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Abstract

Pervasive computing applications monitor
physical-world phenomena and integrate data
acquisition, communication and actions across
small, heterogeneous devices (e.g., smart

sensors, network cameras and handheld devices).

To ease the development of these applications,
we propose to perform their tasks by executing
action-embedded queries, which are continuous
queries with operations towards devices. We
extend SQL to allow applications to specify
actions and action-embedded queries. We treat
actions as first-class citizens (operators) in guer
execution plans, and investigate adaptive, cost-
based optimization techniques for a single query
as well as for multiple queries. We evaluate our
prototype query processorAorta, using a
pervasive lab monitoring application. The initial
experimental results show that Aorta ensures
correct application semantics, improves query
response time and balances device workload.

I ntroduction

computing applications are usually difficult to @&y
and optimize. In this paper, we study how to zili
database-style query processing to facilitate the
development and optimization of pervasive computing
applications.

First, we propose to use SQL to develop pervasive
computing applications, since the declarative reatof
SQL queries eases application development and sllow
for performance optimization. Recent work incluglin
Cougar [3][4][27] and TinyDB [17] has pioneered sthi
approach by treating devices and sensor nodesrtasivi
tables and data from these devices as relationkgu
Furthermore, user-defined functions and stored
procedures are prevalent in pervasive computing
applications because actions on devices often fawe
programmed in a language other than SQL. Therefore
we extend SQL to specify continuous queries emhedde
with device actions, which we cakbiction-embedded
queries Correspondingly, we call our action-oriented
query processahorta.

Next, we explore opportunities for optimization of
action-embedded queries in Aorta. This optimizati®
necessary because action-embedded queries arememce
with physical-world events (e.g., object movement),
which may be transient. Therefore, the respomse tf
an action-embedded query determines if an event is

In pervasive (or ubiquitous) computing [26], vasou caught in time. Furthermore, there may be manycedsv

kinds of networked computing devices are embedded Qyailable for

mobile in the physical world and interact with tverld
seamlessly. For instance, a pervasive video dlaneé
application automatically operates a number of iteiyo
controllable cameras for security monitoring inuglding.
Involving data acquisition, communication, as wa#

operations on physical

devicesactiong, pervasive
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executing a single action and the
performance can be optimized by selecting a sutabl
device. This device selection is appropriate fbe t
application semantics in pervasive computing, wlieig
sufficient for one or a few available devices (apa@sed

to all devices) of the same type to respond to erent.
For instance, it is sufficient for one camera offesv
cameras in a lab to take a photo of a locatiomtdrest
upon an event; it is unnecessary to have all adaila
cameras take photos of the location at one poititrie.

To select devices for actions, we adapt the tiausi
cost-based query optimization [22] for actions.
Apparently, suitable cost metrics may vary from
application to application in pervasive computisgch as



response time, power consumption, and quality tibac
effect. As a first step, we define the cost metmibe the
response time, a relatively general one. To estirttze
cost of an action, we define a set of atomic opanat

We have developed an action-enabled monitoring
application with our Aorta prototype system for the
pervasive lab in our department. The pervasivewab
established for accommodating cross-area research

with estimated costs and abstract the compositibn aactivities as well as undergraduate final year quts on

actions in terms of atomic operations.

There are two unique, intertwined challenges fat-co
based optimization of actions. First, the curngmysical
status of a device may affect the cost of an aatiotthe
device. For instance, some actions (e.g., pahatd
zoom) on a PTZ (panf/tilt/zoom) network camera ineol
the movement of the camera head.
starting head position of a camera affects the obst

moving the head of the camera to a target locatiompurposes.

Moreover, the execution of an action takes more tm a

busy camera than on a less busy one. In some, Gases

extremely busy camera may malfunction and failingsh
the execution of an assigned action.
may have side effects that change the physicalstita
device.
After an action is executed on a camera, the heaign
of the camera may change, which in turn changesdbhe
of the subsequent action execution on this device.

pervasive computing. It has rack-mounted PC ssyver
desktops with removable hard disks, and variouscdev
such as sensors, cameras, phones, and PDAs. yracult
students and other personnel with access permission
enter the lab anytime using their university ID dsar
(smartcards). Due to the diversity and dynamicimabf

As a result, thihe lab, the action-enabled monitoring applicatisn

highly desirable for safety, security and managdmen
We use this application as an illuseati
example throughout the paper.

The remainder of this paper is organized as follows
We describe the overall Aorta system architecture i

Second, sonac Section 2. We briefly introduce our SQL extensfon

actions and action-embedded queries in Sectionlr8.

Take the PTZ cameras as an example agaiSection 4, we present our optimization and exeoutio

techniques for action-embedded queries in detdih
Section 5, we evaluate these techniques using the
pervasive lab monitoring application. We discussted

Given these two challenges, adaptive query proegssi work in Section 6 and conclude our paper in Secfion

[15] is essential for action-embedded queries ivamve
computing, where the environment is dynamic andydel
and failures of devices are common. Consequentty,
interleave the optimization and the execution o&etion-

2. System Architecture

The Aorta system consists of three major layers, as

embedded query in an adaptive, cost-based manndfustrated in Figure 1.

Whenever an execution of a query is triggered,cquary

processor examines the current physical statushef t

candidate devices, estimates the cost, and selecisest
device to execute the action. This adaptation m@cau

every execution of an action-embedded query sotheat
cost estimation of the action is up-to-date anddbst of

the actual execution is optimized.

