
Buffer Pool Aware Query Optimization

Ravishankar Ramamurthy David J. DeWitt

Department of Computer Sciences,

University of Wisconsin-Madison

Madison,

USA

ravi@cs.wisc.edu, dewitt@cs.wisc.edu

Abstract

With the advent of 64-bit processors, large main

memories are set to become very common. This

in turn translates to larger buffer pool

configurations in database servers. Query

optimizers however, currently assume all data is

disk resident while optimizing queries. This

assumption will no longer be valid when buffer

pools become 100’s of gigabytes in size. In this

paper we examine how data presence in the

buffer pool can affect the choice of query plans

in an optimizer. We examine the possible

benefits of buffer-pool aware query optimization

and propose a generic architecture for

implementing such an optimizer.

1. Introduction

While the basic approach to query optimization has not

changed since 1979 [21], the rest of the environment in

which database systems operate has changed dramatically.

Processors are 1000 times faster. Memories and disks are

1000 times bigger. Query execution techniques have also

improved dramatically with more efficient algorithms,

techniques such as bit-mapped and covering indices,

materialized views, and parallel execution. Improvements

have certainly occurred in optimizers including the use of

histograms to estimate selection cardinalities [20] and

rule-based techniques for rewriting complex queries [12].

However, the basic paradigm of query optimization has

gone unchanged: the optimizer explores a number of

plans, estimating the cost of each, and picks what it thinks

is the best plan, which is then executed. While this

strategy worked very well when the query engines were

not capable of executing queries with more than a couple

of trivial join operators in a reasonable amount of time, it

no longer works very well today with queries involving

dozens of very large tables. There are several

fundamental problems. Foremost is the problem of error

estimation in join cardinalities [13]. Basically, after 1-2

join operators, it is impossible for an optimizer to estimate

join cardinalities accurately. This makes picking the best

join order or join method for subsequent joins in a

complex query essentially impossible. The bottom line is

that our ability to execute increasingly complex queries

over very large data sets has increased at a much faster

rate due to improvements in hardware and software than

our ability to optimize such queries correctly. Over the

last couple of years, several attempts have been made to

improve the state of query optimization. One approach is

a technique known as dynamic query optimization in

which optimization and execution are interleaved [2, 3,

14, 15]. The idea actually dates back to the INGRES [24]

project. Leo [22] represents another approach for

improving query optimization. Here the idea is to use

statistics gathered at run-time to improve the optimizer’s

statistics.

This paper considers another technique for improving the

effectiveness of query optimization. Currently no

optimizer that we are aware of considers the contents of

the buffer pool when optimizing a query. Optimizers

always assume that all tables at the leaves of the query

plan are disk resident, and ignore the contents of the

buffer pool when evaluating alternative execution plans.

Even though it is generally safe to assume there is not

enough main memory to hold the entire database, at any

given point a significant fraction of the active tables may

be memory resident.

Ignoring the contents of the buffer pool while optimizing

queries can cause the optimizer to pick sub-optimal plans.

Consider the following example. Assume a query includes

a selection predicate on a table and assume that there is an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the VLDB copyright notice and the title of the

publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy

otherwise, or to republish, requires a fee and/or special permission from

the Endowment

Proceedings of the 2005 CIDR Conference

unclustered index available on the attribute on which the

predicate is defined. Hence, the optimizer can choose to

either use an unclustered index scan or sequentially scan

the entire table in order to execute the query. Beyond

some threshold value in predicate selectivity, the

optimizer will almost always pick the sequential scan.

However, if the data pages that are actually accessed
when evaluating the predicate are already resident in the

buffer pool, using the index scan will be faster. Data

cached in the buffer pool can also affect other choices

made during query optimization including join ordering

and the selection of a join algorithm.

The cost per MB of main memory has dropped by a factor

of 10,000 over the last twenty years [11]. A rule of thumb

suggested in [10] is that data that is stored on disk today

will be stored in main memory in ten years. Techniques

like vertical partitioning [7][4] may further enhance the

use of large amounts of main memory as a cache for

frequently referenced columns. In this paper we examine

how this trend is likely to affect the way query optimizers

and query engines are architected. The situation we are

considering is not a main memory database system, which

typically assumes that the entire database fits into main

memory. There are several commercial main memory

database products like TimesTen [26] available today.

With storage costs’ decreasing rapidly, one possibility is

that main memory database servers may replace

traditional database servers. We do not think this scenario

is likely. Main memory databases are currently used for

specialized applications where the database size limits can

be guaranteed or as a high-speed cache for a traditional

relational DBMS in web applications. As more non-

traditional data like images and historical data are

incorporated into a database; it will probably not be cost

effective to store the entire database in main memory.

Thus, even though main memory databases are likely to

remain important in certain niche environments, it is

unlikely that they will be used for more traditional

database applications like transaction processing and

decision support.

At the other end of the spectrum, we have traditional

databases that store data using a disk sub-system. Data

pages are cached in a buffer pool as they are read from the

disk sub-system using a suitable replacement policy.

Thus, decreasing storage costs would imply a larger

buffer pool that could cache more pages in memory. In

fact, the “five-minute” rule [11] suggests that data pages

that are accessed every five minutes should be memory

resident. Given storage economics, this interval is likely

to increase. However, just caching more pages in the

buffer pool does not automatically guarantee improved

performance. The goal of this paper is to demonstrate that

adopting a query optimizer that is “buffer-pool aware”

can significantly improve the overall performance of

decision support queries. We are particularly concerned

with exploratory environments where users issue a set of

related queries and interactive response times are critical.

The remainder of this paper is organized as follows.

Section 2 examines how the classical trade-off between

using an unclustered index and a table scan varies as a

function of the contents of the buffer pool. Section 3

extends this analysis to join queries. In Section 4, we

introduce the concept of index pre-execution and outline a

generic architecture for query processing that is “buffer-

pool aware”. The paper then presents its conclusions and

suggests some interesting avenues for future work.

2. Single Table Queries

This section examines how the contents of the buffer

pool can affect access path selection for a single table. In

particular, we examine the choice between using a table

scan and an un-clustered index scan.

