
 1

Action-Oriented Query Processing for Pervasive Computing

Wenwei Xue Qiong Luo

Department of Computer Science
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon
Hong Kong, China

{wwxue, luo}@cs.ust.hk

Abstract

Pervasive computing applications monitor
physical-world phenomena and integrate data
acquisition, communication and actions across
small, heterogeneous devices (e.g., smart
sensors, network cameras and handheld devices).
To ease the development of these applications,
we propose to perform their tasks by executing
action-embedded queries, which are continuous
queries with operations towards devices. We
extend SQL to allow applications to specify
actions and action-embedded queries. We treat
actions as first-class citizens (operators) in query
execution plans, and investigate adaptive, cost-
based optimization techniques for a single query
as well as for multiple queries. We evaluate our
prototype query processor, Aorta, using a
pervasive lab monitoring application. The initial
experimental results show that Aorta ensures
correct application semantics, improves query
response time and balances device workload.

1. Introduction

In pervasive (or ubiquitous) computing [26], various
kinds of networked computing devices are embedded or
mobile in the physical world and interact with the world
seamlessly. For instance, a pervasive video surveillance
application automatically operates a number of remotely
controllable cameras for security monitoring in a building.
Involving data acquisition, communication, as well as
operations on physical devices (actions), pervasive

computing applications are usually difficult to develop
and optimize. In this paper, we study how to utilize
database-style query processing to facilitate the
development and optimization of pervasive computing
applications.

First, we propose to use SQL to develop pervasive
computing applications, since the declarative nature of
SQL queries eases application development and allows
for performance optimization. Recent work including
Cougar [3][4][27] and TinyDB [17] has pioneered this
approach by treating devices and sensor nodes as virtual
tables and data from these devices as relational tuples.
Furthermore, user-defined functions and stored
procedures are prevalent in pervasive computing
applications because actions on devices often have to be
programmed in a language other than SQL. Therefore,
we extend SQL to specify continuous queries embedded
with device actions, which we call action-embedded
queries. Correspondingly, we call our action-oriented
query processor Aorta.

Next, we explore opportunities for optimization of
action-embedded queries in Aorta. This optimization is
necessary because action-embedded queries are concerned
with physical-world events (e.g., object movement),
which may be transient. Therefore, the response time of
an action-embedded query determines if an event is
caught in time. Furthermore, there may be many devices
available for executing a single action and the
performance can be optimized by selecting a suitable
device. This device selection is appropriate for the
application semantics in pervasive computing, where it is
sufficient for one or a few available devices (as opposed
to all devices) of the same type to respond to one event.
For instance, it is sufficient for one camera or a few
cameras in a lab to take a photo of a location of interest
upon an event; it is unnecessary to have all available
cameras take photos of the location at one point in time.

To select devices for actions, we adapt the traditional
cost-based query optimization [22] for actions.
Apparently, suitable cost metrics may vary from
application to application in pervasive computing, such as

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment.
Proceedings of the 2005 CIDR Conference

 2

response time, power consumption, and quality of action
effect. As a first step, we define the cost metric to be the
response time, a relatively general one. To estimate the
cost of an action, we define a set of atomic operations
with estimated costs and abstract the composition of
actions in terms of atomic operations.

There are two unique, intertwined challenges for cost-
based optimization of actions. First, the current physical
status of a device may affect the cost of an action on the
device. For instance, some actions (e.g., pan, tilt and
zoom) on a PTZ (pan/tilt/zoom) network camera involve
the movement of the camera head. As a result, the
starting head position of a camera affects the cost of
moving the head of the camera to a target location.
Moreover, the execution of an action takes more time on a
busy camera than on a less busy one. In some cases, an
extremely busy camera may malfunction and fail to finish
the execution of an assigned action. Second, an action
may have side effects that change the physical status of a
device. Take the PTZ cameras as an example again.
After an action is executed on a camera, the head position
of the camera may change, which in turn changes the cost
of the subsequent action execution on this device.

Given these two challenges, adaptive query processing
[15] is essential for action-embedded queries in pervasive
computing, where the environment is dynamic and delays
and failures of devices are common. Consequently, we
interleave the optimization and the execution of an action-
embedded query in an adaptive, cost-based manner:
Whenever an execution of a query is triggered, our query
processor examines the current physical status of the
candidate devices, estimates the cost, and selects the best
device to execute the action. This adaptation occurs in
every execution of an action-embedded query so that the
cost estimation of the action is up-to-date and the cost of
the actual execution is optimized.

Optimization becomes more complex when multiple
action-embedded queries that have the same embedded
action are running concurrently in the system. In this
case, we can perform group optimization, in which
multiple action requests from different queries are
grouped and assigned to available candidate devices in a
batch. We define an action request as the request from a
query for the execution of an action with instantiated
input parameter values for the action. Furthermore, cost
estimation must be done dynamically in the process of
group optimization due to the side effects of actions. We
have developed two simple but effective algorithms for
group optimization of action-embedded queries in Aorta.

There are many interesting systems issues in building
an action-oriented query processor for pervasive
computing, most prominently, data communication and
device synchronization. In this paper, however, we focus
on query processing in Aorta because this is the core
technology of a database approach to the development
and optimization of pervasive computing applications.

We have developed an action-enabled monitoring
application with our Aorta prototype system for the
pervasive lab in our department. The pervasive lab was
established for accommodating cross-area research
activities as well as undergraduate final year projects on
pervasive computing. It has rack-mounted PC servers,
desktops with removable hard disks, and various devices
such as sensors, cameras, phones, and PDAs. Faculty,
students and other personnel with access permission can
enter the lab anytime using their university ID cards
(smartcards). Due to the diversity and dynamic nature of
the lab, the action-enabled monitoring application is
highly desirable for safety, security and management
purposes. We use this application as an illustrative
example throughout the paper.

The remainder of this paper is organized as follows.
We describe the overall Aorta system architecture in
Section 2. We briefly introduce our SQL extension for
actions and action-embedded queries in Section 3. In
Section 4, we present our optimization and execution
techniques for action-embedded queries in detail. In
Section 5, we evaluate these techniques using the
pervasive lab monitoring application. We discuss related
work in Section 6 and conclude our paper in Section 7.

