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There exists a black kingdom which the eyes of man avoid
because its landscape fails signally to flatter them. This dark-
ness, which he imagines he can dispense with in describing the
light, is error with its unknown characteristics... Error is cer-
tainty’s constant companion. Error is the corollary of evidence.
And anything said about truth may equally well be said about
error: the delusion will be no greater.

(Preface
to a Modern MythologyLouis Aragon, French Poet, 1926.)

Abstract

Traditional database systems, particularly those fo-
cused on capturing and managing data from the real
world, are poorly equipped to deal with the noise,
loss, and uncertainty in data. We discuss a suite
of techniques based on probabilistic models that
are designed to allow database to tolerate noise and
loss. These techniques are based on exploiting cor-
relations to predict missing values and identify out-
liers. Interestingly, correlations also provide a way
to give approximate answers to users at a signifi-
cantly lower cost and enable a range of new types
of queries over the correlation structure itself. We
illustrate a host of applications for our new tech-
nigues and queries, ranging from sensor networks
to network monitoring to data stream management.
We also present a unified architecture for integrat-
ing such models into database systems, focusing in
particular onacquisitional systemwhere the cost

of capturing datad.g, from sensors) is itself a sig-
nificant part of the query processing cost.
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ful information out of this flood of data. The data man-
agement community has made significant progress towards
achieving this goal — by providing tools that load and clean
the data, languages and systems that can query the data
(e.0,[52, 36, 10, 38]), and algorithms that mine the data for
patterns and relationships that are of interest [33].

These efforts have largely been focused on mitigating
data complexity once it has been captured and stored inside
of a traditional computing infrastructure. In contrast, we are
focusing on techniques designed to take an active role in
managing this wealth of data by managing when, where, and
with what frequency data is acquired from distributed infor-
mation systems. There are many modern systems where the
capability of local nodes to generate data far outstrips the
resources available to transmit or store that data. Nodes in a
sensor network, for example, typically have processors that
run at several megahertz, with data collection hardware ca-
pable of collecting many kilosamples per second, but radios
that only transmit kilobytes per second aggregate across all
of the nodes in the network. Worse yet, these nodes are bat-
tery powered, and, when sampling at maximum rates, only
have sufficient energy to last for a few days [46]. Similarly,
routers on the Internet can produce huge amounts of net-
work monitoring traffic, so much so that the links which that
traffic is transmitted across can be easily saturated. Admin-
istrators of large networks typically apply simple techniques
(like random sampling) to choose which statistics to col-
lect [40]. Streaming database systems have much the same
problem, where the need to shed load [10] and drop or ag-
gregate historical data [52] has been noted.

In addition to the challenges presented by limited re-
sources, data from real world environments is often noisy,

The vision of ubiquitous computing promises to spread in10ssy, and hard to interpret. This noise and uncertainty
formation technology throughout our lives. Though this vi- ¢an be misleading, particularly when the user is summariz-
sion can be compelling, it also threatens to overwhelm udng and aggregating data using a high-level language like
with a flood of information, much of which is spurious, SQL.Forexample, the California Department of Transporta-
irrelevant, or misleading. Thus, the challenge of realiz-tion maintains a database of current road speeds from about
ing this vision is separating the relevant, timely, and use-10,000 traffic sensors on California highways [9]. On a re-
cent visit to their website, 60% of sensors were missing data.
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that is simply wrong. For example, in a sensor net-cient query answers in sensor networks. We then show how
work deployment on Great Duck Island (off the coast ofour ideas can be generalized to provide the other advantages
Maine) [63, 48], researchers noted that about 40% of thelescribed abovee(g, various kinds of probabilistic guaran-
sensors produced erratic temperature and humidity readingees and support for new types of queries) in a variety of
at some point; though such readings sometimes precipitatedbmains and applications beyond sensor networks. We ar-
node failure, in other cases nodes otherwise continued tgue that any resource limited environment can benefit from
function normally. If the data acquisition system could de-our techniques.
tect and filter such outliers, it could inform a user of the We also show how to adapt a range of techniques, based
failure and conserve bandwidth being used to transmit badn ideas from the machine learning and data mining com-
readings. munities, that allow us to improve the predictive power of
We address all of these problems by buildingpadelof ~ models, represent correlations more compactly, and select
the world as data is collected from it. This model allows and train models that are most appropriate for the data being
us to capture the correlations and statistical relationships benodeled. Though such techniques sometimes are directly
tween attributes collected by devices. We focuspasba-  transferable from these other domains, they often require
bilistic models, where the value of each attribueeg( tem-  significant re-tooling to deal with limited resources, data ac-
perature, light) is a probability distribution that reflects the quisition issues, and to enable integration into a SQL-based
most likely value of that attribute, possibly depending on thedatabase system.
values of other attributes (thelependen)s such as the time
of day or behavior of another node in the network. Such de-2 Background
pendencies, ocorrelations can be exploited to efficiently In this section, we summarize the basics of probabilistic
answer queries and enable new query types that explore threodels and show how they can be used to answer queries.
relationships between attributes. Models are built by peri\We also summarize our previous work on the BBQ system,
odically observingvalues of one or more attributes.g, by  which is an example of a probabilistic model tuned to effi-
acquiring a reading from a sensor) and using those observaiently collect data from a sensor network.
tions to adjust the probability distributions of the observed