Optimization becomes more complex when multiple|
action-embedded queries that have the same embed

action are running concurrently in the system. tHis

case, we can perform group optimization, in which
requests from different queries ar

multiple action
grouped and assigned to available candidate deiricas

batch. We define aaction requests the request from a

query for the execution of an action with instateih
input parameter values for the action. Furthermoost
estimation must be done dynamically in the procafss
group optimization due to the side effects of attio We
have developed two simple but effective algorithiois
group optimization of action-embedded queries imt&o

There are many interesting systems issues in bgildi geclarative action-embedded queries.
action-oriented query processor for pervasivgyleviates the problem of programmers having todt&n

an

Application 1 Application 2 Application 3
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Figure 1: Three-layer illustration of Aorta

sensors cameras PDAs cell phones

(1) A declarative interface that allows pervasive
computing application programmers to specify adion
towards heterogeneous devices through simple,
This interfac

computing, most prominently, data communication andsarious programming APIs for specific types or med

device synchronization. In this paper, however fogs

devices. We extend the SQL language to captureract

on query processing in Aorta because this is the co semantics and provide a library of system built-in
technology of a database approach to the develdpmemethods (actions) for accessing and operating devic

and optimization of pervasive computing applicasion

(2) A uniform data communication layer across
heterogeneous devices. This layer ensures thadha



system, not the individual applications, is resjiaesfor
monitoring and tuning the current network infrasttuwe
and the physical settings of the devices. Sintibathe
Ingress and Caching modules in TelegraphCQ [7§ thi

various types), the coordination among the multiple
devices involved in an action may be sophisticatddch
makes the optimization of such actions more difficu
The extension of Aorta for handling multi-devicdians

layer handles heterogeneous networking protocots arnis one direction of our ongoing work.

provides a dynamic, logical view of the networked
devices for applications. This abstract view stgethe
lower-level implementation issues,
transmission loss, action failure and resource wompsion
on devices to enables the applications to focuhemeal-
world semantics of their tasks.

(3) An action-oriented query processing engine for

queries involving actions. This engine is the cof@ur
framework. Given the specifications of action-enotded
queries received by the declarative interface amel t
facilities provided by the communication layer, #rgine
is responsible for generating, optimizing and exiegu
action-embedded query execution plans. It interadth
the communication layer to adapt to device capeciind
network loads. It also provides mechanisms to cedu
device contention and to avoid malfunctioning desic

In the remainder of this paper, we mainly preséet t
top two layers in Figure 1.

3. TheDeclarative I nterface

In this section, we describe the syntax and serwmmti
the query language provided by the Aorta declagativ
interface. We extend SQL to handle device actimd
call our query languagéortaSQL The three main

After an action is registered to the system, apgibns
can then specify and register queries with theoacti

such as dat@mbedded. Figure 2 shows the syntax of the CREATE

AQ command, which defines an action-embedded query
and registers the query to the system.

CREATE AQ aqg_name AS
SELECT select_list
FROM device_table_list
[WHERE where_condition]
[GROUP BY groupby_list]
[HAVING having_condition]
[START start_condition]
[STOP stop_condition]
[LIFETIME lifetime]
[INVOCATION num_invocations]

Figure 2: The CREATE AQ command in AortaSQL

The specification of an action-embedded query in
AortaSQL appears to be an ordinary continuous query
with a name and the optional START, STOP, LIFETIME
and INVOCATION clauses. Considering that pervasive
computing applications are often time-related, we
designed a number of timer clauses. The START and
STOP clauses specify when a query should startopr. s

commands of AortaSQL are CREATE, DROP, andThe LIFETIME clause describes how long the querly wi

ALTER. They can be used for either actions (ACT)O
or action-embedded queries (AQ).

Actions in Aorta are system-provided or user-define
methods/functions that operate devices.
defined action, the user must pre-compile the afdbe
action into a dynamically linked library, and udeet

For a-use

N be kept in the system.

Aorta provides a set of system built-in variablesl a
Boolean timer functions. Examples of system huilt-
ariables include $now, $never, $forever, and $once
xamples of system-provided Boolean timer functions
include every(interval_length, time_unit), inTimedrval

command CREATE ACTION to register the action along(Start—time’ end_time), and atTime(hour, minutepsel).

with an action profile to Aorta. An action profile an
XML text file that describes the high-level semastiof
the action (more details will be discussed in Sect).
The following is an example of registering a usefited
action, which directs a programmable cell phonerng.

CREATE ACTION ring(String phone_no)

AS “admin/lib/ring.dll”

PROFILE “admin/profiles/ring.xml”

An application can use the DROP command to drop a

action that it has registered before:

DROP ACTION action_name
Both the executable and profile of the action viig
removed.

The semantics of actions in pervasive computing ard!

widely diversified. As the first step in investigay
action-oriented query processing for pervasive aging,
we currently consider onlgingle-device actionctions
that involve a single device of some type). MRaulti-
device actiongactions that involve multiple devices of

These variables and timer functions can be usetthén
WHERE clause as well as in the START and STOP
clauses. The default conditions of the START, SED&
LIFETIME clauses are $now, $never and $forever.

The main difference between an action-embedded
guery and an ordinary continuous query is in the
select_list, where an action may appear. Whentheer
guery condition is satisfied, the action is exedwad the
Humber of times of the execution is determined Hgy t
optional INVOCATION clause. This clause specifies
how many times the embedded action is invoked
whenever the query condition is satisfied. Theadkf
value in the clause is one. Applications can lsetvialue
in this clause to be an arbitrary number N or aesys
provided variable $all, which means that the actigh
be invoked up to N times or on all candidate device
whenever the query condition is satisfied. Sinke t
execution of an action is neither restricted topactic
device nor required on all candidate devices, this



application semantics increases the reliabilityaetion 4, Action-Oriented Query Optimization
execution, saves system resources and creates gndq Execution
opportunities for query optimization.