2. System Architecture

The Aorta system consists of three major layers, as
illustrated in Figure 1.

sensors cameras cell phonesPDAs

Application 1 Application 2 Application 3

PCs

Uniform Data Communication Layer

Action-Oriented Query Processing Engine

Declarative Interface for Actions and Queries
A
O
R
T
A

A
O
R
T
A

Figure 1: Three-layer illustration of Aorta

(1) A declarative interface that allows pervasive
computing application programmers to specify actions
towards heterogeneous devices through simple,
declarative action-embedded queries. This interface
alleviates the problem of programmers having to handle
various programming APIs for specific types or models of
devices. We extend the SQL language to capture action
semantics and provide a library of system built-in
methods (actions) for accessing and operating devices.

(2) A uniform data communication layer across
heterogeneous devices. This layer ensures that the Aorta

 3

system, not the individual applications, is responsible for
monitoring and tuning the current network infrastructure
and the physical settings of the devices. Similar to the
Ingress and Caching modules in TelegraphCQ [7], this
layer handles heterogeneous networking protocols and
provides a dynamic, logical view of the networked
devices for applications. This abstract view shields the
lower-level implementation issues, such as data
transmission loss, action failure and resource consumption
on devices to enables the applications to focus on the real-
world semantics of their tasks.

(3) An action-oriented query processing engine for
queries involving actions. This engine is the core of our
framework. Given the specifications of action-embedded
queries received by the declarative interface and the
facilities provided by the communication layer, the engine
is responsible for generating, optimizing and executing
action-embedded query execution plans. It interacts with
the communication layer to adapt to device capacities and
network loads. It also provides mechanisms to reduce
device contention and to avoid malfunctioning devices.

In the remainder of this paper, we mainly present the
top two layers in Figure 1.

3. The Declarative Interface

In this section, we describe the syntax and semantics of
the query language provided by the Aorta declarative
interface. We extend SQL to handle device actions and
call our query language AortaSQL. The three main
commands of AortaSQL are CREATE, DROP, and
ALTER. They can be used for either actions (ACTION)
or action-embedded queries (AQ).

Actions in Aorta are system-provided or user-defined
methods/functions that operate devices. For a user-
defined action, the user must pre-compile the code of the
action into a dynamically linked library, and use the
command CREATE ACTION to register the action along
with an action profile to Aorta. An action profile is an
XML text file that describes the high-level semantics of
the action (more details will be discussed in Section 4).
The following is an example of registering a user-defined
action, which directs a programmable cell phone to ring.

CREATE ACTION ring(String phone_no)
AS “admin/lib/ring.dll”
PROFILE “admin/profiles/ring.xml”

An application can use the DROP command to drop an
action that it has registered before:

DROP ACTION action_name
Both the executable and profile of the action will be
removed.

The semantics of actions in pervasive computing are
widely diversified. As the first step in investigating
action-oriented query processing for pervasive computing,
we currently consider only single-device actions (actions
that involve a single device of some type). For multi-
device actions (actions that involve multiple devices of

various types), the coordination among the multiple
devices involved in an action may be sophisticated, which
makes the optimization of such actions more difficult.
The extension of Aorta for handling multi-device actions
is one direction of our ongoing work.

After an action is registered to the system, applications
can then specify and register queries with the action
embedded. Figure 2 shows the syntax of the CREATE
AQ command, which defines an action-embedded query
and registers the query to the system.

Figure 2: The CREATE AQ command in AortaSQL

The specification of an action-embedded query in
AortaSQL appears to be an ordinary continuous query
with a name and the optional START, STOP, LIFETIME
and INVOCATION clauses. Considering that pervasive
computing applications are often time-related, we
designed a number of timer clauses. The START and
STOP clauses specify when a query should start or stop.
The LIFETIME clause describes how long the query will
be kept in the system.

Aorta provides a set of system built-in variables and
Boolean timer functions. Examples of system built-in
variables include $now, $never, $forever, and $once.
Examples of system-provided Boolean timer functions
include every(interval_length, time_unit), inTimeInterval
(start_time, end_time), and atTime(hour, minute, second).
These variables and timer functions can be used in the
WHERE clause as well as in the START and STOP
clauses. The default conditions of the START, STOP and
LIFETIME clauses are $now, $never and $forever.

The main difference between an action-embedded
query and an ordinary continuous query is in the
select_list, where an action may appear. Whenever the
query condition is satisfied, the action is executed and the
number of times of the execution is determined by the
optional INVOCATION clause. This clause specifies
how many times the embedded action is invoked
whenever the query condition is satisfied. The default
value in the clause is one. Applications can set the value
in this clause to be an arbitrary number N or a system-
provided variable $all, which means that the action will
be invoked up to N times or on all candidate devices
whenever the query condition is satisfied. Since the
execution of an action is neither restricted to a specific
device nor required on all candidate devices, this

CREATE AQ aq_name AS
SELECT select_list
FROM device_table_list
[WHERE where_condition]
[GROUP BY groupby_list]
[HAVING having_condition]
[START start_condition]
[STOP stop_condition]
[LIFETIME lifetime]
[INVOCATION num_invocations]

 4

application semantics increases the reliability of action
execution, saves system resources and creates
opportunities for query optimization.

Putting these language constructs together, Figure 3
shows an example query, night_surveillance, for the
pervasive lab monitoring application in AortaSQL.

Figure 3: The night_surveillance example in AortaSQL

In this example, the action photo(camera_ip, location,
directory_name) operates the network camera with an IP
address camera_ip to move its head to the direction
pointing to location and take a medium-size photo; and
then stores the photo to the directory directory_name.
The file name will be dynamically assigned by the camera
using the current system date and time. The action
sendphoto (phone_no, file_name) first converts an image
file named file_name into the format for phone display
and then sends the converted image to the phone with a
phone number phone_no. As illustrated in this example,
action nesting is supported in Aorta to enable complex
interactions between devices. The constraint s.accel_x >
500 in the query condition monitors the physical-world
events of interest (e.g., someone pushes the door). The
candidate cameras and phones are specified by the
constraints coverage(c.id, s.loc) and p.owner = “admin”.

Action-embedded queries are “backward-compatible”
with ordinary continuous queries and snapshot queries.
This compatibility is intuitive, since data acquisition is
essentially a trivial type of action. For instance, if there is
no action in the select_list, a CREATE AQ command
creates a traditional continuous query. Furthermore, if the
LIFETIME of an AQ is specified to be $once, this AQ is a
snapshot query that executes only once during its lifetime.