attributes and their dependees. Models offer three distinc

benefits: We denote a model asmobability density functiorpdf),

. - . p(X1,Xo,...,X,), assigning a probability for each possi-
1. They make queryingiore efficient By exploiting cor- ble assignment to the attributés. .. ., X,,, where each;

relat|ons_between attributes, it is ofter_1 possible to US§s an attribute at a particular senserq, temperature on sen-

observations of a small number of attributes to provideg, 1, ;mper 5, bandwidth on link A-B). This model can also

approximations of the values of a large number of atj .o oratehidden variablegi.e., variables that are not di-

rectly observable) that indicate, for example, whether a sen-

%or is giving faulty values or a node is subject to a denial of

Service attack. Such models can be learned from historical
ata using standard algorithmesd, [50]).

Answering queries probabilistically based on a pdf is
conceptually straightforward. Suppose, for example, that
fa query asks for an approximation to the value of a set of
attributes to withinte of the true value of each attribute,

th confidencei(e., probability of being correct) at least
1— 4. Using standard probability theory, we can use this pdf
af compute the expected valyg;, of each attribute in the
uery. These will be our reported values. We can then use
e pdf again to compute the probability th&f is within e

.1 Probabilistic models

day after day, a good (though perhaps not 100% acc
rate) guess after observing one sensor would be that
of the other sensors have about the same value.

2. They allow the database system to providebabilis-
tic guarantees on the correctness of answerslnlike
existing database systems, which provide the illusion o
precise answers, even when data is missing or nodes
faulty, probabilistic models provide probabilistic guar-
antees on answers, telling the user the probability th
a particular attribute value differs by more than same
from the reported value based on past observations q

known values of other, correlated attributes. from the meanP(X; € [ e, j1; +<]). If all of these prob-

3. They allow the database system to ansaesk type§ of abilities meet or exceed user specified confidence threshold,
queries For examplt_a, a model can detect certain V€Ythen the requested readings can be directly reported as the
unlikely values (again, by observing past Correlat'onsmeansui. If the model’s confidence is too low, then we re-

\év.'th.IOtTer senzorls) and flagl th?T. as ﬁptergutillers d quire additional readings before answering the query.
imitarty, a modet can reveal relationships between de- Choosing which readings to observe at this point is an

vices that indicate, for example, that a particular Ser]Sof)ptimization problem: the goal is to pick the best set of at-

L\S/ recii#gdanrt‘dornttha;[ a pzalr (t)rf] nretv'\:/ionrk”hnksrﬁred 'T nontributes to observe, minimizing the cost of observation re-
ay independent of each other. ally, a model ca quired to bring the model’'s confidence up to the user speci-
oftenpredictthe value of a particular attribute as some

point of time in the past or future fied threshold for all of the query predicates.
' We can use the same technique to compute the expected
In this paper, we briefly summarize one model, calledsum or average of several attributesg, temperature on
BBQ [22] which we have studied in detail to provide effi- k different sensors) by exploiting linearity of expectation,



