipelined plans only.

4.3 Re-optimization

Re-optimization involves three components: (i) choosing
when to re-optimize, (ii) finding the new best plan or route,
and (iii) switching to the new plan or route if it is different
from the current one. We consider (i) and (ii) together in
Section 4.3.1 and (iii) in Section 4.3.2.

4.3.1 When and How to Re-optimize

Re-optimization is invoked explicitly in plan-based and
CQ-based systems, while it happens implicitly in routing-

based systems. During execution, plan-based and CQ-
based systems track some or all of the statistics that the
optimizer estimated while picking the current plan. The op-
timizer is re-invoked whenever an observed value is found
to be either significantly different from the optimizer’s es-
timate or outside the range of values for which the current
plan is optimal [30]. (Instead of comparing at the level
of statistics, e.g., cardinalities, sometimes the comparison
is done at the level of estimated plan costs, e.g., time to
completion, computed from these statistics [28].) When
invoked for re-optimization, the optimizer is given the new
set of statistics which includes those tracked by the current
plan. In a routing-based system, the scheme used to route
tuples to operators is based on current statistics. For exam-
ple, most tuples may be routed first to the operator with the
current lowest selectivity. Thus, re-optimization happens
automatically when statistics change [4].

Example 4.1 We use an example to illustrate some of
the subtleties that arise in statistics tracking and re-
optimization. Consider a query that contains a four-way
join of relations R, S, T , and U . (Each relation could be a
window over a stream in a data stream processing system,
in which case the query semantics is similar to that of a ma-
terialized view [2].) Assume that R ./ T has low selectiv-
ity, i.e., R ./ T produces many joined tuples, and R ./ U

has high selectivity, but both these statistics are unknown.
The optimal join order is ((R ./ U) ./ S) ./ T . An op-
timizer may estimate the unknown selectivities incorrectly,
and pick the join order ((R ./ S) ./ T ) ./ U . A plan-based
system will not notice these mistakes during execution be-
cause the selectivities of R ./ T and R ./ U cannot be ob-
served directly from the join order ((R ./ S) ./ T ) ./ U .
If the system monitors the size of R ./ S ./ T during
execution, it will find that this size is larger than the es-
timated value, and trigger re-optimization. However, re-
optimization may not improve the situation—the optimizer
may pick a suboptimal plan again—because the system has
not learned the accurate values of the selectivities of R ./ T

and R ./ U . 2



Concern Plan-based CQ-based Routing-based
Avoiding dupli-
cate results

(i) No result output until pro-
cessing is complete (e.g., by
buffering) (ii) Keep track of
tuples output so far to elimi-
nate duplicates in future

Access methods over streams
are one-pass scans, so dupli-
cate results are never gener-
ated

Routing constraints are en-
forced to avoid generating du-
plicate results [33]

Reusing work
done so far

Materialized subexpressions
reused on a cost basis

Migrate state in temporary
structures (e.g., hash tables)
to new plan [41]

Migrate state in temporary
structures (e.g., hash tables)
to new plan [18]

Reducing
switching time

Start new plan on new input;
combine data partitions pro-
cessed by different plans only
after all sources are exhausted
[24]

(i) Caches (soft state) that can
be dropped quickly and built
incrementally [6] (ii) Tech-
niques to migrate state in par-
allel with processing [41]

(i) Pipelined processing tech-
niques that do not maintain
extra state [33] (ii) Fine-
grained primitives for tuple
router to migrate state [18]

Table 5: Techniques used by AQP systems to address issues in plan switching

4.3.2 Plan Switching

Re-optimization in a plan-based or CQ-based system may
decide a new plan is better than the current one. In that
case, some important issues need to be dealt with when
switching between plans:

• Correctness: The new plan must not output result tu-
ples that have already been output by previous plans
(or miss tuples), particularly in pipelined plans.

• Reuse of work: The current plan and plans before it
may have processed a substantial part of the query.
It is important to consider whether the new plan can
reuse this work instead of restarting query processing
from scratch. However, it may not always be benefi-
cial to reuse work, so reuse must be considered in a
cost-based manner.

• Plan state: Techniques for switching between plans
must account for the state captured by a plan, which
has four components:

– Base relations in the query (these may be win-
dows over streams in a continuous query)

– Intermediate materialized subexpressions

– In-flight tuples in pipelined segments

– Temporary structures like hash tables and sorted
sublists

Table 5 summarizes the techniques and assumptions used
in the three system families to address the above issues.