Finally, we give examples of the ALTER AQ and
DROP AQ commands, which modify and remove pre-
defined action-embedded queries, respectively. The
following command stops a query immediately:

ALTER AQ aq_name SET STOP $now
If the application that defined a query does not need the
query any more, it can use the following command to
remove it from the system:

DROP AQ aq_name

4. Action-Oriented Query Optimization
and Execution

Based on the application semantics for action-embedded
queries, in this section we present our action-oriented
query processing techniques using a simple example (see
Figure 4). This snapshot query is a simplification of the
night_surveillance example in Figure 3. In spite of its
simplicity, this query is sufficient for illustrating the main
design approach of our query optimizer and the related
issues. This example is also used for performance
evaluation in our experiments.

Figure 4: The snapshot query

4.1 Query Plan Generation and Execution

We have implemented a preliminary query operator
framework in Aorta. Most of the query operators are
relational, e.g., selection, projection and join operators,
since data in Aorta are all in the form of relational tuples
even though the attributes can be of less traditional data
types, such as images.

Different from a traditional query optimizer, Aorta
makes actions operators in query execution plans. An
action operator contains the name, the input parameters,
and the code block of the method to be executed. Figure
5 illustrates the query plan of the snapshot query in Figure
4. For simplicity, projections are omitted.

sensor camera

σσσσs.accel_x > 500

coverage(c.id, s.loc)

photo(c.ip, s.loc, “photos/admin”)

Figure 5: Query plan of the snapshot query

The execution flow of this query plan is as follows:
First, the sensor virtual table is scanned and filtered to see
if there are sensors that detect an x-axis acceleration rate
larger than 500. When a sensor tuple is pushed from the
sensor scan operator, it is used to join (probe) the camera
virtual table to find cameras whose view ranges cover the
sensor’s location. Finally, the IP addresses of these
cameras and the location of the sensor are passed to the
action operator, which selects one suitable camera to take
the photo.

Similar to the sensor and the camera scan operators in
this query plan, for each type of device involved in Aorta,
a scan operator is provided by the uniform

CREATE AQ night_surveillance AS
SELECT sendphoto(p.no, photo(c.ip, s.loc,
 “photos/admin”))

 FROM sensor s, camera c, phone p
 WHERE s.accel_x > 500
 AND coverage(c.id, s.loc)
 AND p.owner = “admin”
 START atTime (0, 0, 0)
 STOP atTime (6, 0, 0)

CREATE AQ snapshot AS
SELECT photo(c.ip, s.loc, “photos/admin”)
FROM sensor s, camera c
WHERE s.accel_x > 500
AND coverage(c.id, s.loc)

 5

communication layer for the query processor to access the
corresponding virtual device table. The function
coverage() is provided by the Aorta system. It shields
applications from the change of the specific geographical
location system adopted by Aorta.

In this query plan, the smart sensors are the triggering
devices, which keep on sampling real-time values of the
accel_x attribute with a system-tuned sampling period.
Due to the asynchronous nature of event occurrence, a
push queue is required to connect the sensor scan operator
to its upstream operator. In comparison, the triggered
devices on which the action is executed, i.e., the cameras
in this query plan, need a traditional pull queue for the
camera scan operator. We have implemented both types
of queues in our query processing framework.

From this simple example we observe that, due to the
event-driven nature, the execution flow of a single action-
embedded query plan in Aorta is usually quite fixed.
Consequently, there is little space for traditional plan
enumeration [22], since the positions of operators in a
query plan cannot be switched. Furthermore, different
from traditional user-defined functions, it is generally
unintuitive or impossible to push down an action operator
in a query plan, because the action must know the values
of all its input parameters before it can execute.

Even though the reordering of operators in an action-
embedded query plan is unlikely, we can optimize
individual actions for their efficient execution. More
specifically, upon an event we can select the best device
for an action operator, since there are usually multiple
candidate devices for executing the action and the default
application semantics is to execute the action only once.
This optimization of action operators is similar to
selection/projection/join method selection in traditional
query optimization. The major difference is that in
pervasive computing we need to consider the physical
status of devices when optimizing actions.

In the following, we present the action-oriented query
optimization and execution techniques we have designed
and implemented in our Aorta query processor. For
simplicity, we say “a type of device” in short for “a type
or model of device”.

4.2 Cost Estimation Model for Actions

As we take a cost-based approach for the optimization of
actions, an immediate problem is how to estimate the cost
of an action to be executed on a specific device. We
believe that the optimizer should be able to seek
optimization opportunities for an action in a general way
without knowing the implementation details of the action,
no matter whether the action is system-provided or user-
defined. Therefore, we propose a generic cost model for
actions.

The cost model for an action includes the following
components: (1) a set of atomic operations on the type of
device that this action involves, (2) the estimated costs of

the atomic operations, (3) a grammar for specifying the
composition of the action, (4) the profile of the action,
and (5) the formulas for estimating the cost of the action.
All components are system-provided except for (4), which
is provided by the application that registers the action.
We describe these five components in order.

Atomic Operations. For each type of device
involved in Aorta, we define a set of atomic operations
that the devices can execute. Examples of such atomic
operations include: “take a photo of a specific size (small,
medium or large)”, “turn the head by one degree in a
specific direction (up, down, left or right)”, and “zoom in
(or out) one level” for cameras; “receive a photo (or a text
message) of a specific size” for phones; “beep once” and
“blink once” for sensors; and “establish a connection” for
all types of devices. As the name suggests, the atomic
operations are the basic, non-dividable units of actions.

Estimated Costs of Atomic Operations. We use a
number of homegrown testing programs to measure the
estimated cost of each atomic operation for each type of
device by executing the operation repeatedly. Each
estimated cost is the average of one hundred independent
runs. These estimated costs of atomic operations are
stored as part of the device profiles and managed by the
uniform communication layer. Our tests show that an
atomic operation has almost the same estimated cost on
devices of the same type.

We currently measure the cost of an atomic operation
in terms of response time: the time required to execute the
operation. The cost of an action execution on a device is
defined in the same way. Other cost metrics may be more
meaningful for some atomic operations, such as power
consumption for sensor beeps and price for phone calls.
We choose response time because it is a general cost
metric and is suitable for a large number of atomic
operations on various types of devices. In addition, no
matter what cost metric is chosen in our model, the
methodology for cost estimation is similar. It is very easy
to extend our cost model to adopt different cost metrics
for different actions, or to use a weighted combination of
multiple cost metrics for an action.