Putting these language constructs together, Figure Based on the application semantics for action-emibed
shows an example query, night_surveillance, for thejueries, in this section we present our actionnbeie

pervasive lab monitoring application in AortaSQL. query processing techniques using a simple exafspke
CREATE AQ night_surveillance AS Figure 4). This snapshot query is a simplificatafrthe
SELECT sendphoto(p.no, photo(c.ip, s.log, night_surveillance example in Figure 3. In spifeits
“pbetadmin”)) simplicity, this query is sufficient for illustratg the main
FROM sensor s, camera c, phone p design approach of our query optimizer and thetedla
WHERE s.accel x> 500 issues. This example is also used for performance
AND coverag_e(c.id, s.loc) evaluation in our experiments.
AND p.owner = “admin” CREATE AQ snhapshot AS
START atTime (0, O, 0) SELECT photo(c.ip, s.loc, “photos/admin”)
STOP  atTime (6, 0, 0) FROM sensor s, camera c
WHERE s.accel_x > 500
Figure 3: The night_surveillance example in AorthSQ AND coverage(c.id, s.loc)

In this example, the actigshoto(camera_ip, location,
directory_name)perates the network camera with an IP
addresscamera_ipto move its head to the direction _ )
pointing tolocation and take a medium-size photo; and4-1 Query Plan Generation and Execution

then _stores the_ photo to t_he direct_cn"yectory_name We have implemented a preliminary query operator
Th.e file name will be dynamically aSS|gned by thenera ~ framework in Aorta. Most of the query operatorg ar
using the current system date and time. The actiopsational, e.g., selection, projection and joirexors,
sendphoto (phone_no, file_nanfest converts an image since data in Aorta are all in the form of relatibtuples
file namedfile_nameinto the format for phone display eyen though the attributes can be of less traditioata
and then sends the converted image to the phorteawit types, such as images.

phone numbephone_no As illustrated in this example, " pitferent from a traditional query optimizer, Aorta
action nesting is supported in Aorta to enable demp makes actions operators in query execution plaAs.
interactions between devices. The constraiatcel X > 5ction operator contains the name, the input pasie
500 in the query condition monitors the physical-world 3nd the code block of the method to be executéguré

events of interest (e.g., someone pushes the dobiie 5 jjjystrates the query plan of the snapshot qireRigure
candidate cameras and phones are specified by the For simplicity, projections are omitted.

constraintcoverage(c.id, s.lo@ndp.owner = “admin”. : “ -
Action-embedgeg queriescaarep“backward-compatible" photo(c.ip, S'Ic;;’ Photos/admin’)

with ordinary continuous queries and snapshot qaeri

This compatibility is intuitive, since data acqtisn is coverage(c.id, s.loc

essentially a trivial type of action. For instanié¢here is

no action in the select_list, a CREATE AQ command s.accel_x > 50

creates a traditional continuous query. Furtheapibithe

LIFETIME of an AQ is specified to be $once, this A a sensor camera

snapshot query that executes only once duringfétine.
Finally, we give examples of the ALTER AQ and

DROP AQ commands, which modify and remove pre- The execution flow of this query plan is as follows

defined action-embedded queries, respectively.  Thgirst, the sensor virtual table is scanned aneréft to see

following command stops a query immediately: if there are sensors that detect an x-axis acdilereate
ALTER AQ aq_name SET STOP $now larger than 500. When a sensor tuple is pushed fie

If the application that defined a query does natchthe  sensor scan operator, it is used to join (probe)ctmera

query any more, it can use the following command tovirtual table to find cameras whose view rangesecdlre

Figure 4: The snapshot query

Figure 5: Query plan of the snapshot query

remove it from the system: sensor's location. Finally, the IP addresses as¢h
DROP AQ ag_name cameras and the location of the sensor are passtt t
action operator, which selects one suitable carntetake

the photo.

Similar to the sensor and the camera scan opetliators
this query plan, for each type of device involvediorta,
a scan operator is provided by the uniform



communication layer for the query processor to s&tlke the atomic operations, (3) a grammar for specifytimg
corresponding virtual device table. The functioncomposition of the action, (4) the profile of thetian,
coverage() is provided by the Aorta system. Ikl and (5) the formulas for estimating the cost of alsgon.
applications from the change of the specific geplgigal  All components are system-provided except forvdich
location system adopted by Aorta. is provided by the application that registers tltioa.
In this query plan, the smart sensors ardtiggering  We describe these five components in order.
devices which keep on sampling real-time values of the Atomic Operations. For each type of device
accel_x attribute with a system-tuned sampling queri involved in Aorta, we define a set atomic operations
Due to the asynchronous nature of event occurreamce, that the devices can execute. Examples of suahiato
push queue is required to connect the sensor gE@ator  operations include: “take a photo of a specifieggmall,
to its upstream operator. In comparison, thggered medium or large)”, “turn the head by one degreeain
deviceson which the action is executed, i.e., the cameraspecific direction (up, down, left or right)”, afidoom in
in this query plan, need a traditional pull queoe the (or out) one level” for cameras; “receive a phaod text
camera scan operator. We have implemented bo#stypmessage) of a specific size” for phones; “beep ‘band
of queues in our query processing framework. “blink once” for sensors; and “establish a conrattifor
From this simple example we observe that, due @o thall types of devices. As the name suggests, tbmiat
event-driven nature, the execution flow of a siregléion-  operations are the basic, non-dividable units tbas.
embedded query plan in Aorta is usually quite fixed Estimated Costs of Atomic Operations. We use a
Consequently, there is little space for traditiomdn  number of homegrown testing programs to measure the
enumeration [22], since the positions of operaiorea  estimated cost of each atomic operation for eapk tf
query plan cannot be switched. Furthermore, differ device by executing the operation repeatedly. Each
from traditional user-defined functions, it is geslly  estimated cost is the average of one hundred imdieme
unintuitive or impossible to push down an actioempor runs. These estimated costs of atomic operatioas a
in a query plan, because the action must know #heeg  stored as part of the device profiles and managethé
of all its input parameters before it can execute. uniform communication layer. Our tests show that a
Even though the reordering of operators in an metio atomic operation has almost the same estimatedarost
embedded query plan is unlikely, we can optimizedevices of the same type.
individual actions for their efficient executionMore We currently measure the cost of an atomic oparatio
specifically, upon an event we can select the esgice in terms ofresponse timehe time required to execute the
for an action operator, since there are usuallytiplal operation. The cost of an action execution on\aceeis
candidate devices for executing the action andd#feult  defined in the same way. Other cost metrics maybee
application semantics is to execute the action amge. meaningful for some atomic operations, such as powe
This optimization of action operators is similar to consumption for sensor beeps and price for pholfis. ca
selection/projection/join method selection in ttedial We choose response time because it is a general cos
query optimization. The major difference is that i metric and is suitable for a large number of atomic
pervasive computing we need to consider the phlysicaperations on various types of devices. In addljtiwo
status of devices when optimizing actions. matter what cost metric is chosen in our model, the
In the following, we present the action-orientegtigu  methodology for cost estimation is similar. Ivery easy
optimization and execution techniques we have desig to extend our cost model to adopt different costrice
and implemented in our Aorta query processor. Fofor different actions, or to use a weighted combiamaof
simplicity, we say “a type of device” in short fta type  multiple cost metrics for an action.