(X,,X,) is Highly Positive

which SaySE(A1 + ...+ Ak) = E(Al) + ...+ E(Ak) 2D Gaussian PDF With High Covariance () Gapissian PDF over X, X, where >
and using the standard expression for the variarjcef a 012
sum to compute out, § bound,i.e, o(A; + ... + Ag) = i
Zle a(4;)+ Zle Zle cov(A;, A;). We can also com-
pute a confidence that a particular boolean predicag, (
temp> 25) is true by integrating over area of the pdf repre-
senting the region where the predicate is satisfied.
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2.2 Example: Gaussians

Gaussian PDF over X,, X, after Some Time

0.14;

In this section, we describe the time-varying multivariate
Gaussians as a type of model. This is the basic model use _,, ©
in BBQ [21], and we summarize it here to provide a con-
crete example of one kind of model. A multivariate Gaus-
sian (hereafter, just Gaussian) is the natural extension o
the familiar unidimensional normal probability density func-  °*
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tion (pdf), known as the “bell curve”. Just as with its 1- s m s W s L ——
dimensional counterpart, a Gaussian pdf oveattributes, ) _ o %2 )
X1,..., X, can be expressed as a function of two parame-':'gure 1: Example of Gaussians: (a) 3D plot of a 2D Gaussian

with high covariance; (b) the same Gaussian viewed as a contour
n- plot; (c) the resulting Gaussian ové¥, after a particular value of

dering of a Gaussian over two attributeé§, and X5; the z X1 _has been observed;_ finally, (d) shows hov\_/, as uncertainty about
X, increases from the time we last observed it, we again have a 2D

axis represents theint densitythat X, = = an_Xm =Y Gaussian with a lower variance and shifted mean.
Figure 1(B) shows a contour plot representation of the same
Gaussian, where each circle represents a probability densifter some time has passed, our belief ab%is value will
contour (corresponding to the height of the plotin (A)).  be “spread out”, and we will again have a Gaussian over two
_ Intuitively, 1. is the point at the center of this probability attributes, although the mean and variance may have shifted
distribution, and® represents the spread of the distribution. from their initial values, as in Figure 1(D).
Theth element along the diagonal Bfis simply the vari- Of course, this is but one example of many different types
ance ofX;. Each off-diagonal elemeni[i, j|,i # jrep-  of models that could be used. Our basic approach can be
resents the covariance between attribitesand X;. Co-  generalized to various different models that may be more
variance is a measure of correlation between a pair of aigyitable in different environments and for different classes
tributes. A high absolute covariance means that the attributesf queries. We will revisit this issue in Section 5. In the
are strongly correlated: knowledge of one closely constraingext two sections we look briefly at some of the technical

the value of the other. The Gaussians shown in Figure 1(Ajetails involved in creating and maintaining the Gaussian
and (B) have a high covariance betwe¥pandX,. Notice  model used in BBQ.

that the contours are elliptical such that knowledge of one )
variable constrains the value of the other to a narrow proba2-2-1 Leaming the model
bility band. Typically, probabilistic models are learned from some set of
We can use historical data to construct the initial rep-training data. In BBQ, this training data consisted of read-
resentation of this pdp. This historical data is typi- ings from all of the monitored attributes over some period of
cally collected as a part of a short observation phase usingime. For example, with a Gaussian model, initial means and
data extraction tools (in the case of our sensornet deployeovariances can be computed from training data using stan-
ments, we have typically used a simple selection query indard statistical algorithms. Thus, for the specific model used
TinyDB [47]). Once our initialp is constructed, we can in BBQ, we need to capture training data for some period
answer queries using the model, updating it as new obef time before we can begin predicting values or exploit-
servations are obtained from the sensor network, and &sg correlations to avoid unneeded acquisitions. We are ex-
time passes. We explain the details of how updates argloring techniques for interleaving model construction and
done in Section 2.2.2, but illustrate it graphically with our query processing when possible, as described in Section 6
2-dimensional Gaussian in Figures 1(B) - 1(D). Supposeelow.
that we have an initial Gaussian shown in Figure 1(B) an .
we choose to observe the variablg; given the result- d2'2'2 Updating the model
ing single value ofX; = z, the points along the line Thus far, the model we have described represepttial
{(z,X3) | VX2 € [—00, 0]} conveniently form an (unnor-  correlation in a network deployment. However, many real-
malized) one-dimensional Gaussian. After re-normalizingworld systems include attributes that evolve over time. For
these points (to make the area under the curve equal 1.0), véxample, in a sensor network deployment in our lab, we
can derive a new pdf representipgX> | X; = x), which  noted that the temperatures have both temporal and spa-
is shown in 1(C). Note that the mean &%, given the value tial correlations [19]. Thus, the temperature values ob-
of X is not the same as the prior mean6f in 1(B). Then, served earlier in time should help us estimate the temper-