During re-optimization, plan-based systems consider
reusing query subexpressions materialized by previous
plans to reduce the cost of plan switching. Recall that CQ-
based and routing-based systems primarily deal with input
that arrives continuously, e.g., data streams [10, 11, 31].
Minimizing response time is an important goal in these sys-
tems [10]. Therefore it is often more important in those
systems to get the new plan up and running as quickly as
possible after a decision to switch than it is to minimize

the overall cost of plan switching. One technique that has
been proposed is to let the new plan process new data as it
arrives. Results from the combination of “old” and “new”
data can be computed later, either after the entire data set
has arrived [24, 25], or in an incremental fashion along-
side the processing of the new data [38, 41]. Another tech-
nique is to store state only in caches that can be dropped at
any time, and created incrementally whenever needed [6].
If plan state is limited to caches, then switching between
plans is quick: drop all caches in the current plan, and start
the new plan with its caches initially empty. (Caches that
are identical between the old and new plans can be reused.)

4.4 Performance Issues

4.4.1 Quality of Re-optimization

The techniques used by current AQP systems to track statis-
tics at run-time (Section 4.2), to trigger re-optimization
(Section 4.3.1), and to switch between plans (Section 4.3.2)
dictate their ability to (i) detect when re-optimization is
needed because of a change in conditions or an incorrectly
estimated statistic, (ii) find an efficient plan after the change
or mistake, and (iii) switch efficiently to the new plan. Ta-
ble 6 summarizes the issues related to these three aspects
of re-optimization for the three system families.

4.4.2 Run-time Overhead

An AQP system incurs run-time overhead to ensure adap-
tivity, compared to a traditional plan-first execute next ap-
proach. The main contributors to this overhead are tracking
statistics, invoking the optimizer for re-optimization, and
switching between plans. The effect of these three factors
depends primarily on the rate at which conditions change,
and is summarized in Table 7. Note that changes in condi-
tions in CQ-based and routing-based systems are similar to
optimizer mistakes in plan-based systems because the ef-
fect is the same in both cases: The system discovers during
query execution that the statistics and assumptions used to
derive the current plan are not valid any more. Therefore,



Re-optimization Aspect Plan-based CQ-based Routing-based
Detecting a change or
mistake

(-) Can only detect mistakes
that can be observed in plan

(+) Monitors all statistics, so
will detect change quickly

(-) Exploration may take
time to detect change

Finding an efficient plan
after a change or mis-
take

(-) May not find best plan
unless all uncertain statistics
were measured at run-time

(+) Approximation algo-
rithms guaranteed to find
near-optimal plans

(-) Greedy optimization may
not find best plan

Switching to the new
plan

(+) Reuse of work consid-
ered during re-optimization

(+) Fast switching, e.g., be-
cause caches are used [6]

(+) Fine-grained primitives
to migrate state [18]

Table 6: Advantages (“+”) and disadvantages (“-”) of the families with respect to the various aspects of re-optimization

Rate of Change Plan-based CQ-based Routing-based
Low (+) Very low overhead (-) Overhead is dominated by

tracking statistics
(+) Low overhead of exploring
alternative paths

High (-) May use inefficient
plans because of limited
re-optimization opportunities

(+) More resilient because
profiling enables faster, more
complete statistics tracking

(-) Inefficient routes may be
used always because explo-
ration takes time to converge

Table 7: Run-time overhead with respect to the rate at which system conditions change, or with respect to the number of
unknown statistics in a plan-based system

e.g., a high rate of change in conditions in Table 7 is similar
to having many unknown statistics.

4.4.3 Thrashing

We say that an AQP system is thrashing if it is spending
most of its resources in adaptivity-related overhead, e.g.,
plan switching, and is not making enough progress in query
execution. For example, if a CQ-based system adapts too
rapidly, then a series of short-lived changes may make the
system spend all its resources re-optimizing. A number of
safeguards have been proposed to minimize thrashing in
AQP systems:

1. Limiting re-optimization points, e.g., only re-
optimizing at blocking operators in plans [28]

2. Limiting the number of times re-optimization can be
invoked during query execution [30]

3. Setting a minimum number of tuples processed or
time interval between any two invocations of re-
optimization [6, 18]

4.4.4 Scalability

AQP systems need to scale in all the traditional dimen-
sions such as data size, query complexity, number of con-
current queries, and data arrival/update rate. In addition,
AQP systems must scale in the number of unknown statis-
tics or the rate at which statistics can change. (Techniques
such as parametric optimization [16, 22] and expected-
cost-based optimization [15], which are alternatives to re-
optimization, do not scale in the number of unknown statis-
tics.) While we are not aware of any work that studies scal-
ability of AQP systems, it is clear that scalability depends
on the quality of re-optimization (Section 4.4.1), the run-
time overhead for adaptivity (Section 4.4.2), and also on
the robustness to thrashing (Section 4.4.3).