2.1 Introduction

Query optimizers use cost functions to evaluate alternate

evaluation plans. In choosing between a sequential scan of

a table and an unclustered index scan this translates to

some cut-off in predicate selectivity (say s0). For

predicates more selective than s0, the optimizer should

choose an unclustered index scan. Otherwise, a

sequential table scan would be selected. An interesting

point to note is that this threshold value is independent of

the contents of the buffer pool. Over the course of

executing queries, a significant number of pages that are

required to answer a query might have become cached in

the buffer pool. The relative performance of the

alternative query plans can change based how many pages

are resident in the buffer pool to the point that the

optimizer can actually pick the wrong plan. In this

section, we examine this problem in detail. Simple

analytical formulae are used to analyze when a buffer

pool aware optimizer is likely to be useful. Experimental

results are then presented to show how buffer pool

contents can affect the relative performance of a

sequential scan vs. an unclustered index lookup.

2.2 Analytical Model

Consider a relation R and assume a hypothetical query

workload that consists of a series of queries with selection

predicates on R. Assume that an unclustered index exists

on the attribute on which the selection predicate is

defined. Thus, two evaluation plans for each query are

possible; one that uses the index and the other that scans

the table. A query optimizer would typically use a cost

function to estimate the cost of each alternate plan and

would pick the plan with the lowest cost. Assuming a

simplistic cost model that considers only the I/O cost, the

relevant parameters are:

• N, the number of pages in the relation R

• Nbuf, the size of the buffer pool in pages

• Tseq, the time to read a page using sequential I/O

• Trandom, the time to read a page using random I/O

Assume that Nbuf < N, i.e. the relation R will not fit

completely in the buffer pool. Consider a query Q and

assume that the predicate selects k records from the table.

Then, the cost of the two alternate evaluation plans is:

Cost of Table Scan (cost1) = N*Tseq

Cost of Index Plan (cost2) = C(k)*Trandom

C(k) represents the Cardenas formula [25] for estimating

the number of page accesses. If there are M records stored

in N pages, the number of pages touched while accessing

k records through an unclustered index is given by:

C(k) = N* (1 – (1 – 1/N)
k
)

Note that this expression is independent of M (the total

number of records in the table). Yao mentions in [25] that

the error involved in using this approximation is

negligible for cases in which the number of tuples per

page page (the blocking factor) is not a small number (say

< 10). This assumption is typically true for pages sizes

used in today’s database systems (4 Kbytes–32 Kbytes).

Moreover this formula is easier to manipulate

mathematically than Yao’s formula.

Traditional optimizers would choose the index plan as

long as cost2 is less than cost1. The cut-off point (in terms

of the number of records accessed) after which the

optimizer would always pick the sequential scan occurs at

the point at which the two cost functions intersect. This

corresponds to the following equation.

N*Tseq = Trandom* C(k).

Denote Tseq/Trandom by d. (Note that d is always less

than 1)

Substituting for C(k) we obtain:

N*d = N* (1 – (1 – 1/N)
k
)

Simplifying, we obtain, k = log (1 –d)/ log (1- 1/N).

This represents the cut-off value in terms of number of

records accessed after which the index scan should no

longer be picked by the optimizer. Denote this value by

k0.

The cost functions used in the calculation above are

independent of the contents of the buffer pool. Next we

consider how the trade-off between the two plans can

change if the optimizer takes into account the data pages

cached in the buffer pool. Consider the following

scenario. Assume that the database system has executed a

number of queries, some of which access table R.

Reconsider query Q. Assume that a fraction f of the pages

holding tuples that satisfy the selection predicate on Q are

already cached in the buffer pool as a result of executing

other queries. The cost functions for the two alternate

plans, given this knowledge would be:

Table Scan (cost1): (N – f * C(k)) * Tseq
1

Index Plan (cost2): C(k) * (1 – f) * Trandom

Consider the cut-off point (in terms of number of records

selected) under these revised cost estimates, after which

the optimizer would pick the sequential scan. Consider the

best scenario for the index scan; in this case all the pages

in the buffer pool could be used to answer the current

query (this can at most be equal to Nbuf). Thus, the cut-

off point can be determined using the following equation:

(N – Nbuf)* d = (C(k) – Nbuf) or,

 N*d + Nbuf (1-d) = N* (1 – (1 – 1/N)
k
)

Simplifying, we get

 k = log ((1-d) * (1 – Nbuf/N)) / log (1-1/N).

Let this value be denoted as k1, which represents the

selectivity value (in terms of the number of records

selected) after which the optimizer would pick the scan

given the knowledge of the contents of the buffer pool.

Consider the expression (k1 – k0).

k1 – k0 = log (1-Nbuf/N)/log (1-1/N).

This is a positive number (recall that N > Nbuf). This

represents the possible selectivity range (in terms of the

number of records selected) in which a traditional

optimizer would pick the scan and in which a “buffer-pool

aware” optimizer would pick the index scan. This

equation shows that there exist cases where the optimizer

could choose the wrong plan unless it has knowledge of

the contents of the buffer pool.

The previous analysis assumed the best case for the index

scan (i.e. all the pages that are needed for the query are in

the buffer pool). Consider the case in which the buffer

pool just contains a random sample of the pages in

relation R. In this case, the fraction of pages required to

answer the current query that can be resident in the buffer

pool can be at most (Nbuf/N) * C(k). The cut-off point in

this case would be determined using the following

equation.

(N – Nbuf) * d = C(k) (1 – Nbuf / N) or,

N*d = N (1 – (1- 1/N)
k
)

1
 For simplicity, we assume that caching does not affect

the sequential bandwidth.

Simplifying, k = log (1-d)/ log (1 – 1/N) which is identical

to k0.

The results from the analytical models ascertain the

following results that are fairly intuitive. Cost models

that reflect the buffer contents are likely to make a

difference when the workload has some definite locality.

For workloads that just have a random footprint, a cost

model that reflects the buffer contents does not provide

any additional functionality. In this paper, we are looking

at decision support applications where the workload is

more likely to have some locality.