As an example, for the AXIS 2130(R) PTZ network
cameras [2] we used, we have defined atomic operations
and estimated their costs as listed in Table 1.

Table 1: Estimated costs of atomic operations for AXIS
2130(R) PTZ network cameras

Atomic
Operation

Estimated Cost
(milliseconds)

Pan (per degree) 13

Tilt (per degree) 14

Zoom (per level) 0.36

Connection 110

Take a Small-Size Photo 30

Take a Medium-Size Photo 40

Take a Large-Size Photo 50

 6

Action Composition. Based on the atomic operations
on devices, we define the composition of an action using
the following grammar:
action := operationSequence
operationSequence := operationUnit(& operationUnit)*
operationUnit := operationSequence | operationSet |
 operation
operationSet := operationUnit (|| operationUnit)*
operation := atomicOperation (& atomicOperation)*

In the grammar, the symbol "&" stands for sequential
execution and "||" for parallel execution. An action in
Aorta is an operationSequence and an operationSequence
is a number of operationUnits executed sequentially. An
operationUnit in turn can be an operationSequence, an
operationSet, or an operation. An operationSet consists
of a number of operationUnits that are executed in
parallel.

Finally, an operation is defined as the sequential
execution of a number of identical atomic operations. In
other words, an operation is to execute the same atomic
operation multiple times sequentially. Our consideration
for the identical-atomic-operation constraint is to make
the composition of an operation as simple as possible and
to leave more complex relationships among operations to
the nesting of operationSequence and operationSet.

Action Profiles. Instead of inquiring about the low-
level implementation details, Aorta requires applications
to provide the high-level semantics of an action via an
action profile. An action profile is an XML file that
contains the following information about an action: (1)
the name, input parameters, and involved device of the
action and (2) the composition of the action. The DTD
(Document Type Definition) of an action profile is similar
to that specified in the grammar for the composition of an
action.

As an example, Figure 6 shows a fragment of the
action profile of the system-provided action photo(). The
composition of the action is illustrated in Figure 7. For
simplicity, operationUnit is omitted in Figures 6 and 7.

This action profile specifies the following information
to the Aorta query optimizer:

(1) The action name is photo and it is towards the
AXIS 2130(R) PTZ network cameras.

(2) The action has three input parameters, denoted as
$camera_ip, $location, and $directory_name, in order.

(3) The action consists of a sequence of operations and
operationSets, which in turn consist of connect,
takeMediumSizePhoto, and a set of pan, tilt , zoom atomic
operations.

(4) The pan, tilt, zoom operations are executed in
parallel. The system-provided functions deltaPan(),
deltaTilt() and deltaZoom() (the latter two are not shown
in Figure 6) are used to compute the numbers of pan, tilt,
zoom atomic operations needed on a candidate camera
based on the current head position of the camera, the
value of the $location input parameter of the action, and
the geographical location system that Aorta adopts.

Figure 6: Action profile of the photo() action

operation operationSet

operationoperation operationconnect

pan tilt zoom

operation

takeMediumPhoto

operation

connect

operationSequence

& &&

& &&

&

||

&

||||

&&

Figure 7: Composition of the photo() action

Cost Estimation Formulas for Actions. With the
four pieces of information (the set of atomic operations,
their estimated costs, the grammar for specifying action
composition, and the action profile), the query optimizer
is ready to estimate the cost of an action execution on a
candidate device using the following cost estimation
formulas ((1)-(4)):

equenceoperationSaction C C = (1)

_i

N

1i
nitoperationUequenceoperationS C C ∑=

= (2)

)C(MAX C nit_ioperationU

N

1i
etoperationS

=
=

 (3)
number* C C ationatomicOperoperation = (4)

The calculation of these formulas is straightforward.
The estimated cost of an action Caction is equal to the
estimated cost of the top level operation sequence
(Formula (1)). The estimated cost of an operation
sequence CoperationSequence is equal to the sum of the
estimated costs of its operation units (Formula (2)). Since
we use response time as the cost metric, the estimated cost
of an operation set CoperationSet is the maximum estimated
cost of individual operation units in the set (Formula (3)).

<actionProfile>
 <name>photo </>
 <params>
 <1>$camera_ip</>
 <2>$location</>
 <3>$directory_name</>
 </params>
 <device>AXIS 2130(R) PTZ Network Camera</>
 <operationSequence>
 <operation>
 <atomicOperation>connect</>
 <number>1</>
 </operation>
 <operationSet>
 <operation>
 <atomicOperation>pan</>
 <number>deltaPan($location)</>

 7

Finally, the estimated cost of an operation Coperation is
equal to the total cost of the number of atomic operations
it contains (Formula (4)). In Formula (4), CatomicOperation
represents the estimated cost of an atomic operation on a
type of device.

4.3 Cost-Based Optimization of a Single Query

Given the cost model for actions, we now describe how
our optimizer works for the optimization of single action-
embedded queries.

We continue to use the snapshot query in Figure 4 as
the example. Suppose for an execution of this query,
there are totally N candidate cameras for the action, and
the optimizer is about to select one from them. The
optimizer first connects to the candidate cameras in
parallel and examines the current physical status of the
devices, e.g., the current head position (the pan, tilt and
zoom values) for the cameras. A TIMEOUT value is set
to break connections to unresponsive devices. In our
current implementation, the TIMEOUT value is set to be
twice the estimated connection time for the type of
device. We will see in Section 5 that this value worked
well in practice. When the optimizer has received the
responses from all of the cameras or the TIMEOUT limit
is reached, this connection process ends.

From the composition of the photo() action (more
specifically, the involved atomic operations) specified in
its profile, the optimizer knows that the cost of a photo()
action on a camera is mainly affected by the current head
position and the network connection delay of the device.
Note that for actions on different types of devices, the
action cost may depend on different types of device
physical status. As other examples, the current location of
a robot affects the cost of moving it to a target location;
and the depth of a sensor node in a multi-hop wireless
network affects the cost of connecting the node.

We design the optimizer to poll the candidate devices
for their current physical status due to the dynamic and
unreliable nature of the device networks – physical
devices in pervasive computing may join, move around or
leave the network in a way unpredictable by the system.
Cell phones, for example, may be turned on/off anytime
and may become temporarily unavailable when moving
into an area where no signals are received. Furthermore,
it is possible that some devices also run applications that
are not built on top of Aorta, which makes it difficult for
our system to accurately keep track of and predict the
current workload of the devices.