5 New Approaches to AQP

In this section we identify two fresh approaches for AQP
and explain how shortcomings of existing AQP systems
lead to these new approaches. The first one, which we call
proactive re-optimization, is an AQP technique targeted at
improving plan-based and CQ-based systems. The second
one, which we call plan logging, is a technique for scaling
CQ-based systems to handle large and complex plan spaces
adaptively.

5.1 Proactive Re-optimization

Current plan-based systems use an optimizer to generate
a plan, and then detect and respond to suboptimalities in
this plan during execution. We call this approach reactive
re-optimization. Specifically, these systems use a conven-
tional optimizer that can produce an efficient plan for a de-
sired cost metric using statistics about the input data, then
add a post-processing phase. The post-processing phase
adds assertions to the chosen plan to track actual statistics
values during execution and verify that these values match
the optimizer’s estimates and are within the range of values
for which the current plan is efficient [28, 30].

Reactive re-optimization is handicapped by its use of
a conventional optimizer, which is blind to issues affect-
ing re-optimization. As we will show in Sections 5.1.1–
5.1.4, the benefits, costs, and flexibility of re-optimization
depend strongly on the query plan used for execution. To
solve this problem, we propose proactive re-optimization
in which query plans are selected with re-optimization in
mind. Like a conventional optimizer, the overall goal of a
proactive optimizer is to minimize the desired performance
metric, e.g., time to completion or response time. However,
while choosing plans, a proactive optimizer also considers
four issues relevant to re-optimization:



1. The potential overhead of tracking statistics during ex-
ecution and the chances of needing re-optimization
and plan switching

2. The potential for reuse of work in case a plan switch
is required

3. The ability to identify quickly whether the current ex-
ecution plan is suboptimal

4. The ability to decrease uncertainty in input statistics
quickly during execution

Some of these issues are conflicting, which makes proac-
tive re-optimization a challenging problem and an interest-
ing avenue for future work. These four issues are discussed
next.

5.1.1 Potential Run-time Overhead for Adaptivity

We use an example to motivate the need for consider-
ing adaptivity overhead when selecting an execution plan.
Consider the join of relations R and S. An indexed nested-
loop join (INLJ) with R as the outer may outperform a hy-
brid hash join (HHJ) if R is small, S is large, and S has a
clustered index on the join attribute. As the size of R in-
creases, the performance of HHJ quickly starts to dominate
that of INLJ. Suppose the size of R is unknown. Then, it
may be better to use the safe HHJ instead of the risky INLJ
because using the INLJ will require the system to incur run-
time overhead to track statistics on R during execution, and
in the worst case, an expensive re-optimization and a plan
switch will occur. However, if the size of R is known with
high confidence to be small, then we prefer INLJ to HHJ.

This simple example shows how a proactive optimizer
can explore the tradeoff between plan safety and the risk of
incurring higher run-time overhead, based on knowledge
of uncertainty in statistics. (Technically, plan safety may
be specified in terms of the expected cost of the plan [15].)
To achieve this goal, a proactive optimizer needs to take
into account uncertainties in statistics. Some initial work
in this direction was done by Re-Opt [28] which quantified
the uncertainty in a statistic using a discrete-valued catego-
rization.

5.1.2 Potential Reuse of Work

In the previous section, we saw an example of a plan P that
is risky because the chances of triggering re-optimization
are high if P is used. A plan P may also be risky because
the system may not be able to reuse any of the work done
by P if re-optimization and a plan switch is required. In
general, it is hard to keep track of and reuse the work done
by a pipelined plan if the query needs to be re-optimized
during the execution of the pipeline. Therefore, one simple
approach that a proactive optimizer can use to increase the
potential for reusing work is to generate plans with shorter
pipelined segments and more materialization points.