or model of device”. As an example, for the AXIS 2130(R) PTZ network
cameras [2] we used, we have defined atomic opeisti

4.2 Cost Estimation Model for Actions and estimated their costs as listed in Table 1.
As we take a cost-based approach for the optinsizaif ~ Taple 1: Estimated costs of atomic operations f&tA
actions, an immediate problem is how to estimagecthst 2130(R) PTZ network cameras
of an action to be executed on a specific devitde i _
believe that the optimizer should be able to seek Atomic Estimated Cost
optimization opportunities for an action in a geevay Operation (milliseconds)
without knowing the implementation details of thatian, Pan (per degree) 13
no matter whether the action is system-providedsar- Tilt (per degree) 14
defined. Therefore, we propose a generic cost hfode Zoom (per level) 0.36
actions. Connection 110

The cost model for an action includes the following Take a Small-Size Photo 30
components: (1) a set of atomic operations onytpe of : :
device that this action involves, (2) the estimatedts of Take a Med'um',sme Photp 40

Take a Large-Size Photo 50




Action Composition. Based on the atomic operations
on devices, we define the composition of an actisimg
the following grammar:
action := operationSequence
operationSequence := operationUnit(& operationUhit)
operationUnit := operationSequence | operationSet |

operation
operationSet := operationUnit (|| operationUnit)*
operation := atomicOperation (& atomicOperation)*

In the grammar, the symbol "&" stands for sequéntia
execution and "||" for parallel execution. An antiin
Aorta is anoperationSequencand anoperationSequence
is a number obperationUnis executed sequentially. An
operationUnitin turn can be amperationSequeng¢ean
operationSetpr an operation An operationSetconsists
of a number ofoperationUnis that are executed in
parallel.

Finally, an operation is defined as the sequential
execution of a number of identical atomic operationn
other words, aroperationis to execute the same atomic
operation multiple times sequentially. Our consitien
for the identical-atomic-operation constraint is nake
the composition of an operation as simple as plessibhd
to leave more complex relationships among operation
the nesting obperationSequenandoperationSet

Action Profiles. Instead of inquiring about the low-
level implementation details, Aorta requires apgiiens
to provide the high-level semantics of an actioa &h
action profile. An action profile is an XML filehat
contains the following information about an actidf)
the name, input parameters, and involved devicéhef
action and (2) the composition of the action. TWED
(Document Type Definition) of an action profilessnilar
to that specified in the grammar for the compositié an
action.

As an example, Figure 6 shows a fragment of th(%

action profile of the system-provided action phpto(he
composition of the action is illustrated in Figute For
simplicity, operationUnit is omitted in Figures Bda7.

This action profile specifies the following infortian
to the Aorta query optimizer:

(1) The action name iphoto and it is towards the
AXIS 2130(R) PTZ network cameras.

(2) The action has three input parameters, denased
$camera_ip$location and$directory_namein order.

(3) The action consists of a sequence of operatiods
operationSets, which in turn consist afonnect
takeMediumSizePhatand a set gpan tilt, zoomatomic
operations.

<actionProfile>
<name>photo </>
<params>
<1>$camera_ip</>
<2>$location</>
<3>%directory_name</>
</params>
<device>AXIS 2130(R) PTZ Network Camera</>
<operationSequence>
<operation>
<atomicOperation>connect</>
<number>1</>
</operation>
<operationSet>
<operation>
<atomicOperation>pan</>
<number>deltaPan($location)</>

Figure 6: Action profile of the photo() action

operationSequence

operation operationSet operation operation
I AN 2 2
connect operation operation operation connect takeMediumPhoto

& & &

pan tilt zoom

Figure 7: Composition of the photo() action

Cost Estimation Formulas for Actions. With the
our pieces of information (the set of atomic opierss,
heir estimated costs, the grammar for specifyintjoa
composition, and the action profile), the queryimjter
is ready to estimate the cost of an action exesutio a
candidate device using the following cost estinratio
formulas ((1)-(4)):

Caction = CoperationSquence

(1)
N
CoperationSquence = ZCoperationLhit_i
i=1 (2)
N
Coperation&t = M_AX(CoperationUniI_i)
3)
Coperation = Catomicopeation * number (4)

The calculation of these formulas is straightforvar

(4) The pan, tilt, zoom operations are executed inThe estimated cost of an acti@n iS equal to the
parallel. The system-provided functions deltaPan()estimated cost of the top level operation sequence
deltaTilt() and deltaZzoom() (the latter two are shown (Formula (1)). The estimated cost of an operation
in Figure 6) are used to compute the numbers of flan  sequenceCoperationsequencelS €qual to the sum of the
zoom atomic operations needed on a candidate cameeatimated costs of its operation units (Formulq (Since
based on the current head position of the cambée, t we use response time as the cost metric, the estincast
value of the $location input parameter of the agtiand  of an operation seCoperationsedS the maximum estimated
the geographical location system that Aorta adopts. cost of individual operation units in the set (Fatan(3)).