These formulae have demonstrated that there is a “grey”

region in which an optimizer that does not exploit

knowledge of the buffer pool contents can pick the wrong

execution plan. However, it may not matter if the relative

execution time between the plans in this region is

negligible. In the following section the actual

performance gains that can be achieved by exploiting

buffer-aware optimization techniques are quantified

experimentally.

2.3 Experimental Results

All the experiments in this paper were performed using a

prototype relational query engine implemented on top of

the SHORE storage manager [5]. The machine used is a

Pentium 2 GHz processor with 1 GB of main memory

running Red Hat Linux (9.0). The 1 GB version of the

TPC-H [27] data suite was used for the experiments.

Shore was configured to use a 500MB buffer pool and a

page size of 16KB. The query used is a selection query on

the Lineitem table. The selection predicate selects tuples

that have been shipped in a 10 day interval (the predicate

is on the l_shipdate attribute and the selectivity is around

0.5%). An unclustered index was built on the l_shipdate

using a SHORE B-Tree. The unclustered index scan plan

sorts the RIDs before fetching them. Table 1 illustrates

how the performance of the index plan varies as a

function of f, the fraction of the data pages containing

tuples that satisfy the selection predicate that are already

in the buffer pool.

 f Index Scan Time (s)

 0 18.78

 0.3 17.64

 0.5 11.92

 0.7 10.39

 0.8 7.77

 0.9 4.73

 1.0 0.80

Table 1: Unclustered Index Scan Performance

800 MB Lineitem table

The time required to execute this query using a table scan

is 17.52 seconds. This time is not significantly affected by

the buffer contents since the predicate selectivity is

around 0.5% and most of the pages of the scan have to be

read from disk. The index scan plan (when the buffer

cache is empty) takes 18.78 seconds. Since this is greater

than the time taken to scan the table, a traditional

optimizer would choose to ignore the index plan. As

shown in Table 1, depending on the value of f, the relative

performances between the two query plans can be quite

substantial. In fact, when more than 50% of the required

pages are in the buffer pool, the optimizer should

definitely choose an index plan. This illustrates how

knowledge of the contents of the buffer pool can provide

a better query plan. Table 1 illustrated the performance of

an index scan plan for an 800 MB version of the Lineitem

table, which does not entirely fit in the buffer pool. The

same experiment was repeated with a 400 MB version of

the Lineitem table in order to examine the trade-off

between a sequential scan and an index scan for a table

that fits in the buffer pool. Figure 1 graphs the ratio of

sequential scan time to index scan time for two different

predicate selectivity values (0.5% and 1%). The crossover

between the index scan plan and sequential scan occurs at

a selectivity of around 0.1%. As a result, a traditional

query optimizer would not choose the index scan plan for

theses cases. As the graph indicates, a buffer pool aware

query optimizer can provide a significant improvement in

performance.

Figure 1: Index Scan Performance

(400 MB Lineitem table)

Index Scan Performance

0

2

4

6

8

10

12

14

0 0.3 0.5 0.7 0.8 0.9 1

Fraction of data pages

cached

S
c
a
n
/I
n
d
e
x
 S
c
a
n

0.5% Selectivity

1% Selectivity

To summarize, through the use of both an analytical

model and an actual implementation, the results of this

section demonstrate that there exist cases in which having

knowledge of the buffer pool contents while optimizing

queries can effect which plan should be chosen. We have

also demonstrated that there are cases where the

alternative plans can have significantly different response

times. In the next section we consider join queries. Then

in Section 4 we describe the architecture of our

experimental optimizer and buffer pool.

3. Multi-Table Queries

In this section we examine how the contents of the buffer

pool can affect access path selection for joins including

both the order in which joins are performed and the

choice of join algorithm.

3.1 Join Ordering

In order to evaluate a join between two tables, one of the

decisions that the optimizer must make is to select an
appropriate join order. Consider a join between two tables

A and B and assume hash join is used as the join

algorithm. Typically the smaller relation is used to build a

hash table in memory and the larger relation is used to

probe the hash table [9]. Let the number of pages in the

corresponding relations be Na and Nb and that Nb < Na.

Assume that the entire table A has been cached in main

memory but that the optimizer, unaware of this fact,

selects B, the smaller of the two, as the ‘build’ relation.

At run time, B would be scanned and a hash table

constructed on it. Then A would be scanned, probing the

hash table of B for matches. The scan of B is likely to

result in pages of A being ejected from the buffer pool. In

the worst case the number of pages that would be read

from the disk for the join would be Na+Nb. However, if

the optimizer had reversed the join order, it would incur

no I/Os while scanning the inner (“A”). Hence, the

number of pages read from disk would be Nb. For a cost

model that uses only I/O costs, the plan with its join order

reversed would be the better plan. In general there is a

trade-off between the I/O costs saved (based on the

fraction of A that is cached) and the additional CPU costs

incurred in hashing the ‘build’ relation (since it is a larger

table).

For example, consider a join between a 400 MB version

of the Lineitem table and the Order tables (around 150

MB). Using our experimental prototype with a 500MB

buffer pool, the execution times for the two alternative

join orderings (using hash join) when the buffer pool is

empty are shown below. The “ORDERS join

LINEITEM” join which uses the smaller relation as the

“build” relation is the better plan.

 LINEITEM join ORDERS 13.77 s

ORDERS join LINEITEM 12.90 s

The corresponding times when the Lineitem table is

entirely in memory are given below.

LINEITEM join ORDERS 5.98 s

ORDERS join LINEITEM 12.47 s

The “ORDERS join LINEITEM” join does not exploit the

fact that the Lineitem table is cached; as the orders table is

scanned, the buffer pool starts replacing pages of the

Lineitem table. As the experiment indicates, data caching

may have an important effect on join ordering.