ters: a lengthd vector of meansy, and ad x d matrix of
covariancesy. Figure 1(A) shows a three-dimensional re



ature later in time. Adynamic probabilistic modedan rep- Probabilistic Queries Query Results

. L " U "1, 2. 30
resent such temporal correlations by describing the evolu- SELEOTmodeld, S iseoom o5
tion of this system over time, telling us how to compute WHERE nodelD in (1.8)" lT B Raa00n oh
t+1 1. W T T

p(XlJr 7’.‘_’X7t1+1 | 01 t) fromp(Xllt""7X’fl | o t)’ Sensor ID.
whereo! 't is the set of observations made over the network Query Processor
up to timet. . . . Probabilistic Model and Planner

One common dynamic model is larkovian model, Observagion o

. . . al
where given the value dll attributes at time, the value e tage 1, T 1, voltage = 2.73
of the attributes at time + 1 are independent of those for [voltage.z]. PRt
any time earlier that. This assumption leads to a sim- Predice ' W
H H Checker R,
ple model for a dynamic system where the dynamics are |G R 8
summarized by a conditional density called th@nsition Rz .
mode| p(X{*! X+t ¢ ¢ i i ==
p(X;, . X XY, ..., X)), Using a transi- v

tion model, we can compugg Xt ... X!+ | olt) us- 3IE 2

ing the standard probabilistic techniquernérginalization
by integrating the transition model over the attribute values 5~
at timet. Figure 2:Our architecture for model-based querying, shown as an
This approach assumes the transition model is the sarrfkample running on top of a sensor network.

for all timest. Often, this is not the case — for example, in
an_outdoor envi_ronmer_lt, in the mornings temperatures ten ence bounds that specify how much uncertainty the user
o increase, while qt_mght they tend to decrease. Th's. SU9s willing to tolerate; such bounds will be intuitive to many
gests that the transition model should be different at d'.ﬁer'scientific and technical users, as they are the same as the con-
ent times of_the day. On_e_way to addr?sls th|s; problem is b¥idence bounds used for reporting results in most scientific
Iearn!ng a different transition modpﬁ(X ! |.X ) for each fields (c.f., the graph shown in the upper right of Figure 2),
hourz_ .Of the day. Ata partlculqr time, we simply use the though we are also exploring techniques, such as visualiza-
transmcl)_n rgctxdemod(t, 2:.1)' Th'f. idea can, of course, be tion, to allow the layperson to interpret query results.
ger(])er:?elazs\/e %gvee:)g;ilnce\;;?ﬁns' Xt | olt) In this example, th_e user is interested in estimates of the

: . 1L o n. ' value of sensor readings for nodes numbered 1 through 8,
the prior pdf for timet + 1, we can again incorporate

i1 : e within .1 degrees C of the actual temperature reading with
gzi(mf asurifngf? t?ol_“tT?)dith pgr;tifi oT dlistc;i?)tl?':irgrr:gat 95% confidence. After consulting the model, the system re-
L X ,

time ¢ + 1 given all measurements made up to time 1 alizes that the model is not sufficiently accurate to answer
This rocegs is then repeated for time 2 an% o on THe the query with the specified confidence, and it decides that
b L P 0 0N e i the most efficient way to achieve that confidence level is to
pdf for the initial timet = 0, p(X7,...,X,), is initialized db | f d 2 and
with the prior distribution for attributed ¥ read battery voltage from sensors 1 and 2 and temperature
_ prr e from sensor 4. Based on knowledge of the sensor network
2.3 Architecture topology, it generates asbservation plarthat specifies how