5.1.3 Identifying Plan Suboptimality Faster

Recall that re-optimization is triggered by the violation of
an assertion about statistics in the current plan during exe-
cution. Some plans allow for more assertions to be checked
concurrently, or to be checked sooner, thereby enabling
faster detection and correction of suboptimality. For ex-
ample, in a fully pipelined plan, we can maintain running
selectivities for all operators in the plan. So, the system
can discover suboptimalities involving unknown selectiv-
ities of downstream operators in the plan long before the
upstream operators have finished execution. Note that the
goal of picking a plan that enables suboptimality to be de-
tected quickly may conflict with the goal of maximizing
potential reuse of work.

5.1.4 Decreasing Uncertainty in Statistics

A proactive optimizer may want to reduce the uncertainty
in some statistics as quickly as possible, even at the cost of
delaying query execution. For example, consider the join of
relations R and S from Section 5.1.1, and suppose that the
uncertainty in the size of R comes from the presence of se-
lection predicates p1 and p2 on R that may be correlated. In
this situation, the optimizer can choose to first estimate the
combined selectivity of p1 and p2 from a random sample of
R before choosing the join algorithm to use for R ./ S. An
interesting avenue for work would be to merge such ran-
dom sample processing alongside regular query execution
to hide the extra overhead. For example, if R tuples are
stored in random order on disk, then after 5% of R tuples
have been scanned as part of a table scan, a fairly accurate
estimate of the combined selectivity of p1 and p2 can be ob-
tained. Furthermore, the scan may not need to be restarted
if the selected R tuples in the sample are buffered.

Other techniques that a proactive optimizer can use to
decrease the uncertainty in input statistics quickly are: it
can choose a pipelined plan for some queries, and use pro-
filing (recall Section 4.2) to estimate required statistics; it
can explore multiple selected subplans to collect statistics
on query subexpressions.

5.2 Plan Logging

Most current CQ-based and routing-based systems adapt
execution only within Select-Project-Join blocks [5, 7, 18].
It is important to scale these systems to handle larger and
more complex queries and plan spaces adaptively: to si-
multaneously consider access methods and plan shapes,
memory allocation to operators, parallelism, and sharing
of data and computation. However, run-time overhead
to support adaptive processing increases significantly as
plan spaces expand: the optimizer must search through the
larger plan space, more statistics need to be tracked or more
routes need to be explored, and plan-switching costs in-
crease because of increased plan state. Furthermore, larger
plan-switching costs exaggerate the effect of thrashing if
the system reacts rapidly to changes. In this section, we



outline plan-logging, a promising direction to attack these
problems in a CQ-based system.

With plan-logging for a continuous query Q, the statis-
tics tracker continuously logs the statistics relevant to Q

that it collects, and the optimizer logs the corresponding
plan that it picked for Q based on these statistics. For ex-
ample, entries in the log for query Q may have the form
〈t, S, P 〉 indicating that the optimizer picked plan P for Q

based on statistics S observed at time t.
Over time, the entries for Q in the log capture the path

traversed by the system in the space of statistics relevant
to Q. That is, we can consider a high-dimensional space
containing a dimension for each independent input statistic
relevant to Q, e.g., the rate of each input stream in Q. For
each point S in the space of statistics relevant to Q, there
is a plan P that is optimal for Q with respect to the desired
cost metric, e.g., query completion time. (If the properties
of the input data are as specified by S, then plan P has the
minimum cost among all plans for Q.) The information in
the log for Q, which captures the space of statistics relevant
to Q, can be used in an AQP system as follows:

• By grouping together log entries that contain the same
plan P for query Q, the AQP system can identify re-
gions in the space of statistics relevant to Q where P

is efficient. This information can be used to pick plans
without full optimization when Q is re-optimized un-
der statistical conditions that fall in regions seen pre-
viously.

• The AQP system can identify those statistics whose
changes most contribute to significant changes in plan
performance. This information can be used to re-
duce run-time overhead by reducing the rate at which
“unimportant” statistics are tracked.

• The history captured by the log can be used to do an
online what-if analysis. For example, the AQP sys-
tem can identify the performance that it could have
achieved without adaptivity, e.g., the average perfor-
mance of the single best plan over a time interval.
This information can be used to track the return-of-
investment on adaptive processing, so the system can
control the run-time resources allocated to maintain
adaptivity.

• The AQP system can identify statistics that are prone
to transient changes, so that it can reduce chances of
thrashing on such changes.