After getting sufficient information about the current
physical status of the candidates, the optimizer begins to
select one of them to execute the action. If all candidates
seem to be unavailable (i.e., all connections are timed
out), the optimizer will sleep for a while and then repeat
the connection process to seek more candidate devices to
execute the action. The optimizer gives up after repeating

the connection process three times and an error message is
returned to the application.

If things go well and M out of the N cameras are
available to execute the action (i.e., their responses to the
connection requests are received within the TIMEOUT
limit), then for each camera i of these M cameras, the
optimizer computes its estimated cost Ci to execute the
action using the following formula:

Ci = MAX (| Pti – Pni |∗ Cpan , | Tti – Tni |∗ Ctilt ,
 | Zti – Zni |∗ Czoom) + 2 ∗ Cconnection_i
 + CtakeMediumSizePhoto (1 ≤ i ≤ M)
Here Pni, Tni, Zni are the current pan, tilt and zoom

values of candidate camera i. Pti, Tti, Zti are the target pan,
tilt and zoom values specific to camera i corresponding to
the sensor’s location, which are computed in the
deltaPan(), deltaTilt() and deltaZoom() functions,
correspondingly. Cpan, Ctilt and Czoom are the estimated
costs of the pan, tilt, zoom atomic operations for this type
of camera. The numbers of these atomic operations
needed on camera i are | Pti – Pci |, | Tti – Tci | and | Zti –
Zci | respectively, which are the output of the delta
functions. Cconnection_i is the connection cost of camera i
recorded by the optimizer in the initial connection
process. CtakeMediumSizePhoto is the estimated cost of taking a
medium-size photo. The optimizer will select the camera
with the least Ci value to execute the action.

In the formula, the reason we use Cconnection_i instead of
the estimated cost Cconnection of the connection atomic
operation for this type of camera is that cameras with a
light workload are able to respond within the TIMEOUT
limit but their connection time will be longer than those
that are currently free. This is the way the optimizer
estimates the current workload on candidate devices: a
heavily-loaded device is very likely to require more time
to respond to a connection request. As simple as it looks,
this method is effective in practice.

The case that the query requires N executions of an
action instead of only one can be optimized in a similar
way. The optimizer sorts the candidate devices in the
increasing order of the estimated cost for executing the
action and picks the top N ones of them.

4.4 Grouping Multiple Action-Embedded Queries

Having considered selection of devices for an execution
of a single query, we proceed to consider group
optimization of multiple action-embedded queries. Group
optimization in Aorta mainly focuses on balancing action
workload on devices to improve system performance and
to prevent device overloading.

In Aorta, we make queries that have the same
embedded action (the functions are the same, but the input
parameter values may be different) share a single action
operator across their query execution plans. Each query is
connected to the shared action operator by its own push-
based output queue. We add the query ID to the output
tuples of the query before they are passed to the shared

 8

action operator so that the operator knows which tuples
are from which query. Sharing an action operator among
multiple queries saves system resources and gives the
optimizer a global view of the current system workload of
an action. Instead of being optimized separately without
any synchronization among them, multiple queries that
have the same action are now grouped and optimized as a
whole in the optimizer.

Figure 8: The algorithm for action workload assignment

Figure 9: The algorithm for prioritizing and servicing
multiple action requests on a single device

It is expected that Aorta, as a pervasive query
processor, will always have a large number of queries
running concurrently. In this scenario, multiple action
requests from different queries may appear in a shared
action operator at the same time or within a short time
interval. In order to improve device utilization and query
response time, we design and implement two algorithms
to distribute multiple simultaneous action requests to
available devices and to service these requests in an
optimized order. These two algorithms are presented in
Figure 8 and Figure 9.

The goal of the two algorithms is to minimize the
maximum completion time of the set R of action requests
(the interval between the time these requests appear in the
shared action operator and the time all of them have been
serviced) on the group of available devices D. This
problem is similar to the classic makespan minimization
problem [5] in scheduling theory that deals with unrelated
parallel machines with sequence-dependent job setup time
and machine eligibility restrictions. As the original
problem is known to be NP-hard in general, we design
and implement our own greedy algorithms.

Algorithm 1 assigns the action requests to the
available devices with a goal of balancing workload
among the devices. Note this algorithm is for request
assignment only; a request that is assigned to a device is
queued and is not serviced immediately. The heuristic for
assignment is the number of candidate devices of each
action request. More specifically, the algorithm starts
with the request that has the least number of candidate
devices, and assigns the request to the candidate device
that will have the minimum estimated total workload if
this request is serviced on the device. It then goes on to
assign the request with the next least number of candidate
devices until it finishes the assignment of all requests to
devices. If two requests have the same number of
candidate devices, the algorithm assigns the two requests
in a random order.

After Algorithm 1 assigns a group of requests to a set
of devices, for each device, Algorithm 2 prioritizes and
services the requests that have been assigned to the
device. The heuristic in Algorithm 2 is to service the
request that has the least estimated cost in the current
physical status of the device. As the execution of an
action may change the physical status of a device, the
physical status of the device is updated after selecting
each request for the device to service.

The performance of these two algorithms is related to
the system-defined grouping time interval T. The
optimizer groups requests that fall into one grouping time
interval. If T is large, it is likely that many action
requests can be grouped, but the processing delay for
individual requests may be large. In contrast, if T is too
small, there may be very few action requests in each
interval and the two algorithms are of little use. In our
current implementation, we set T = 100 ms, which is
about the average processing delay in one execution of the
snapshot query in Figure 4 from the event being detected
to the corresponding tuple(s) arriving at the input queue of
the action operator.