Given this basic structure for models, we show how they fit!® acquire those samples.§. which route to use to visit
into a probabilistic query answering architecture. Parts ofN€ relevant sensors), and sends the plan into the network,
this architecture were laid out in our work on BBQ [22], yvhere the appropriate readings are c_oIIected. These read-
though we have extended the architecture here to suppofids aré used to update the model, which can then be used to
several new kinds of queries as described in Section 4 b&energte query answers .Wlth'SpeCIerd confidence intervals.
low. One of our specific goals is for our architecture to be ~ Notice that the model in this example chooses to observe
model-agnostici.e., as long as a new model conforms to a the voltage at some nodes des_plte the fact that the user’s
basic interface, it requires no changes to the query proce§iUery was over temperature. This happens for two reasons:
sor and can reuse the code that interfaces with and acquiresl. Correlations in value: Battery voltage and temper-
particular tuples. ature often vary together, since batteries are some-
Figure 2 illustrates our basic architecture through an ex-  what higher voltage at warmer temperatures. For many
ample of a probabilistic model running over a sensor net-  types of batteries (such at the lithium-ion cells used
work. For other environments that involve data acquisition in many mote deployments), this effect is quite pro-
(as we note in Section 3 below), this basic architecture ap-  nounced €.g, we observe about 1% variation per de-
plies unchanged, with the main difference being the data  gree on motes). Local variations in voltage are much
acquisition mechanism. In non-acquisitional environments,  more likely to be due to temperature fluctuations than
models can still play an important role, as we note in Section  decreased capacity, since if battery voltage drops at all
3. as a battery’s storage dwindles, it will vary over a much
Users submit queries to the database as in a traditional longer time scale.
database, though we allow some unusual types of queries2. Cost differential: Depending on the specific type of
(see Section 4). One such class of queries is standard SQL temperature sensor used, it may be much cheaper to

ueries augmented with error tolerances and target confi-



sample the voltage than to read the temperature. Fadevices, such as BBQ, could have significant impact in a
example, on sensor boards from Crossbow Corporanumber of areas, as outlined by some case studies described
tion for Berkeley Motes [15], the temperature sensorin this section. Although our architecture is targeted pri-
requires orders of magnitude more energy to samplenarily at acquisitional environments, some of the systems
than simply reading battery voltage. A primary goal of we discuss do not fall into this category (e.g., database cost
our work is to use models to help decide which sensorgstimation) and can still benefit from our core probabilistic
are significant and worth acquiring, given differential modeling technology.
data acquisitional costs and the user’s data demands (
specified in queries). T o
Thus, one of the key properties of many probabilistic mod-"V& Pegin with several sensor-network applications: ,
els is that they can capture correlations between differerfplilding control: Sensor networks have a number of appli-
attributes. cations in control and automation in buildings. For example,