Note that plan logging and proactive re-optimization are
orthogonal and compatible ideas, so the best approach may
be to do both.

6 Conclusions
Our main contribution in this paper is the identification
of three families of AQP systems (plan-based, CQ-based,
and routing-based), and the detailed comparison of these

system families with respect to the most important as-
pects of AQP: plan quality, statistics monitoring and re-
optimization, plan migration, and scalability. We hope that
our work is the first step toward answering some important
questions about AQP at this point in its evolution.

• Given some fundamental differences among the sys-
tems that support AQP, will adaptive techniques de-
veloped for one system be useful on another system?

• AQP considers many aspects of a physical plan, e.g.,
access methods, plan shapes, memory allocation, and
scheduling of operators. Can we quantify the bene-
fits of AQP with respect to each of these aspects? For
example, which of these aspects would degrade per-
formance most if it is not considered for adaptive op-
timization?

• Each AQP system in Table 1 has its applicable do-
main, i.e., the data and query workloads for which it is
the most effective compared to the plan-first execute-
next approach. Can we build an AQP system that can
perform well in all domains? If not, are there funda-
mental tradeoffs among the domains that prevents us
from doing so?

• Are there data and query workloads for which no AQP
system listed in Table 1 works well? If so, how can we
build AQP systems that are effective for these work-
loads?

7 Acknowledgments
We are extremely grateful to Jennifer Widom, David De-
Witt, Kamesh Munagala, and Rajeev Motwani for helpful
feedback and discussions.

References
[1] G. Antoshenkov and M. Ziauddin. Query processing and

optimization in oracle rdb. VLDB Journal, 5(4):229–237,
1996.

[2] A. Arasu, S. Babu, and J. Widom. An abstract semantics
and concrete language for continuous queries over streams
and relations. VLDB Journal. (To appear).

[3] R. Arpaci-Dusseau. Run-time adaptation in river. ACM
Trans. on Computer Systems, 21(1):36–86, 2003.

[4] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive
query processing. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pages 261–272, May 2000.

[5] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters. In
Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management
of Data, pages 407–418, June 2004.

[6] S. Babu, K. Munagala, J. Widom, and R. Motwani. Adaptive
caching for continuous queries. In Proc. of the 2005 Intl.
Conf. on Data Engineering, 2005. (To appear).

[7] S. Babu and J. Widom. StreaMon: An adaptive engine
for stream query processing. In Proc. of the 2004 ACM
SIGMOD Intl. Conf. on Management of Data, June 2004.
Demonstration proposal.



[8] P. Bizarro, S. Babu, D. DeWitt, and J. Widom. Content-
based routing for continuous query-optimization. Technical
Report 1511, University of Wisconsin, Madison, Apr. 2004.

[9] L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez. Dy-
namic query scheduling in data integration systems. In Proc.
of the 2000 Intl. Conf. on Data Engineering, pages 425 –
434, 2000.

[10] D. Carney et al. Monitoring streams–a new class of data
management applications. In Proc. of the 2002 Intl. Conf.
on Very Large Data Bases, Aug. 2002.

[11] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Proc. First Biennial
Conf. on Innovative Data Systems Research, Jan. 2003.

[12] S. Chandrasekaran and M. Franklin. Psoup: a system for
streaming queries over streaming data. VLDB Journal,
12(2):140–156, 2003.

[13] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management
of Data, pages 379–390, May 2000.

[14] S. Christodoulakis. Implications of certain assumptions in
database performance evaluation. ACM Trans. on Database
Systems, 9(2):163–186, 1984.

[15] F. Chu, J. Halpern, and P. Seshadri. Least expected cost
query optimization: An exercise in utility. In Proc. of the
1999 ACM Symp. on Principles of Database Systems, pages
138–147, 1999.

[16] R. Cole and G. Graefe. Optimization of dynamic query eval-
uation plans. In Proc. of the 1994 ACM SIGMOD Intl. Conf.
on Management of Data, pages 150–160, 1994.

[17] B. Dageville and M. Zait. SQL memory management in
Oracle9i. In Proc. of the 2002 Intl. Conf. on Very Large
Data Bases, pages 962–973, Aug. 2002.

[18] A. Deshpande and J. Hellerstein. Lifting the burden of his-
tory from adpative query processing. In Proc. of the 2004
Intl. Conf. on Very Large Data Bases, Aug. 2004.