In addition to enabling efficient group optimization for
actions, sharing an action operator also gives the
optimizer the opportunity of sharing the result of a single
action execution among multiple requests from different
queries. Such action result sharing is very important for
load shedding when the system is heavily loaded with a
large number of queries and their action requests. As a
typical example, our optimizer can easily identify

Algorithm 1: Action Workload Assignment
Input: A set of n action requests R = (r1, r2, …, rn) and a

set of m devices D = (d1, d2, …, dm). Each request
r i ∈ R has a set of candidate devices Di ⊆ D. (1 ≤
i ≤ n)

Output: An assignment of R to D (each r i ∈ R is assigned
to a device d ∈ Di) with the workload on D is balanced.
1. For each device di in D (1 ≤ i ≤ m)
2. Initialize its assigned workload Wi = 0;
3. j = 1;
4. While there are unassigned requests {
5. For each request r that j devices can service {
6. For each of the j candidate devices for r
7. Estimate the cost Crk to service r on
 device dk, compute Ek = Wk + Crk;
8. Select device dl among the j candidate devices
 that has the least E value and assign r to dl;
9. Let Crl be the estimated cost to service r on dl,
 Wl += Crl ;
 }
10. j++;
 }

Algorithm 2: Prioritize and Service Multiple Action
 Requests on a Single Device
Input: A set of n action requests Rd on a device d.
1. While Rd is non-empty {
2. Record the current physical status Sd of d;
3. For each request r ∈ Rd
4. Estimate the cost Cr to service r in Sd;
5. Select the request with the least estimated cost,
 service it (execute the action), and remove it from Rd;
 }

 9

simultaneous requests with identical instantiated action
input parameter values and invoke only one action on a
device for all these requests. However, given the premise
that the system should ensure the correct application
semantics of the result of each action execution, a more
complex result sharing mechanism seems to highly
depend on the specific semantics of an action. We are
currently investigating the feasibility and usefulness of
designing general techniques in this regard.

5. Experiments

In this section, we use the pervasive lab monitoring
application to validate the effectiveness of our proposed
cost model and optimization techniques for actions. We
mainly present our experimental results for action-
embedded queries with the photo() action. We chose this
action because it is representative and its effect is highly
visible.

5.1 Experimental Setup

Our Aorta query processor was implemented using Java.
The experiments involved one Pentium III PC, four Axis
2130(R) PTZ network cameras [2], and ten Berkeley
MICA2 motes attached with MTS310CA sensor boards
[10]. Two cameras were mounted on the ceiling of the
pervasive lab and the other two were placed on desks.
The ten sensor motes were put at ten different places in
the pervasive lab. For instance, Mote 1 was attached to
the front door of the lab and Mote 2 was put by the
window. The view range of each camera covered the
locations of a few motes. The location of each mote was
in the view range of at least two cameras. We configured
the cameras to tune their zoom level automatically based
on the target location for taking photos. The purpose was
to take photos with the same view size no matter how far
a camera was from the target location, so that photos of
the same location taken by two different cameras had
almost the same visual quality.

5.2 Validation of the Cost Estimation Model

We first used the snapshot query in Figure 4 to verify our
cost model for actions. In this experiment, all four
cameras were started from their “home” positions: pan =
0, tilt = 0 and zoom = 1. We pushed the front door of the
pervasive lab to let Mote 1 (attached to the door) get an x-
axis acceleration rate larger than 500 so that an execution
of the query was triggered. All cameras had no other
workload.

Table 2: Estimated cost versus real cost of taking a photo
on different cameras (milliseconds)

Camera ID 1 2 3 4
Estimated Cost 2993 3638 N/A 3347
Real Cost 3061 3682 N/A 3381

Table 2 shows the estimated cost and the real cost for
executing the action on three cameras. The real cost was
recorded by disabling the cost estimation module in the
optimizer and letting the optimizer randomly pick one
device for executing the action. All values in the table
were the average of three independent runs.

In Table 2 we see that our cost model is reasonably
accurate. The error rate of the estimated cost (defined as
the ratio of the difference to the real cost) was around 1-
2%. The order of the cameras by the estimated cost was
the same as that by the real cost. The difference in
absolute values between the estimated cost and the real
cost was small. The estimated cost was consistently less
than the real cost because the transition cost between
operations in an action was omitted in the cost model.

Camera 3 had a long connection time due to some
mechanical problem. We intentionally kept this
malfunctioning camera in the experiment to see whether
the optimizer could successfully identify a malfunctioning
device. Its estimated cost was unavailable because the
connection requests to it from the optimizer were always
timed out. Its real cost was unavailable because it always
failed to execute the action. This indicates that our
optimizer could successfully distinguish devices that were
having problems and avoided selecting them for executing
actions.

We have run a set of other experiments with randomly
generated initial head positions for each camera and with
other sensor locations. In all experiments, the order of the
cameras by the estimated cost was the same as that by the
real cost, and the difference between the estimated cost
and the real cost had an upper bound of 200 milliseconds.
One set of these experimental results is shown in Table 3.
The target location of the photo() action was the location
of Mote 2, which was by the window of our pervasive lab.
The reason that Camera 2 took a much longer time than
the other two cameras was that the window was far from
the camera and consequently the camera needed to
enlarge its zoom level greatly, which took a lot of time.

Table 3: Cost of taking a photo with random initial
camera head positions (milliseconds)

Camera
ID

Initial Head
Position

Estimated
Cost

Real
Cost

1
pan=21 tilt=-63
zoom=5001

3021 3077

2
pan=137 tilt=-33
zoom=1

5425 5595

4
pan=-75 tilt=-30
zoom=1

3770 3782

5.3 Optimization of a Single Action-Embedded
Query

The main performance metric used in this study is the
response time of one execution of an action-embedded
query, which is defined as follows: the interval between
the time an event is detected (i.e., an execution of the

 10

query is triggered) and the time the selected device
finishes executing the action. This metric represents how
fast a query can respond to an event occurrence.

For the AXIS 2130(R) PTZ network cameras used in
our experiments, the pan, tilt and zoom ranges of them
were [-169, 169], [-90, 10] and [1, 9999], respectively.
Since these three types of operations are independent
from each other and can be executed in parallel, in the
extreme case the performance difference of two candidate
cameras for executing a photo() action could be nearly 4.5
seconds. In the experiments that we did for verifying our
cost model (see Section 5.2), the difference in response
time between different candidate devices was 0.5 to 2
seconds in general.

One may wonder how pervasive computing
applications can benefit from such a “slight” improvement
in query response time. To illustrate this point, consider
the snapshot query again. We set the head of Camera 1 to
several different initial positions while making sure it
always had the least estimated cost among the candidate
cameras. As a result, the optimizer always selected
Camera 1 to execute the action when Mote 1 attached on
the front door detected a movement and triggered an
execution of the query. We simulated the situation that
someone was entering the pervasive lab at a normal speed
(by pushing the front door from the outside) and ran tens
of experiments. An execution of the query with a response
time about 2.6 seconds always resulted in a photo similar
to the one on the left of Figure 10, whereas an execution
of the query with a response time about 3.2 seconds
always resulted in a photo similar to the one on the right.
This is simply because a physical-world event such as
object movement may last only seconds or milliseconds.