In general, the software that runs on each of the node t_he_r than monitoring temperatures at just a few points in a
in the network (shown in the small box on the bottom-left Puilding, as is done in most HVAC systems today, the sen-
of Figure 2) includes some code to facilitate model-base® N€twork can monitor temperatures throughout the build-
guery execution. Theredicate checkeis in charge of ap- Ing, and regula}te more e_ffectlngy the power generation and
plying probabilistic predicates to determine if a particular ®UtPUt Of heating and air conditioning systems [44]. Bat-
query answer is worth transmitting — this is needed to helg€y Powered sensors are desirable because they can be de-
execute continuous queries that are looking for outliers oployed much more cheap_ly In existing b“"d'r?g infrastruc-
other exceptional conditions. It executes against a local imtUres: However, for batteries to be cost effective, they must
age of the model which captures the state and behavior ¢ftSt @ fairly long time. Our modeling techniques make it
the local node and its relationship to other nodes. d&i= po§s!ble to capture .|nf0rmat|on .that could be used in such a
management layés in charge of managing typed tuples of buﬂdmg _control environment (with boun_ds on _the error and
data, which it builds up by calling down into tiaequisition ~ Propability of exceeding that error) while visiting a small
layer. Note that, in the example described here, the predi_number of nodes, thus, significantly extending the lifetime
cate checker and local model are not needed, because (in tHi5the network. _ _
case) the model is stored centrally. In general, Centra|ize§ensorfallure detection:In long-term enwron_mental sens-
models make query planning easier since they have acce) deployments, sensors are known to be failure prone [63];
to state in a single location, but are more expensive (in termif) Many cases these failures are “Byzantine” — that is, nodes
of communication or energy), because they must collect thaf® Not stop, but rather simply produce erroneous output.
state to a single location rather storing it locally at the nodes>Uch failures may show up as outlier values, or, more gen-

There are thus four major steps to query processing in ouf'ally: generate sensor readings that follow unexpected pat-
architecture- terns. Thus our outlier detection queries should be able to

detect them. Here, probabilistic models and statistical tech-
: | hich will allow i h niques provide the basis for detecting such unexpected pat-
servation plan which will allow it to answer the query (a5 Using fault injection techniques, and by studying fail-

to within the specified bounds at a minimal cost. ures from previous deployments, we can build alerting tools
2. The plan is executed by the network, collecting datay, o+ can detect failed and misbehaving sensors.

from relevant nodes (and possibly filtering out some re'Highway traffic monitoring and optimization: As we

sults by con§ult|ng an In-networkver3|on ofthe mOdeI)‘noted in the introduction, traffic sensor data (as currently

3. The model is updated with results collected from themade available by the California Department of Transporta-
net_work. . . _ . tion [9]), consists of data from hundreds or thousands of sen-

4. Using basic probability computations (Section 2.1), thesors (typically, these are metal loops embedded in the free-
query answer and confidence bounds are computed. way that use inductance to record as cars pass over them).
We note that he user in Figure 2 could have requeste@ased on our studies over several days of the data from these
100% confidence and no error tolerance, in which case thﬁ/eb sites, it appears as though such sensors are often of-

model would have required us to interrogate every sensofline — Figure 3 shows a screenshot from a CalTrans Java
Conversely, the user could have requested very wide confipplet fttp://www.dot.ca.govi/traffic/ ) look-
dence bounds, in which case the model may have been abiigy at the San Francisco area during rush hour on 8/4/04. In
to answer the query without acquiring any additional datahis case, the larger circles to the left and right of the road-
from the network. ways represent the speeds on the two sides of the freeway;
Given this basic introduction to our architecture, we nowgreen and yellow circles (the lightest in color, when viewed
turn our attention to some of the ways in which our tech-in grayscale) represent speeds above 15 MPH, whereas red
niques can be applied. (dark) circles represent slower speeds. Gray (intermediate
A darkness) circles with black dots in the middle represent of-
3 Applications fline sensors. Notice that a few sensors at the west edge of
Systems that exploit statistical modeling techniques and opthe Bay Bridge indicate traffic there is slow, but that many
timize the utilization of a network of resource constrainedsensors around it are offline. It is not clear if travellers

%% sensor applications

1. Using the model, the query optimizer generates an ob



ing emissions). Outlier and influence queries have potential
application in detecting this sort of tampering.