Finally, the estimated cost of an operatiGeration IS the connection process three times and an errcsagess
equal to the total cost of thmimberof atomic operations returned to the application.

it contains (Formula (4)). In Formula (4 aomicoperation If things go well and M out of the N cameras are

represents the estimated cost of an atomic oparatica available to execute the action (i.e., their resgsrno the

type of device. connection requests are received within the TIMEOUT
limit), then for each camera i of these M cameths,

4.3 Cost-Based Optimization of a Single Query optimizer computes its estimated c@itto execute the

Given the cost model for actions, we now describe h action using the following formula:

our optimizer works for the optimization of singetion- G = MAX(|R = PRillCan, | Ti— Toi [5G,

embedded queries. | €= Zi |/Co00m) + 2 L/Coonnection_i

We continue to use the snapshot query in Figure 4 a + GakeMediumsizePhoto (=i M)

the example. Suppose for an execution of thisyquer  Here Py, Ty, Z, are the current pan, tilt and zoom
there are totally N candidate cameras for the actmd  Vvalues of candidate cameraRy, Ty, Z; are the target pan,
the optimizer is about to select one from them. e Thtilt and zoom values specific to camera i corresiiog to
optimizer first connects to the candidate cameras the sensor's location, which are computed in the
parallel and examines the current physical status of théeltaPan(), deltaTilt) and deltaZoom() functions,
devices, e.g., the current head position (the irand  correspondingly. Cyan Cir and Cyeomare the estimated
zoom values) for the cameras. A TIMEOUT valueds s costs of the pan, tilt, zoom atomic operationsttiig type

to break connections to unresponsive devices. un o of camera. The numbers of these atomic operations
current implementation, the TIMEOUT value is seb® needed on camera i af®; — Py |, | Ty — T | and| Z; —
twice the estimated connection time for the type ofZi | respectively, which are the output of the delta
device. We will see in Section 5 that this valuerked ~ functions. Ceonnection_iis the connection cost of camera i
well in practice. When the optimizer has receithd recorded by the optimizer in the initial connection
responses from all of the cameras or the TIMEOWitli  Process. Ciakemediumsizernoths the estimated cost of taking a

is reached, this connection process ends. medium-size photo. The optimizer will select tlznera
From the composition of the photo() action (morewith the leasC;ivalue to execute the action.
specifically, the involved atomic operations) sfiedi in In the formula, the reason we USgnecion_iiNStead of

its profile, the optimizer knows that the cost opfeoto()  the estimated cosCeonneciion Of the connection atomic
action on a camera is mainly affected by the curherad ~ operation for this type of camera is that camerdb &
position and the network connection delay of theicke  light workload are able to respond within the TIMED
Note that for actions on different types of devjcdse limit but their connection time will be longer thanose
action cost may depend on different types of devicghat are currently free. This is the way the optén
physical status. As other examples, the curramgtion of ~ estimates the current workload on candidate deviaes
a robot affects the cost of moving it to a targetation;  heavily-loaded device is very likely to require mdime
and the depth of a sensor node in a multi-hop essel to respond to a connection request. As simpl¢ lasks,
network affects the cost of connecting the node. this method is effective in practice.

We design the optimizer to poll the candidate devic The case that the query requires N executions of an
for their current physical status due to the dymaamd action instead of only one can be optimized inrailar
unreliable nature of the device networks — physicaway. The optimizer sorts the candidate deviceshin
devices in pervasive computing may join, move adoon  increasing order of the estimated cost for exegutire
leave the network in a way unpredictable by theesys ~ action and picks the top N ones of them.

Cell phones, for example, may be turned on/off iamgt . ) . )

and may become temporarily unavailable when moving-4 Grouping Multiple Action-Embedded Queries

into an area where no signals are received. Fumihre,  Having considered selection of devices for an etieou
itis pOSSIble that some devices also run appboatlthat of a Sing|e query, we proceed to consider group
are not built on top of Aorta, which makes it diffit for  gptimization of multiple action-embedded queri&@roup
our system to accurately keep track of and pretfiet gptimization in Aorta mainly focuses on balanciragian

current workload of the devices. workload on devices to improve system performanma a
After getting sufficient information about the cemt  to prevent device overloading.
phySical status of the Candidates, the Optlmlzglrtmto In Aorta, we make queries that have the same

select one of them to execute the action. Ifafididates embedded action (the functions are the same, buttut
seem to be unavailable (i.e., all connections aned parameter values may be different) share a Sirrgjera
out), the optimizer will sleep for a while and thespeat  operator across their query execution plans. Eaelny is
the connection process to seek more candidate@®tdc connected to the shared action operator by its push-
execute the action. The optimizer gives up afpeating pased output queue. We add the query ID to thpubut
tuples of the query before they are passed to hbeed



action operator so that the operator knows whigietu
are from which query. Sharing an action operatootag

The goal of the two algorithms is to minimize the
maximum completion time of the set R of action exg

multiple queries saves system resources and gives t(the interval between the time these requests ajpe¢be

optimizer a global view of the current system wodd of
an action. Instead of being optimized separatetiiout

any synchronization among them, multiple queriest th

have the same action are now grouped and optinaiged
whole in the optimizer.

Algorithm 1: Action Workload Assignment
Input: A set ofn action request® = (ry, ro, ..., Iy)and a
set ofmdeviceD = (d,, d,, ..., d,). Each request
ri O R has a set of candidate deviéggd1D. (1<
i<n)
Output: An assignment dRto D (eachr; 00 Ris assigned
to a devicad [0 D;) with the workload on D is balanced.
1. For each devicg inD (1<i<m)
Initialize its assigned worklo&t = 0;
j=1
. While there are unassigned requests {
For each requeasthatj devices can service {
For each of theandidate devices for
Estimate tlomstC,, to service on
devicd,, computeE, =W + Cy;
Select devidkamong the candidate devices
that has the ledsvalue and assigntod;;
9. LeC, be the estimated cost to servicen d,,
W +=Cy;
}
10.  j++;
}

Noapwd

o

Figure 8: The algorithm for action workload assigmin

Algorithm 2: Prioritize and Service Multiple Action
Requestson a Single Device

Input: A set ofn action request®; on a devicel.