3.2 Choice of Join Algorithm

Today relational products employ a wide range of join

algorithms such as nested loops, indexed-nested loops,

sort merge join, and hash-based techniques [9]. In

addition, an optimizer can choose to join suitable indexes

(like covering indexes) instead of joining the source

tables. Index structures like join indexes [23] also can be

used to evaluate joins. A join index between two tables A

and B essentially pre-computes the join between the two

tables, and stores the mapping between the pair of

qualifying RIDs as a pair of B-trees. Using a join index it

is possible to evaluate a join between the two tables by

probing the index. An interesting point to note is that the

trade-off between using join indexes and sequential

algorithms (like hash join) for evaluating joins is, in many

ways, similar to the trade-off between using an

unclustered index scan and a table scan for a single table

query. Join indexes will prove to be better than sequential

access algorithms until some threshold value in predicate

selectivity of the “inner” is reached that would limit the

number of probes on the join index. As in the case of

unclustered indexes, sorting the RIDs before fetching the

corresponding tuples is a standard technique for

improving performance.

Figure 2: JINDEX plan

Consider a join query between Lineitem and Orders table

(similar to TPC-H Query 12). The Lineitem table has

predicates defined on a few columns including the

l_receiptdate field. Query 12 requires 4 attributes from the

B-Tree (l_receiptdate)

 Range Scan

Probe Join-Index

 Fetch (Orders)

 Filter

 Fetch (Lineitem)

 Sort RIDs

 Sort RIDs

 B-Tree

 (l_receiptdate)

 Join Index

Lineitem table and 2 attributes from the Orders table.

Assume that the following indexes are available.

• An unclustered index on the l_receiptdate field of the

Lineitem table.

• A join index between the Lineitem and Orders table

on the l_orderkey and o_orderkey attribute.

• Covering Indexes Cov1, Cov2 that include only the

attributes that are needed by this query from the

Lineitem and Orders tables.

With these alternatives there are a number of possible

plans for evaluating the join. The optimizer could use a

sequential algorithm (like a hash join) to join the source

tables or the covering indexes. Alternatively, the
optimizer could decide to use the join index to evaluate

the join. As illustrated in Figure 2, the plan in this case

would begin with an unclustered index scan on the

l_receiptdate field to obtain an initial list of RIDs. Those

tuples that satisfy the remaining predicates on the

Lineitem table are then used to probe the join index to

obtain the RIDs of the qualifying tuples in the Orders

table. These tuples are then fetched. The RIDs gathered

from both indexes are sorted before fetching the

corresponding tuples.

The different plans were executed using the 1 GB version

of the TPC-H suite. The Lineitem table is around 800 MB

and the Orders table is around 150 MB. A 500 MB buffer

pool size was used. With an empty buffer pool the

performance of these plans is shown in Table 2. Hybrid

hash join was used as the join algorithm. These results

indicate that, when available, a traditional optimizer

would likely choose the plan that uses both covering

indexes.

Table 2: Alternate Query Plans

Table 3 presents the response time of the JINDEX plan as

a function of f1 and f2, the fraction of the required pages

from Lineitem and Orders tables, respectively, already

resident in the buffer pool. As these results indicate the
trade-off between two alternative choices to the optimizer

in this example, the JINDEX and the (COV1 join COV2

plan) could change drastically and the optimizer has the

potential to miss better plans.

Table 3: Performance of JINDEX plan

A similar trade-off would exist for other combinations of

algorithms for join evaluation like merge-join and

indexed-nested loops. These results, along with the

experimental results presented in Section 2, demonstrate

that the performance of certain query execution plans

(especially those involving random accesses) can vary

dramatically depending on the actual contents of the

buffer pool; an optimizer that is aware of the contents can
make more informed decisions

4. Buffer Pool Aware Query Optimization

4.1 Introduction

In the two previous sections we demonstrated how data

pages cached in the buffer pool can influence many of the

choices made during query optimization including index

selection, the choice of a join algorithm, and the selection

of which table should be the “inner” table for a join.

Experimental results indicate that an optimizer that

exploits knowledge of the contents of the buffer pool can

result in the selection of query plans with significantly

better performance. In this section, we outline a generic

architecture for query processing that is “buffer-pool

aware”. In this paper, we intend to focus on single table

queries and key-foreign key joins which are an important

class of join predicates.

A buffer pool caches data pages. Given a PID (page ID)

or a particular RID (record ID), it is possible to determine

if the page or record is in the buffer pool. A buffer-pool

aware query optimizer needs to be able to estimate what

fraction of the pages required by a selection or join

operator is resident in the buffer pool. This “estimate”

would ideally, be accurate and have low computation

overheads.

Current optimizers use a “optimize then execute”

paradigm as first proposed by System-R [21]. In this

approach, during the query optimization phase, statistical

estimates of various parameters (derived from pre-

computed structures such as histograms) are used for cost

estimation. Notice that such traditional schemes will not

be effective in our approach as query optimization

Query Evaluation Plan Execution Time (s)

 LINEITEM join ORDERS 28.30

 LINEITEM join COV2 24.68

 COV1 join ORDERS 20.45

 COV1 join COV2 16.53

 JINDEX plan 21.56

 f1 f2 JINDEX plan (s)

 0 0 21.56

 0.4 0 18.07

 0.4 0.4 17.47

 0.6 0 14.16

 0.6 0.6 13.87

 0.8 0 10.62

 0.8 0.8 8.58

 1 0 8.34

 1 1 0.93

requires information that is only available at runtime. The

concept of index pre-execution is proposed as a candidate

solution in the following section.

4.2 Index Pre-execution

In this section, we describe a new technique termed index

pre-execution that can provide accurate estimates on the

effects of caching and then examine if the overheads of

this technique are within acceptable limits. The proposed

solution is based on the assumption that probing indexes

could be an effective technique to gather runtime

information during query optimization.

Given a selection predicate on a relation, it is necessary to

estimate what fraction f of the data pages containing

tuples that satisfy the predicate are already present in the

buffer pool. If a B-tree index is available on the attribute

on which the predicate is defined, one way to estimate this

parameter is as follows. During query optimization, the

appropriate range of the B-tree (corresponding to the

predicate restriction) is scanned to produce a list of

qualifying RIDs (record IDs). Using a RID, it is possible

to verify (by probing the buffer manager) if the

corresponding page is cached in memory. Thus, by using

a list of RIDs that satisfy a selection predicate, it is

possible to accurately estimate the parameter f. Thus,

“pre-executing” a predicate on a B-Tree index can lead to

an improved cost estimate for the select operator during

query optimization.