3.2 Non-sensor applications

There are also a wide range of non-sensor applications that
can benefit from our probabilistic model-based approach.
Network monitoring: Network monitoring, even in wired
networks, has the potential to consume a significant propor-
tion of available bandwidth. For example, on a typical edge
gateway in a large university, per-flow statistics are collected
to identify users and applications that are potential security
concerns or who are over-utilizing the network. Such statis-
tics constitutes tens of MB/sec of data, and, even on a well-
provisioned inter-university network, collecting a complete
set of such statistics exhausts the CPU and bandwidth capa-
bilities of edge routers [40]. Current practice is to randomly
sample a subset of flows and store just the sample. Sim-
ilarly, in wireless networks, the collection of time-varying
Figure 3: Screenshot from the California Department of Trans- link quality and congestion information can impose a signif-
portation road sensor website in the Bay Area. Green dots repic@nt overhead, especially in dynamic networks where such
resent roads where the traffic is travelling faster than 45 MPH; information may change rapidly, requiring frequent link-
yellow represents traffic moving 15-45 MPH, and red representss@mpling. We can use probabilistic modeling techniques to
traffic moving at speeds less than 15 MPH. Gray circles with blackeStimate and track loss rates, congestion information and se-
dots (added for clarity) represent offline sensors. curity concerns €.g, types of flows that are likely to use

) ) - ) unusual amounts of bandwidth or are otherwise outliers),
should avoid the Bridge, or if this is a localized anomaly exploiting correlations to avoid acquiring data that can be
that will not cause long delays. Feeding such data to a routgferred from a well-chosen subset of available readings.
planning algorithm is likely to cause it to do very strange patabase summariesCapturing the joint data distribution
things if it tries to apply linear interpolation or other simple of multi-dimensional data sets through compact and accu-
techniques to guess traffic speeds. In contrast, a probabiligatesynopseis a fundamental problem arising in a variety of
tic _model can use Qata from times when the sensors WeTlgractical scenarios, includirguery optimizationquery pro-
Qn|lne, Comb|-ned W|th the data from a feW Of the nodes, t0f|||ng, andapproximate query answering:ost_based query
infer the missing speeds. optimizers employ such synopses to obtain accurate esti-
Structural and factory health monitoring: A popular  mates of intermediate result sizes that are, in turn, needed to
application for sensor networks igreventative mainte- evaluate the quality of different execution plans. Similarly,
nance[37], where structures and industrial equipment arequery profilers and approximate query processors require
monitored for early signs of failure. A widely used tech- compact data synopses in order to provide users with fast,
nique for failure detection involves measuring changes iruseful feedback on their original query [11, 59]. Such query
the phase between vibration signals from groups of sensoffgedback (typically, in the form of aapproximate answér
— the intuition being that if two parts of a piece of equip- allows OLAP and data-mining users to identify the truly in-
ment are solidly connected, they will vibrate in-phase, buteresting regions of a data set and, thus, focus their explo-
if they suddenly become out-of-phase with each other, thatations quickly and effectively, without consuming inordi-
is a sign that something is wrong. Probabilistic models pronate amounts of valuable system resources. Further, users
vide a convenient way to determine the components that arean make informed decisions on whether they would like
expected to vibrate in-phase with each other, and outlier deto invest more time and resources to fully executing their
tection techniques like those used for sensor failure detectiogueries.
can identify low-probability changes in the phase structure, The idea of using probabilistic modeling techniques to
indicating the possibility of impending failure. build synopses has already been explored [18, 27]. As this
Intrusion detection and tampering: As a part of an in- previous work shows, using probabilistic models to capture
volvement in MIT's new Center for Information Security and exploit the correlations in the data can lead to signifi-
and Privacy (CISP) [49], we are investigating technigues forcantly more compact summaries. The techniques we have
intrusion detection in wireless and sensor networks. In sendeveloped can be directly applied in this context as well;
sor networks, there are a range of physical attacks that inh particular we are interested in answering more complex
volve tampering with devices or sensors. Examples includgueries as well as in providing probabilistic guarantees to
intruders seeking to hide information about their presencéhe user.
or trying to cause a control or regulatory system to misbedLoad shedding in streams:Load-shedding is cited as a re-
have €.g, people often 'hack’ computers in their cars to in- quirement in many stream-based query processors [52, 10].
crease performance, possibly decreasing safety and increaBhe Aurora [10] project proposesemantic load shedding