1. WhileRyis non-empty {

2. Record the current physical steysf d;

3 For each request] Ry

4, Estimate the coSf to service in §;;

5 Select the request with the least estimebst]
service it (execute the action), and regnib¥romRg;

}

Figure 9: The algorithm for prioritizing and selivig
multiple action requests on a single device

It is expected that Aorta, as a pervasive query

shared action operator and the time all of themehzeen
serviced) on the group of available devices D. sThi
problem is similar to the classic makespan minitidra
problem [5] in scheduling theory that deals withalated
parallel machines with sequence-dependent job st
and machine eligibility restrictions. As the origin
problem is known to be NP-hard in general, we desig
and implement our own greedy algorithms.

Algorithm 1 assigns the action requests to the
available devices with a goal of balancing workload
among the devices. Note this algorithm is for esqu
assignment only; a request that is assigned toveealés
queued and is not serviced immediately. The hicifier
assignment is the number of candidate devices o ea
action request. More specifically, the algorithtarts
with the request that has the least number of daieli
devices, and assigns the request to the candidaieed
that will have the minimum estimated total workloé&d
this request is serviced on the device. It theasgan to
assign the request with the next least number rdidate
devices until it finishes the assignment of alluesfs to
devices. If two requests have the same number of
candidate devices, the algorithm assigns the twoeasts
in a random order.

After Algorithm 1 assigns a group of requests et
of devices, for each device, Algorithm 2 prioriszand
services the requests that have been assignedeto th
device. The heuristic in Algorithm 2 is to servittee
request that has the least estimated cost in therdu
physical status of the device. As the executionaof
action may change the physical status of a devloe,
physical status of the device is updated afterctalg
each request for the device to service.

The performance of these two algorithms is related
the system-defined grouping time interval T. The
optimizer groups requests that fall into one graggime
interval. If T is large, it is likely that many tan
requests can be grouped, but the processing delay f
individual requests may be large. In contrasf, if too
small, there may be very few action requests inheac
interval and the two algorithms are of little use our
current implementation, we set T = 100 ms, which is
about the average processing delay in one execatitire
napshot query in Figure 4 from the event beingdet

processor, will always have a large number of @seri  yhe corresponding tuple(s) arriving at the inguue of

running concurrently. In this scenario, multipletian

requests from different queries may appear in aesha

action operator at the same time or within a shiore
interval. In order to improve device utilizationcaquery

response time, we design and implement two algosth

to distribute multiple simultaneous action requetis

available devices and to service these requestanin

optimized order. These two algorithms are preskirie
Figure 8 and Figure 9.

the action operator.

In addition to enabling efficient group optimizatitor
actions, sharing an action operator also gives the
optimizer the opportunity of sharing the resultac$ingle
action execution among multiple requests from défifie
gueries. Such action result sharing is very imgrdrfor
load shedding when the system is heavily loadetl wit
large number of queries and their action requegts.a
typical example, our optimizer can easily identify



simultaneous requests with identical instantiatetdon Table 2 shows the estimated cost and the realfoost
input parameter values and invoke only one actiorao executing the action on three cameras. The reslwas
device for all these requests. However, givenpiieenise  recorded by disabling the cost estimation moduléhim
that the system should ensure the correct appitati optimizer and letting the optimizer randomly pickeo
semantics of the result of each action executiomoae device for executing the action. All values in tiable
complex result sharing mechanism seems to highlyere the average of three independent runs.

depend on the specific semantics of an action. ai¢e In Table 2 we see that our cost model is reasonably
currently investigating the feasibility and usefds of accurate. The error rate of the estimated codingtbas
designing general techniques in this regard. the ratio of the difference to the real cost) wesuad 1-
2%. The order of the cameras by the estimatedwast
the same as that by the real cost. The differénce
absolute values between the estimated cost andetie
In this section, we use the pervasive lab monitprin cost was small. The estimated cost was consigtés
application to validate the effectiveness of owpmsed than the real cost because the transition cost destw
cost model and optimization techniques for actiole  gperations in an action was omitted in the costehod
mainly present our experimental results for action- cgmera 3 had a long connection time due to some
embedded queries with the photo() action. We chitise mechanical problem.  We intentionally kept this
action because it is representative and its effebighly  malfunctioning camera in the experiment to see héret
visible. the optimizer could successfully identify a malftioning
device. Its estimated cost was unavailable bec#use
connection requests to it from the optimizer wdmags
Our Aorta query processor was implemented using.Javtimed out. Its real cost was unavailable becauakviays
The experiments involved one Pentium Il PC, fowisA failed to execute the action. This indicates tbat
2130(R) PTZ network cameras [2], and ten Berkeleyptimizer could successfully distinguish devicest tivere
MICA2 motes attached with MTS310CA sensor boarddhaving problems and avoided selecting them for etkeg

5. Experiments

5.1 Experimental Setup

[10]. Two cameras were mounted on the ceilinghaf t

pervasive lab and the other two were placed on slesk

The ten sensor motes were put at ten differenteglac
the pervasive lab. For instance, Mote 1 was atthdb

actions.