Consider a join predicate between two relations (A and

B). In order to use cost formulae that reflect the contents

of the buffer pool, it is necessary to estimate what fraction

of the data pages of B containing tuples that satisfy the

join predicate are already present in the buffer pool (the

parameter f2 in section 3). Assume that the optimizer has

already pre-executed a suitable B-Tree index to estimate a

list of candidate RIDs that satisfy the selection predicate

on table A. The optimizer now needs to find the

corresponding set of RIDs of B that qualify the join

predicate. This can be obtained using either of the two

following techniques.

• If a join index were available on the appropriate

attributes of A and B, it is possible to use this list of

candidate RIDs to probe the join index to generate a

list of RIDs of B that would satisfy the join-predicate.

• If an index were available on the join attribute of B

(assume the join predicate is A.a = B.b), we could use

the RID list of A to retrieve the appropriate A.a

values and use these to probe the index on B.b to

retrieve the corresponding RIDs of B.

As, in the previous example, the list of RIDs obtained for

table B would result in an accurate estimate of the

parameter f2. Thus, “pre-executing” a predicate on an

appropriate index can lead to more accurate cost estimates

for the join operator during query optimization. Index pre-

execution is a simple technique that can provide the

optimizer with improved cost estimates (that takes the

buffer cache into account) for different operator trees. The

next step is to examine if the “overhead” of the technique

can be made sufficiently low.

4.3 Experimental Evaluation

In this section, we evaluate the performance of index pre-

execution for selection and join predicates on our

experimental prototype. The buffer pool manager of

SHORE was extended to provide the following interface

bool isCached (RID rid)

This function would return true if the page corresponding

to the input RID was currently cached in the buffer pool.

Selection Predicates: For selection predicates on a single

table, index pre-execution involves the following steps.

The relevant predicate is evaluated only on the index

pages of a B-Tree index to return a set of RIDs that satisfy

the predicate. The RIDs are sorted and “duplicate” (i.e,

belonging to the same page) RIDs are eliminated. The

fraction of these pages that are present in the buffer pool

can now be calculated by using the isCached() function.

The following experiment uses an 800 MB Lineitem

table. An unclustered index was built on the l_shipdate

column. The following table lists the overhead of index

pre-execution (both cold and warm numbers) as a

function of the number of RIDs covered by the selection

predicate.

 RID count Cold Time (s) Warm Time (s)

 1,000 0.11 0.02

 5,000 0.38 0.10

 10,000 0.74 0.21

 25,000 1.66 0.55

 50,000 3.13 1.14

Table 4: Index Pre-execution for selection predicates

The results indicate that index pre-execution for a

selection predicate could be effective either when the

selectivity is low or if the index were memory resident.

But the overhead can be sizable if this were not the case.

For instance the time taken to scan the Lineitem table is

around 17.5 seconds; index pre-execution for 50,000

RIDs (around 1% predicate selectivity) could hence incur

an overhead of nearly 18% which would be prohibitive.

Join Predicates: A buffer-pool aware optimizer must be

able to calculate what fraction of data pages containing

tuples that satisfy a join predicate is currently cached in

the buffer pool. As mentioned in the previous section,

there are two alternative approaches; one that uses a join

index and another that uses a key on the join attribute. We

evaluate the performance of both these techniques. In this

paper we intend to concentrate on key-foreign key joins.

The following experiments consider a join between the

Lineitem table and the Orders table. The indexes

involved in this experiment include a B-Tree index on the

key value of the Orders table and a join index between the

two tables in addition to the unclustered index on the

l_shipdate column of the Lineitem table.

Index pre-execution with a join index proceeds as follows.

A range predicate is evaluated on the unclustered index

(on the l_shipdate column) to produce a set of candidate

RIDs of the Lineitem table. These RIDs are, in turn, used

to probe the join index between the Lineitem and Orders

table to generate the corresponding RIDs of the Orders

table. Note that since the join is between a foreign key

and its associated key, each RID of the Lineitem table

would find exactly one match in the join index. The

fraction of pages is computed from the list of RIDs as

described previously. The following table lists the

overhead of using a join index as a function of number of

RIDs.

 RID count Cold Time (s) Warm Time (s)

 100 0.57 0.012

 250 1.28 0.025

 500 2.52 0.042

 1000 4.67 0.087

Table 5: Pre-execution using join index

Index pre-execution using an index on the join-attribute

(in this case the key value of the Orders table) proceeds as

follows. A range predicate is evaluated on a B-Tree index

to produce a set of candidate RIDs of the Lineitem table.

The corresponding records are fetched to extract the

foreign key value from the tuple, which is, in turn, used to

probe the index on the key value of the Orders table to

generate the corresponding RIDs of the Orders table. The

overhead of this scheme is illustrated in the Table 6.

 RID count Cold Time (s) Warm Time (s)

 100 1.4 0.013

 250 3.05 0.029

 500 5.4 0.055

 1000 9.64 0.11

Table 6: Pre-execution using index on join attribute

As the results in Tables 5 and 6 indicate, the overhead of

index pre-execution for join predicates could be

prohibitive for even a small number of RIDS. This is

mainly due to effect of random I/Os. For each RID from

the Lineitem table, the join index technique requires a

random I/O to probe the JI and the other scheme requires

two random I/Os, one to fetch the foreign key value and

another to probe the index on the key value of the Orders

table. Unless most of these random I/Os are serviced from

the buffer cache (e.g. when the join index is cached in

memory), the overheads are likely to be prohibitive.

4.4 Summary

To summarize, while index pre-execution is a technique

that can provide accurate estimates for the effects of the

buffer pool contents on select and join predicates, its

relatively high cost does not make it practical, especially

for join predicates. The experimental results presented in

Section 2 and 3 indicate that buffer-pool aware

optimization yields the best results when a large

percentage of the required data pages are in memory.