[19] S. Ganguly. Design and analysis of parametric query opti-
mization algorithms. In Proc. of the 1998 Intl. Conf. on Very
Large Data Bases, pages 228–238, Aug. 1998.

[20] G. Graefe and K. Ward. Dynamic query evaluation plans. In
Proc. of the 1989 ACM SIGMOD Intl. Conf. on Management
of Data, pages 358–366, 1989.

[21] J. Hellerstein, M. J. Franklin, et al. Adaptive query pro-
cessing: Technology in evolution. IEEE Data Engineering
Bulletin, 23(2):7–18, June 2000.

[22] A. Hulgeri and S. Sudarshan. AniPQO: Almost non-
intrusive parametric query optimization for nonlinear cost
functions. In Proc. of the 2003 Intl. Conf. on Very Large
Data Bases, pages 766–777, Aug. 2003.

[23] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis. Parametric query
optimization. In Proc. of the 1992 Intl. Conf. on Very Large
Data Bases, pages 103–114, Aug. 1992.

[24] Z. Ives. Efficient Query Processing for Data Integration.
PhD thesis, University of Washington, Seattle, WA, USA,
Aug. 2002.

[25] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld.
An adaptive query execution system for data integration. In
Proc. of the 1999 ACM SIGMOD Intl. Conf. on Management
of Data, pages 299–310, June 1999.

[26] Z. Ives, A. Halevy, and D. Weld. Adapting to source prop-
erties in processing data integration queries. In Proc. of the
2004 ACM SIGMOD Intl. Conf. on Management of Data,
pages 395 – 406, 2004.

[27] Z. Ives, A. Levy, et al. Adaptive query processing for
internet applications. IEEE Data Engineering Bulletin,
23(2):19–26, June 2000.

[28] N. Kabra and D. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In Proc.
of the 1998 ACM SIGMOD Intl. Conf. on Management of
Data, pages 106–117, June 1998.

[29] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Contin-
uously adaptive continuous queries over streams. In Proc.
of the 2002 ACM SIGMOD Intl. Conf. on Management of
Data, pages 49–60, June 2002.

[30] V. Markl, V. Raman, D. Simmen, G. Lohman, and H. Pi-
rahesh. Robust query processing through progressive opti-
mization. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on
Management of Data, pages 659–670, June 2004.

[31] R. Motwani, J. Widom, et al. Query processing, approxi-
mation, and resource management in a data stream manage-
ment system. In Proc. First Biennial Conf. on Innovative
Data Systems Research (CIDR), Jan. 2003.

[32] K. Ng, Z. Wang, R. Muntz, and S. Nittel. Dynamic query
re-optimization. In Proc. of the 1999 Intl. Conf. on Scientific
and Statistical Database Management, pages 264–273, July
1999.

[33] V. Raman, A. Deshpande, and J. Hellerstein. Using state
modules for adaptive query processing. In Proc. of the 2003
Intl. Conf. on Data Engineering, Mar. 2003.

[34] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proc. of the 1979 ACM
SIGMOD Intl. Conf. on Management of Data, pages 23–34,
June 1979.

[35] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s LEarning Optimizer. In Proc. of the 2001 Intl. Conf.
on Very Large Data Bases, pages 9–28, Sept. 2001.

[36] F. Tian and D. DeWitt. Tuple routing strategies for dis-
tributed eddies. In Proc. of the 2003 Intl. Conf. on Very
Large Data Bases, Sept. 2003.

[37] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling
for improving interactive performance of online queries. In
Proc. of the 2001 Intl. Conf. on Very Large Data Bases, Sept.
2001.

[38] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query
scrambling for initial delays. In Proc. of the 1998 ACM SIG-
MOD Intl. Conf. on Management of Data, pages 130–141,
June 1998.

[39] E. Wong and K. Youssefi. Decomposition - a strategy for
query processing. ACM Trans. on Database Systems, 1(3),
1976.

[40] V. Zadorozhny, L. Raschid, M. Vidal, T. Urhan, and
L. Bright. Efficient evaluation of queries in a mediator for
websources. In Proc. of the 2002 ACM SIGMOD Intl. Conf.
on Management of Data, pages 85–96, 2002.

[41] Y. Zhu, E. Rundensteiner, and G. Heineman. Dynamic plan
migration for continuous queries over data streams. In Proc.
of the 2004 ACM SIGMOD Intl. Conf. on Management of
Data, pages 431–442, 2004.