Figure 10: Photos taken by Camera 1 with different query
response times

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Optimized Non-
Optimized
(Camera1)

Non-
Optimized
(Camera 2)

Non-
Optimized
(Camera 4)

Execution Case

M
ill

is
ec

o
n

d
s

Others

Optimization

Action

Figure 11: Time breakdown of four different executions
of the snapshot query

Figure 11 shows the time breakdown of an execution
of the snapshot query for both the optimized case and
non-optimized cases. In the optimized case, the optimizer
did action cost estimation for all candidate cameras and
selected Camera 1 to execute the action. In the non-
optimized cases, the cost estimation module was disabled
and the optimizer randomly selected a camera, which
could be any one of Cameras 1-4. The initial head
positions of all cameras were set to their home positions.

In the figure, “Optimization” is the time the optimizer
spent selecting a device from the candidates, “Action” is
the time for the selected device to execute the action, and
“Others” is the processing cost of the other operators in
the query plan. The optimization time of a non-optimized
case was smaller than that of the optimized case, since the
optimizer was simply doing random selection. The
optimization time of the optimized case shown in the
figure was 220 milliseconds, due to the connection
timeout of the malfunctioning Camera 3. We also ran a
test with Camera 3 excluded and the optimization time
was instead 70 milliseconds only. In comparison, the
optimization time of a non-optimized case was 40
milliseconds.

In the figure, we also see that the cost of executing the
action on the device dominated the query processing cost.
Note that in a non-optimized case, when the optimizer
happened to pick the device with the least cost for
executing the action, the total query response time was
slightly less than that of the optimized case. However, the
optimization cost is tiny in comparison with the action
cost. As a result, our optimization is beneficial since it
trades a little larger processing cost at the server side for
the possibly much smaller processing cost at the resource-
constrained device side. Even when the total response
time improvement is insignificant, our optimization
techniques can prevent overloading of devices.

5.4 Optimization of Multiple Action-Embedded
Queries

After examining the optimization issues of a single
action-embedded query, we continue to investigate the
impact of our group optimization techniques.

In the first experiment, we generated ten queries and
registered them to the system. All queries were in the
following format (1 ≤ i ≤ 10):

In every minute, the i-th query requested a camera to
take a photo of Mote i's location. In every grouping time
interval, we found that our Algorithm 1 could distribute
the ten action requests from these ten queries nearly

CREATE AQ test_query_i AS
SELECT photo(c.ip, s.loc, “photos/test”))

 FROM sensor s, camera c
 WHERE s.id = i
 AND coverage(c.id, s.loc)
 AND every(1, minute)

 11

uniformly to all three functioning cameras. Cameras 1, 2
and 4 were assigned 3, 4, and 3 requests, respectively.

Next, we examined the performance impact of
prioritizing and servicing multiple action requests on a
single device using Algorithm 2. We unplugged Cameras
2-4 so that all requests were directed to Camera 1. We
created queries to periodically request the camera to take
photos of the mote locations. The queries have the same
format as the ten queries used in the previous experiment.
We varied the hotness (the probability of being photoed)
of the ten mote locations from uniformly distributed to
highly skewed.

Since we considered multiple requests as a whole in
this scenario, we recorded the total real cost of all
requests. We compared the performance of the optimized
case (using Algorithm 2) and the non-optimized case
(Algorithm 2 was disabled in the optimizer and the
requests were serviced in a random order on a device).

Figure 12 shows the total real cost for both the
optimized and the non-optimized cases when the number
of simultaneous action requests N on Camera 1 increased
from 2 to 10. The hotness of the mote locations was
skewed. The values for the non-optimized case were the
average of ten runs. Taking an average was because in
the non-optimized case Camera 1 serviced the requests
randomly, so two runs might have a large variance in cost.

0

5000

10000

15000

20000

25000

30000

2 4 6 8 10

of Simultaneous Action
Requests

M
ill

is
ec

o
n

d
s

Optimized

Non-Optimized

Figure 12: The total real cost of servicing multiple photo()
action requests on Camera 1

The figure illustrates that in the non-optimized case,
the total real cost for of all requests increased greatly with
respect to N; whereas in the optimized case, such an
increase was less significant and even became smooth
when a threshold was reached (N = 8). This suggests that
group optimization of multiple requests on a single device
improves the overall response time and the device
utilization. When the threshold was reached, the device
was nearly fully loaded and utilized.

The results for the mote locations with uniformly
distributed hotness were similar to those in Figure 12 and
therefore were omitted from the paper.

6. Related Work

Recent work in pervasive computing focuses on networks
of homogeneous devices, e.g. RFID (Radio Frequency
Identification) tags [20] and cell phones [23]. In

comparison, Aorta handles a network of heterogeneous
devices. Work similar to ours is the Augmented
Recording System [24], in which the authors proposed to
actuate camera operations based on various sensor
readings. However, this idea of actuation was not
implemented in the paper and only sensory data collection
methodology was presented. Moreover, Aorta takes the
database query processing approach for the development
and optimization of pervasive computing applications,
which distinguishes itself from most existing work in
pervasive computing.

In the database area, the design and implementation of
Aorta has been influenced by a large body of recent
research work on sensor databases and data stream
management systems, including Aurora [6], Cougar
[3][4][27], IrisNet [11], STREAM [19], Telegraph [7],
and TinyDB [17]. These systems mainly deal with data
flows, but have basic mechanisms for events and/or
device actuation. In comparison, we have less emphasis
on data flows but focus on optimizing and executing
actions in networks of heterogeneous devices.

Actions are closely related to user-defined functions
and stored procedures, which are widely supported in
commercial DBMS products, such as IBM DB2 and
Microsoft SQL Server. These functions and procedures
seldom have the side effects on devices as actions in
Aorta and usually run outside the core of the DBMS.
Consequently, early work on optimization and execution
techniques for expensive methods [16] and expensive
predicates [8][14] has focused on caching the results or
ordering the predicates in query execution plans. In
comparison, we regard actions as first-class citizens in
query processing and optimize them for the performance
of their side effects on devices. In addition, our plan
enumeration in query processing is on candidate device
selection of individual action operators rather than
ordering of operators.