Thus, it is important to make sure that such cases are not

missed during query optimization. Sampling [6] is a

simple technique that can be used to obtain the “big-

picture” efficiently. We next examine how sampling

techniques can be used to enable buffer pool aware query

optimization.

5 Sampling Techniques

Index pre-execution works by probing relevant indexes to

generate a list of candidate RIDs for each table referenced

in the query. These lists are used to infer the effects of the

contents of buffer-pool on various operator trees. Instead

of calculating the entire list of RIDs that satisfy a

predicate, the optimizer can calculate a random sample of

candidate RIDs. Relatively small sample sizes should

suffice to predict important trends (e.g. when most of the

required data pages of a relation are memory resident).

One can consider sampling from indexes if such support

were built into B-Trees. Olken [19] explains how B-Trees

can be extended to support sampling by using the notion

of “random-walks” through the index pages. However

such functionality is not common (and is not available in

SHORE). Moreover, the main problem with index pre-

execution was excessive random I/Os. Thus, we intend to

pre-compute random samples of tables and store them in

main memory in order to eliminate I/O overheads. The

key idea is to store a random sample of the tuples (along

with their RIDs) and to “pre-execute” predicates on the

samples in order to obtain a random sample of RIDs that

satisfy the predicate.

Selection Predicates: Consider a query on a table A with

a selection predicate. Assume that a random sample of

tuples (Sa) from table A have been computed and stored

along with their corresponding RIDs. Hence each sample

in Sa is of the form (tuple, RID). The optimizer can

evaluate the corresponding predicate on Sa and obtain a

random sample of RIDs that satisfy the predicate. If a

sufficient number of samples satisfy the predicate, the

estimates obtained could be close enough to the actual

value that could have been obtained by index pre-

execution.

Join Predicates: Consider a foreign key join between two

tables A and B, let the join predicate be between the

foreign key value in table A and the key value in table B.

Assume that a random sample of (A join B) has been

precomputed, say Sab and stored along with the

corresponding RIDs of the tuples that participate in the

join. Thus, each tuple in Sab is of the form (ARID,

Atuple, Btuple, BRID).

Consider a join query between A and B (join predicate

involving the foreign key value from table A and the key

value from table B) that contains an additional selection

predicate (pred1) on table A. If an index exists on the key

value of table B, one of possible join algorithms is an

index nested loops join that uses the index on table B. In

order to estimate what fraction of the “inner” relation is

cached, a buffer-pool aware optimizer needs to compute a

random sample of RIDs of table B that would join with

tuples of A that satisfy the predicate. The optimizer can

compute this by evaluating the predicate (pred1) on Sab

and projecting the BRID values (stored as part of the join

sample).

This, pre-computation schemes can help the optimizer

compute RID samples that satisfy certain selection and

join predicates. In the following sections, we describe our

prototype system and look at some preliminary

experiments that quantify the accuracy and the overheads

of pre-executing predicates on random samples.

5.1 Prototype Description

In this section, we briefly outline the extensions required

to support RID sampling in our experimental prototype.

Pre-computing Samples: Samples for base tables were

computed by scanning the corresponding table and using

the reservoir sampling algorithm [17]. For foreign key-

key joins (A join B), a sample of the join was obtained by

evaluating (Sa join B), i.e. by joining a random sample of

the foreign-keys with their corresponding key values. The

C random() function was used and was seeded using the

current clock time. The pre-computed samples were

loaded into main memory when the system starts up.

Buffer pool Manager: The buffer manager needs to

support the following two operations in order to facilitate

buffer pool aware query optimization.

1. Given a RID, is the corresponding page currently

resident in the buffer pool? This is implemented

using the isCached() function described in Section

4.3. It is important to ensure that is function is free

from side-effects, in particular isCached() function

should not fetch the corresponding page into

memory; this would bias the random sample and

render the estimates inaccurate.

2. What fraction of the pages of a particular relation is

currently resident in the buffer pool? This value is

used to estimate the cost of a table scan. This can be

obtained by keeping a simple counter for each table.

Query Optimizer: Opt++[16] was used as the optimizer in

our prototype. The version of Opt++ used employs a

dynamic-programming strategy like the System-R

optimizer. Opt++ provides support for basic relational

operators like Scan, Select and Join. To facilitate buffer

pool aware query optimization, a new pre-execute

operator was added to Opt++. Its primary purpose is to

execute predicates on the appropriate samples and

generate RID samples in order to improve cost estimation.

Consider a simple join query between tables A and B;

assume there is a predicate defined on table A and that an

index exists to evaluate it. Before initializing the search of

the plan space, the optimizer would pre-execute the

predicate (defined on table A) on the corresponding

random samples computed for that table in order to obtain

the fraction of the required data pages that are buffer pool

resident. This would, in turn, facilitate using detailed cost

estimates for the index plan (similar to those outlined in

Section 2). The search would then be initialized with the

following nodes

• Scan (Table A)

• Scan (Table B)

• Index Scan (Index on A.attr)

• Pre-execute (A.attr, RID list)

The only difference from the traditional case is the

introduction of the pre-execute node. In the next iteration,

any pre-execute nodes are first expanded. The optimizer

would search for any pre-computed join samples, which

can use the sample of RIDs available in the current pre-

execute node to generate a sample of RIDs for any other

table referenced in the query. In this case, it would

amount to probing the join sample using the sample RIDs

from table A that were generated in the previous iteration

to generate a sample of the RIDs of table B that satisfy the

join predicate. Since joins between a foreign key and key

involve a one-to-one mapping, this operation can be

implemented very efficiently. This sample can, in turn, be

used to estimate the effect of the contents of the buffer

pool on join evaluation. When the remaining nodes (nodes

1 to 3) are then expanded using traditional join

enumeration schemes, the improved estimates can be used

to make more informed decisions. The pre-execute

operator only serves to propagate RIDs as part of the

search process in order to enable improved cost estimates

for other operators (like select, join). It is not included in

the final query evaluation plan. Thus, the optimizer search

strategy can be extended in a simple fashion to enable

buffer pool aware query optimization.