We have run a set of other experiments with rangtoml|
generated initial head positions for each camedhveith
other sensor locations. In all experiments, tlieoof the

the front door of the lab and Mote 2 was put by thecameras by the estimated cost was the same asythtae
window. The view range of each camera covered thegal cost, and the difference between the estimebst

locations of a few motes. The location of eacheneas
in the view range of at least two cameras. Weiganéd
the cameras to tune their zoom level automatidzdised
on the target location for taking photos. The pspwas
to take photos with the same view size no matter faw
a camera was from the target location, so thatqshof

and the real cost had an upper bound of 200 nubisds.
One set of these experimental results is showralrer3.
The target location of the photo() action was theation
of Mote 2, which was by the window of our pervasiake.
The reason that Camera 2 took a much longer tirae th
the other two cameras was that the window wasréan f

the same location taken by two different camerad hathe camera and consequently the camera needed to

almost the same visual quality.

5.2 Validation of the Cost Estimation M odel

We first used the snapshot query in Figure 4 tifwenur
cost model for actions. In this experiment, alurfo
cameras were started from their “home” positiorem p
0, tilt = 0 and zoom = 1. We pushed the front dofothe
pervasive lab to let Mote 1 (attached to the dget)an x-
axis acceleration rate larger than 500 so thatxaougion
of the query was triggered. All cameras had ncemoth
workload.

Table 2: Estimated cost versus real cost of takipfoto
on different cameras (milliseconds)

Camera ID 1 2 3 4
Estimated Cost 2993 3638 N/A 3347
Real Cost 3061 3682 N/A 3381

enlarge its zoom level greatly, which took a lotiofe.

Table 3: Cost of taking a photo with random initial
camera head positions (milliseconds)

Camera| Initial Head Estimated| Real
ID Position Cost Cost
pan=21 tilt=-63
1 700M=5001 3021 3077
2 pan:1_37 tilt=-33 5425 5595
zoom=1
pan=-75 tilt=-30
4 700m=1 3770 3782

5.3 Optimization of a Single Action-Embedded

Query
The main performance metric used in this studyhis t
response timeof one execution of an action-embedded

query, which is defined as follows: the intervahvieen
the time an event is detected (i.e., an executiothe



query is triggered) and the time the selected d@evic Figure 11 shows the time breakdown of an execution
finishes executing the action. This metric repnésdow  of the snapshot query for both the optimized casg a
fast a query can respond to an event occurrence. non-optimized cases. In the optimized case, thienager
For the AXIS 2130(R) PTZ network cameras used indid action cost estimation for all candidate careexad
our experiments, the pan, tilt and zoom rangeshemt selected Camera 1 to execute the action. In the no
were [-169, 169], [-90, 10] and [1, 9999], respeslyy.  optimized cases, the cost estimation module wasbhiid
Since these three types of operations are indepéndeand the optimizer randomly selected a camera, which
from each other and can be executed in parallethén could be any one of Cameras 1-4. The initial head
extreme case the performance difference of twoidatel positions of all cameras were set to their homédtipos.
cameras for executing a photo() action could belydab In the figure, “Optimization” is the time the opfmear
seconds. In the experiments that we did for vergfyour  spent selecting a device from the candidates, tiltis
cost model (see Section 5.2), the difference iparse the time for the selected device to execute thiemcand
time between different candidate devices was 0.2 to “Others” is the processing cost of the other omesatn
seconds in general. the query plan. The optimization time of a noniopted
One may wonder how pervasive computingcase was smaller than that of the optimized casee she
applications can benefit from such a “slight” impeanent  optimizer was simply doing random selection. The
in query response time. To illustrate this pootdnsider optimization time of the optimized case shown ie th
the snapshot query again. We set the head of Gaber  figure was 220 milliseconds, due to the connection
several different initial positions while makingrsuit  timeout of the malfunctioning Camera 3. We also aa
always had the least estimated cost among the datedi test with Camera 3 excluded and the optimizatiometi
cameras. As a result, the optimizer always sedectewas instead 70 milliseconds only. In comparisdie t
Camera 1 to execute the action when Mote 1 attaohed optimization time of a non-optimized case was 40
the front door detected a movement and triggered amilliseconds.
execution of the query. We simulated the situatimet In the figure, we also see that the cost of exagutie
someone was entering the pervasive lab at a n@pesld action on the device dominated the query processisg
(by pushing the front door from the outside) andl tens Note that in a non-optimized case, when the opgmiz
of experiments. An execution of the query with spanse happened to pick the device with the least cost for
time about 2.6 seconds always resulted in a phiottas ~ executing the action, the total query response tivas
to the one on the left of Figure 10, whereas arc@i@n  slightly less than that of the optimized case. kway, the
of the query with a response time about 3.2 secondsptimization cost is tiny in comparison with thetian
always resulted in a photo similar to the one anripht.  cost. As a result, our optimization is benefi@gaice it
This is simply because a physical-world event sash trades a little larger processing cost at the seside for
object movement may last only seconds or millisedson  the possibly much smaller processing cost at theuree-
) constrained device side. Even when the total mspo
S ‘ time improvement is insignificant, our optimization

| techniques can prevent overloading of devices.

i -

5.4 Optimization of Multiple Action-Embedded
Queries

After examining the optimization issues of a single

. ' ] ) action-embedded query, we continue to investighte t
Figure 10: Photos taken by Camera 1 with diffecprery impact of our group optimization techniques.