Query optimization for minimizing response time has
been previously studied in traditional parallel and
distributed database systems [1][12]. Our optimization
approach is specifically designed for pervasive
computing, which mainly involves selecting the best
candidate device for executing an action. Moreover, our
proposed cost model is general and applicable to a wide
range of cost metrics in addition to response time.

Finally, action-embedded queries are closely related to
triggers [13][21] and continuous queries [9][18][25]. As a
result, general group optimization techniques in these
areas, such as predicate indexing or query indexing, are
applicable to our system for testing the query conditions
of a group of queries. Given the goal of our system on
optimizing device actions for pervasive computing
applications, we focus on considering the interplay
between devices and actions in our work. This
consideration makes our cost model different from others
and our query optimization and execution process more
dynamic. In addition, the adaptivity of our optimization

 12

of actions to the current physical status of the devices and
our group optimization of actions share a similar spirit
with CACQ [18] and NiagaraCQ [9].

7. Conclusion

We have presented the design and implementation of
Aorta, an action-oriented query processor for pervasive
computing. The goal of Aorta is to ease the development
and the optimization of pervasive computing applications.

We have extended SQL for pervasive computing
applications to specify their actions and action-embedded
queries. We treat actions as first-class operators in query
execution plans, and investigate adaptive, cost-based
optimization techniques for them. We have proposed a
cost model to estimate the cost of an action execution on
candidate devices in terms of response time. We have
also investigated group optimization techniques for
multiple action-embedded queries that have the same
action. Our experimental results with a pervasive lab
monitoring application demonstrate that our cost model is
reasonably accurate, and that our proposed single-query
or multi-query optimization techniques ensure correct
application semantics, improve query response time and
balance device workload.

Future work includes extending our techniques for
multi-device actions and actions towards new types of
devices, studying more sophisticated group optimization
techniques for action-embedded queries, and improving
our query interface to be more general and expressive.

Acknowlegement

We thank Lionel M. Ni for his helpful input on this work.
Funding for this work was from Grants HKUST6158/03E
and HKUST6263/04E provided by the Hong Kong
Research Grants Council (RGC).

References
[1] P.M.G Apers, A.R. Hevener, and S.B. Yao. Optimization

Algorithms for Distributed Queries. IEEE Transaction on
Software Engineering, Vol. 9, No. 1, 1983.

[2] Axis Communications. http://www.axis.com/.

[3] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.
Querying the Physical World. IEEE Personal
Communications, Vol. 7, No. 5, October 2000.

[4] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.
Towards Sensor Database Systems. MDM 2001.

[5] Peter Brucker. Scheduling Algorithms. Third Edition,
Springer Verlag, 2001.

[6] Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Greg Seidman, Michael Stonebraker,
Nesime Tatbul, and Stan Zdonik. Monitoring Streams – A
New Class of Data Management Applications. VLDB 2002.

[7] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong,
Sailesh Krishnamurthy, Samuel Madden, Vijayshankar
Raman, Fred Reiss, and Mehul Shah. TelegraphCQ:

Continuous Dataflow Processing for an Uncertain World.
CIDR 2003.

[8] Surajit Chaudhuri and Kyuseok Shim. Optimization of
Queries with User-defined Predicates. VLDB 1996.

[9] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang.
NiagaraCQ – A Scalable Continuous Query System for
Internet Databases. SIGMOD 2000.

[10] Crossbow Corp. http://www.xbow.com.

[11] Amol Deshpande, Suman Nath, Phillip B. Gibbons, and
Srinivasan Seshan. Cache-and-Query for Wide Area Sensor
Network. SIGMOD 2003.

[12] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy.
Query Optimization for Parallel Execution. SIGMOD 1992.

[13] Eric N. Hanson, Chris Carnes, Lan Huang, Mohan Konyala,
Lloyd Noronha, Sashi Parthasarathy, J. B. Park, and Albert
Vernon. Scalable Trigger Processing. ICDE 1999.

[14] Joseph M. Hellerstein. Optimization Techniques for Queries
with Expensive Methods. TODS 1998.

[15] Joseph M. Hellerstein, Michael J. Franklin, Sirish
Chandrasekaran, Amol Deshpande, Kris Hildrum, Samuel
Madden, Vijayshankar Raman, and Mehul Shah. Adaptive
Query Processing: Technology in Evolution. IEEE Data
Engineering Bulletin, Vol. 23, No. 2, June 2000.

[16] Joseph M. Hellerstein and Jeffrey F. Naughton. Query
Execution Techniques for Caching Expensive Methods.
SIGMOD 1996.

[17] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. The Design of an Acquisitional Query
Processor for Sensor Networks. SIGMOD 2003.

[18] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and
Vijayshankar Raman. Continuously Adaptive Continuous
Queries over Streams. SIGMOD 2002.

[19] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian
Babcock, Shivnath Babu, Mayur Datar, Gurmeet Manku,
Chris Olston, Justin Rosenstein, and Rohit Varma. Query
Processing, Approximation, and Resource Management in a
Data Stream Management System. CIDR 2003.

[20] Kay Römer, Thomas Schoch, Friedemann Mattern, and
Thomas Dübendorfer. Smart Identification Frameworks for
Ubiquitous Computing Applications. PERCOM 2003.

[21] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C.
Mohan. Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS. VLDB 1991.

[22] Patricia G. Selinger, Morton M. Astrahan, Donald D.
Chamberlin, Raymond A. Lorie, and Thomas G. Price.
Access Path Selection in a Relational Database Management
System. SIGMOD 1979.

[23] Frank Stajano and Alan Jones. The Thinnest Of Clients:
Controlling It All Via Cellphone. Mobile Computing and
Communication Review, Vol. 2, No. 4, October 1998.

[24] Norman Makoto Su, Heemin Park, Eric Bostrom, Jeff Burke,
Mani B. Srivastava, and Deborah Estrin. Augmenting Film
and Video Footage with Sensor Data. PERCOM 2004.

[25] Douglas Terry, David Goldberg, David Nichols, and Brian
Oki. Continuous Queries over Append-Only Databases.
SIGMOD 1992.

[26] Mark Weiser. The Computer for the 21st Century. Scientific
American, September 1991.

[27] Yong Yao and Johannes Gehrke. Query Processing for Sensor
Networks. CIDR 2003.