5.2 Experimental Evaluation

In this section, we present some experiments that quantify

the accuracy and overheads of pre-executing predicates on

samples.

Selection Predicates: The selection predicate used is a

range predicate on the l_shipdate column (similar to TPC-

H Query 6). The predicate (“1994-01-01” <= l_shipdate <

“1994-01-11”) spans ten days. Different buffer pools

contents can be simulated by pre-fetching specific sub-

ranges of this predicate into memory. For instance if we

pre-fetch tuples in the range (1994-01-01, 1994-01-06),

this would have nearly 50% of the tuples cached in

memory. A particular run of the experiment, uses 10 such

configurations, by pre-fetching the appropriate range of

tuples (10% - 100%). For each such configuration, the

actual fraction of pages that are cached can be calculated

(say F-Actual). By evaluating the original predicate on the

set of random samples computed for the Lineitem table,

one can predict the fraction of pages that are cached (say

F-Estimated). Table 7 lists the mean of the absolute error

between F-Actual and F-Estimated for different sample

sizes. We report two values; MEAN-ALL estimates the

absolute error for all the configurations while MEAN-

75% estimates the same only for the cases when F-Actual

is greater than 75%. As seen in Sections 2 and 3, these are

the important cases in which a buffer pool aware

optimizer can provide as high as an order of magnitude

improvement in performance. The results are averaged

over 50 runs (each using a different random sample of the

same size).

 Sample Size MEAN-ALL MEAN-75%

 6,000 7.04% 4.60%

 12,000 5.91% 3.50%

 30,000 4.13% 2.57%

 60,000 4.06% 2.39%

Table 7: Sampling for Selection Predicates

The numbers indicate that even for a sample size of 30000

(a 0.5% sample) the error in the difference between F-

Actual and F-Estimated is quite small (within 5% of the

actual value). In fact for the important cases measured by

MEAN-75% (when more than 75% of the required pages

are in memory), even a 0.1% sample (6000 samples)

could suffice. The overhead of evaluating the predicate on

the sample (when the number of samples is 60000) is

around 20 ms which makes it a very efficient technique.

Join Predicates: The join predicate tested is a join

between the Lineitem table and the Orders table. There is

a selection predicate on the Lineitem table which includes

a selection predicate on the l_receiptdate column along

with another predicate on the l_shipmode field (similar to

TPC-H Query 12). A join index was built for this

predicate in order to help simulate different buffer pool

configurations. A particular run of the experiment, uses

10 configurations as in the previous case by issuing a

suitable pre-fetch query that modifies the predicate on

l_receiptdate column and uses the join index to fetch the

corresponding Orders tuples. For each such configuration,

the fraction of pages of the Orders relation that are

actually cached can be calculated (F-Actual). F-Estimated

is calculated by applying the predicates on the samples

from the Lineitem table to generate a random sample of

RIDs and using these to probe the join sample and get the

corresponding tuples of the Orders table (and their RIDs).

 Sample Size MEAN-ALL MEAN-75%

 6,000 11.68% 7.98%

 12,000 9.29% 5.99%

 30,000 5.88% 3.43%

 60,000 4.35% 3.09%

Table 8: Sampling for Join Predicates

Table 8 lists the mean absolute error (MEAN-ALL and

MEAN-75%) between F-Estimated and F-Actual as a

function of sample size and is averaged over 50 runs. For

join predicates, the table shows that a sample of 1% can

provide accurate estimates (within 5%). For the more

important cases (MEAN-75%), a sample of 0.5% ought to

suffice. The overhead of using the 1% sample is again

around 20 ms which makes sampling an attractive

solution.

Space Overheads: To enable efficient sampling, the

optimizer needs to keep the following permanently in

main memory; a random sample of all the base tables and

join samples for all foreign key-key relationships. As

mentioned previously we can avoid duplicating the

foreign key values in the join samples. The space

overhead in caching a 1% sample for the above

experiments (that includes a 1% sample on the Lineitem

table and a 1% sample of the join) is around 10 MB. In

fact, the space overhead in caching a 1% sample for the

entire TPC-H database (including 1% samples for all base

relations and 1% join samples for all foreign key-key

relationships) would only be around 25 MB, which is

certainly affordable. The samples can be maintained in the

presence of updates to the base data using techniques

similar to those outlined in [1].

To summarize, in order to use cost functions that

accurately model the contents of the buffer pool, it is

necessary to resort to dynamic query optimization. By

calculating a random sample of RIDs for each table

referenced in a query during query optimization, it is

possible to obtain an improved knowledge on the effect of

the contents of the buffer pool on selection and join

operators. This would, in turn, facilitate using better cost

estimates while evaluating alternate plans. As the results

indicate, by pre-computing a small random sample that is

kept memory resident (for base tables and key-foreign key

joins), the optimizer has the potential to find better plans

that can provide an order of magnitude improvement in

performance. For instance, for the join query example

discussed in Section 3, the speed-up factor can be as high

as 18. We believe that these initial results are promising;

some possible extensions to our basic framework are

discussed in the next section.

5.3 Extensions

This paper currently assumes that queries are executed

immediately after optimization; hence the estimates

obtained from the samples reflect the runtime conditions

accurately. However it is possible that the state of the

buffer pool could change before the query starts

executing. We intend to study how the optimizer can be

made robust to the transient nature of the buffer pool. One

possibility is to use to notion of choose plans [9]. Let P1

denote the plan the optimizer would have originally

picked and P2 denote the plan a “buffer-aware” optimizer

would choose. The execution plan generated by the

optimizer would be a Choose (P1, P2). The Choose node

would re-evaluate the predicates on the sample and

compare with the F-Estimated values obtained during

query optimization. If these differ considerably then it

would execute P1 instead of P2. This would guarantee

that a buffer pool aware optimizer would never be worse

than a traditional optimizer, which is desirable.

Another possible avenue for future work is to calculate

confidence intervals [6] for the estimates obtained using

sampling. If the confidence is not above a threshold (e.g.

when the number of samples is not enough) the optimizer

can avoid changing plans.