\
e

response times In the first experiment, we generated ten queries a
4500 registered them to the system. All queries werghim
- ;“;83 following format (1<i < 10):
2 000 OOthers CREATE AQ test_query i AS
8 2000 @ Optimization SELECT photo(c.ip, s.loc, “photos/test”))
= 1500 8 Action FROM sensor s, camera ¢
500 WHERE s.id =i
0+ ‘ ‘ ‘ AND coverage(c.id, s.loc)
Optimized  Non- Non-  — Non- AND every(1, minute)
Optimized Optimized Optimized . -
(Cameral) (Camera2) (Camera4) In every minute, the i-th query requested a carera
Execution Case take a photo of Mote i's location. In every groyptime

) L ] ) interval, we found that our Algorithm 1 could dibtrte
Figure 11: Time breakdown of four different exeons the ten action requests from these ten querieslynear
of the snapshot query
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uniformly to all three functioning cameras. Canseta2 comparison, Aorta handles a network of heterogemeou
and 4 were assigned 3, 4, and 3 requests, resplgctiv devices. Work similar to ours is the Augmented
Next, we examined the performance impact ofRecording System [24], in which the authors propdse
prioritizing and servicing multiple action requesis a actuate camera operations based on various sensor
single device using Algorithm 2. We unplugged Ceare readings. However, this idea of actuation was not
2-4 so that all requests were directed to Camerale  implemented in the paper and only sensory datectidin
created queries to periodically request the cartietake  methodology was presented. Moreover, Aorta takes t
photos of the mote locations. The queries haveséimee database query processing approach for the develapm
format as the ten queries used in the previousrarpat. and optimization of pervasive computing applicasion
We varied the hotness (the probability of beingtped)  which distinguishes itself from most existing woik
of the ten mote locations from uniformly distribdtéo  pervasive computing.
highly skewed. In the database area, the design and implementation
Since we considered multiple requests as a whole iAorta has been influenced by a large body of recent
this scenario, we recorded the total real cost bf aresearch work on sensor databases and data stream
requests. We compared the performance of the @@én management systems, including Aurora [6], Cougar
case (using Algorithm 2) and the non-optimized casg3][4][27], IrisNet [11], STREAM [19], Telegraph |7
(Algorithm 2 was disabled in the optimizer and theand TinyDB [17]. These systems mainly deal witlhada
requests were serviced in a random order on aelevic flows, but have basic mechanisms for events and/or
Figure 12 shows the total real cost for both thedevice actuation. In comparison, we have less esiph
optimized and the non-optimized cases when the rumbon data flows but focus on optimizing and executing
of simultaneous action requests N on Camera 1ase actions in networks of heterogeneous devices.
from 2 to 10. The hotness of the mote locations wa  Actions are closely related to user-defined fundio
skewed. The values for the non-optimized case Were and stored procedures, which are widely supported i
average of ten runs. Taking an average was bedausecommercial DBMS products, such as IBM DB2 and
the non-optimized case Camera 1 serviced the rexjuedMicrosoft SQL Server. These functions and proceslur
randomly, so two runs might have a large varianceost. seldom have the side effects on devices as aciions

30000 Aorta and usually run outside the core of the DBMS.
250001 Consequently, early work on optimization and execut
2 20000 1 _ techniques for expensive methods [16] and expensive
S 15000 | "_‘N)p“m'z'“fd_ predicates [8][14] has focused on caching the tesu
2 000 —=—NonOpumized)  ordering the predicates in query execution plans
Ea—s comparison, we regard actions as first-class ciizen
o ‘ ‘ ‘ ‘ ‘ query processing and optimize them for the perfocea
2 4 6 s 10 of their side effects on devices. In addition, qlan
# of Simultaneous Action enumgration in query proce§sing is on candidatecdev
Requests selection of individual action operators rather ntha
ordering of operators.
Figure 12: The total real cost of servicing mukiphoto() Query optimization for minimizing response time has
action requests on Camera 1 been previously studied in traditional parallel and

The figure illustrates that in the non-optimizedsea  distributed database systems [1][12]. ~Our optitire.
the total real cost for of all requests increaseshty with ~ @PProach is specifically designed for pervasive
respect to N: whereas in the optimized case, such £omputing, Whlch mainly |.nvolves selectlng the best
increase was less significant and even became tamogc@ndidate device for executing an action. Moreouer
when a threshold was reached (N = 8). This sugghat Proposed cost model is general and applicable woda
group optimization of multiple requests on a singgwice  'ange of cost r_‘netrlcs in addition t(_) response time.
improves the overall response time and the device Finally, action-embedded queries are closely relate
utilization. When the threshold was reached, teeice  (figgers [13][21] and continuous queries [9][18]]2As a
was nearly fully loaded and utilized. result, general group optimization techniques iesth

The results for the mote locations with uniformly 87€@s, such as predicate indexing or query indexing
distributed hotness were similar to those in Figleeand ~ @Pplicable to our system for testing the query diomts

therefore were omitted from the paper. of a group of queries. Given the goal of our systn
optimizing device actions for pervasive computing
6. Related Work applications, we focus on considering the interplay

between devices and actions in our work.  This
Recent work in pervasive computing focuses on nedsvo consideration makes our cost model different frahrers
of homogeneous devices, e.g. RFID (Radio Frequencgnd our query optimization and execution processemo
Identification) tags [20] and cell phones [23]. Indynamic. In addition, the adaptivity of our optaation
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of actions to the current physical status of theias and
our group optimization of actions share a similpiris
with CACQ [18] and NiagaraCQ [9]. 8]
7. Conclusion (o]

We have presented the design and implementation of

Aorta, an action-oriented query processor for psEe (0]
computing. The goal of Aorta is to ease the deymlent  [11]
and the optimization of pervasive computing appiaces.

We have extended SQL for pervasive computingi12
applications to specify their actions and actiorbedded ]
queries. We treat actions as first-class operatoguiery [13]
execution plans, and investigate adaptive, costdas
optimization techniques for them. We have propoaed
cost model to estimate the cost of an action ei@tuin 14

candidate devices in terms of response time. W ha
also investigated group optimization techniques fors)
multiple action-embedded queries that have the same
action. Our experimental results with a pervadale
monitoring application demonstrate that our costiehds
reasonably accurate, and that our proposed singeyq
or multi-query optimization techniques ensure octrre [16]
application semantics, improve query response tmeg
balance device workload. 17]
Future work includes extending our techniques for[
multi-device actions and actions towards new typés

devices, studying more sophisticated group optitiira [18]
techniques for action-embedded queries, and impgovi
our query interface to be more general and expressi

(19]
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