In this paper, we looked at single table queries and single

join queries. As part of future work, we intend to consider

more expressive queries in particular multi-way joins

consisting of key-foreign key predicates. We intend to

build on the join synopses [1] work which pre-computes

samples for such cases. The main difference would be that

the synopses would also need to include the

corresponding RIDs.

6. Related Work

Storage trends are discussed in [10]. The “five-minute”

rule is discussed in [11], which suggests that data pages

accessed every five minutes need to be cached in the

buffer pool. In certain applications it is possible to assume

that main memory is sufficient to hold the entire database,

such applications typically use main memory database

systems. There are several main memory database

products available commercially including TimesTen

[26]. [8] provides an excellent overview of the various

issues involved in main memory database systems.

A general overview of sampling techniques is available in

[6]. Olken [19] examines in detail how sampling can be

incorporated in a database system. While the sampling

techniques suggested in [19] are used to obtain a random

sample of the data values from a B-Tree, we are interested

in obtaining a random sample of RID values that satisfy a

predicate. Index pre-execution for join predicates can be

implemented using join indexes which were first defined

in [23].

In this paper, we present a new case for dynamic query

optimization [15]. The runtime parameter that needs to be

estimated in this case is what fraction of pages required

for a selection or join operator is resident in the buffer

pool. The importance of buffer effects on query

processing has been previously highlighted in [18] where

the authors study how the number of buffers allocated to a

query can affect its performance. In this paper we study

how data previously cached in the buffer pool (as a result

of executing other queries) is likely to affect the choice of

query plans in an optimizer. As far as we can tell, this

paper is the first to propose having a query optimizer

examine the contents of the buffer pool while optimizing

queries.

7. Conclusions

Since the cost of main memory continues to drop rapidly

there is every reason to expect that an increasingly large

fraction of a database’s frequently used indices and tables

will become “permanently” memory resident in the

future. Query optimizers, however, typically assume that

all data is disk resident.

Simple analytical models were first used to demonstrate

that the optimizer could potentially pick the wrong plan

for accessing a single table if the contents of the buffer

pool are ignored. Using the TPC-H data suite, we

experimentally demonstrated that the performance of

certain query plans (especially involving random access)

could vary dramatically based on the actual contents of

the buffer pool; As a result data cached in the buffer pool

could affect many of the choices made during query

optimization including index selection, join ordering, and

join algorithm selection. An optimizer that reflects on the

contents of the buffer pool can result in the selection of

query plans with significantly better performance. This is

especially important in decision support applications

where users issue a sequence of queries and interactive

response times are crucial.

In this paper, we examined the changes required to make

an optimizer ‘buffer-pool’ aware. The basic idea is to pre-

execute predicates on appropriate samples during query

optimization. This would result in improved estimates on

the effects of the contents of the buffer pool on select and

join operators. Our experimental results indicate that

significant performance improvements (as high as an

order of magnitude) is achievable.

8. References

[1] S.Acharya et al. Join Synopses for Approximate

Query Answering. Proceedings of SIGMOD 1999.

[2] G.Antoshenkov Dynamic Query Optimization in

Rdb/VMS. Proceedings of ICDE 1993.

[3] R.Avnur, J.Hellerstein. Eddies:Continuous Query

Optimization. Proceedings of SIGMOD 2000.

[4] P.Boncz, M.Kersten. Monet: An Impressionist Sketch

of an Advanced Database System. Proceedings of

Basque International Workshop on Information

Technology 1995.

[5] M.Carey et al. Shoring up Persistent Applications.

Proceedings of SIGMOD 1994.

[6] W.Cochran Sampling Techniques. John Wiley &

sons Inc. 3
rd
 edition 1977

[7] G.Copeland, S.Khosefian A Decomposition Storage

Model. Proceedings of SIGMOD 1985.

[8] H.Garcia-Molina, K.Salem Main Memory Database

Systems: An Overview. TKDE 4(6):1992

[9] G.Graefe Query Evaluation Techniques for Large

Databases. ACM Computing Surveys 25 (2): 1993

[10] J.Gray, P. Shenoy Rules of Thumb in Data

Engineering. Proceedings of ICDE 2000.

[11] J.Gray, G.Graefe The 5-minute rule revisited and

other storage rule of thumb ACM Sigmod Record

26(4):1997

[12] L.Hass et al. Extensible Query Processing in Starbust.

Proceedings of SIGMOD 1989.

[13] Y.Ioannidis, S.Christodoulakis On the propagation of

errors in the size of join results. Proceedings of

SIGMOD 1991.

[14] Z.Ives et al. An adaptive query execution system for

data integration. Proceedings of SIGMOD 1999.

[15] N.Kabra, D.DeWitt Efficient Mid-Query Re-

Optimization of sub-optimal query execution plans.

Proceedings of SIGMOD 1998.

[16] N.Kabra, D.DeWitt Opt++: An Object Oriented

Implementation for Extensible Query Optimization.

VLDB Journal 8(1):1999

[17] D.E.Knuth The Art of Computer Programming (vol

II). Addison Wesley Inc. 1969

[18] L.Mackert, G.Lohman R* Optimizer validation and

performance evaluation for local queries. Proceedings

of SIGMOD 1986.

[19] F.Olken Random Sampling from databases (PhD

Thesis) 1993

[20] V.Poosala et al. Improved Histograms for Selectivity

Estimation of Range Predicates. Proceedings of

SIGMOD 1996.

[21] P.Selinger et al. Access path selection in a relational

database system. Proceedings of SIGMOD 1979.

[22] M.Stillger et al. LEO- DB2’s Learning optimizer.

Proceedings of VLDB 2001.

[23] P.Valduriez Join Indexes. ACM TODS 12(2):1987

[24] E.Wong, K.Youssefi Decomposition- A Strategy for

query proceesing. ACM TODS 1(3): 1976

[25] S.B.Yao Approximating block accesses in database

organizations. CACM 20(4): 1977

[26] Times Ten White Paper. www.timesten.com

[27] TPC-H benchmark specification. www.tpc.org