where input tuples that correspond to particular output valcould be accurately predicted by exploiting cross-sensor cor-
ues are considered more important than other tuples (anelations (in all cases, we had less than the 5% allowed er-
are thus not shed). The authors of Aurora propose a schenmers when we compared the predicted predicate values to the
where the query plan is “reversed” to determine such inputactual values from the test data). Notice that different pred-
output mappings, but for general query plans, such an ageates require observation of different numbers of sensors at
proach is infeasible, since operations like joins and aggredifferent times of day — this is because of the natural tem-
gates are not readily invertible. As a more tractable alterperature distributions in the garden that our model is able to
native, we can use probabilistic models to determine the reexploit. For example, during the day, the temperatures are
lationship between inputs and outputs, keeping input tuplegypically significantly higher than the top end of the range
that have a high probability of mapping to valued outputs.specified in first predicate (16-17 degrees). Because of this,
These probabilistic relationships may include correlationgduring the day, very few observations need to be made to as-
between different fields in the input tuples, so that, for ex-certain that the predicate is false with sufficient confidence.
ample, the model may determine that intermediate join tu-
ples have a low probability of producing a high-value out-
put, even though the base tuples of the join both had a high e oo
value prior to the join. == Range (21-22]
Monitoring distributed streams: Recently there has also
been an increasing interest in distributed data streams,
data streams that originate and are processed in a distributed
fashion [23, 13]. Though similar to sensor networks in
many aspects, the optimization goal in such systems is net-
work latency, not the battery life of the sensors. The IrisNet
project [23] proposes use of caching to reduce the latencies
incurred in query answering. We believe a model-based ap- 0 ‘ ‘ ; —— ‘
. 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
proach can lead to both better answer quality, and a reduc- Time of Day
tion in latencies, especially in applications such as the motiFigure 4:Percentage of observed sensors versus time of day for a
vating parking space findeapplication of IrisNet. 36 hour period over 11 sensors deployed in the Berkeley Botanical
; Garden for three different range predicate queries. In this case, we

4 New queries setd = 5% (95% confidence).
These applications require a range of new queries that non-
probabilistic database systems are ill-equipped to answer. I@utlier queries: Outliers are essentially events of low prob-
this section, we summarize the range of new queries that wability, and use of probabilistic models provides an excel-
are working to support. lent mechanism to detect outliers. To detect outliers, the
Probabilistic, approximate queries: The most basic class user could ask the system to report whenever any attribute
of queries that we anticipate users to ask are probabilistivalue occurs that has a low user-specified probability of oc-
and approximate variations of traditional SQL queries. Ex-currence, or that differs from its expected value by more
amples of such queries include queries askingtéonper-  than some threshold. As an example, a user might register
ature at a certain location in a building, @verage speed @ continuous query that reports any time the bandwidth on
along a segment of a highway. We can support such queriébeir wireless network is more than three times the expected
by using additional predicates in SQL expressions that spealue for the current time of day. Note that, outlier detection
ify the confidence that the user wants in the answer, or thavill typically require continuous observation of the underly-
error she is willing to tolerate. This class of queries coverdng attributes at the motes, and the main advantage of using
traditional exactqueries which can be asked by setting themodels in this case would be to save communication cost
confidence required to 100%. (though knowledge of how often, and under what circum-

Our initial effort in BBQ provided support for this type stances outliers are expected to occur may be used to reduce
of query; Figure 4 shows one advantage of approximatéhe observation costs as well).
queries: improved performance. In this case, we ran threBrediction queries: These queries estimate the value of an
range queries over temperature readings from a 11 nodgftribute or predicate either (1) at a location where there are
sensor deployment in the Berkeley Botanical Garden. Weurrently no available devices, or (2) at some time in near
trained our model for 20 days and ran test queries over a 1future, with the best precision (and report that precision and
day period. We used pre-collected data so we could verifigonfidence in the estimate). For example, a user might ask:
the accuracy of our approximate query answers during thi§What will the temperature in Room 938 be in 10 minutes?”
test period. If we had asked an exact query, we would hav&imilarly, users might post “what-if” queries, to discover
been required to observe the value of every sensor at ea¢tow a change in one attribute might affect other attributes
point in time; using our Gaussian-based probabilistic modet for example, in a system monitoring application, a user
with queries specifying 95% confidence, we were requirednight ask how increasing bandwidth on a given link would
to observe the values of only a small fraction of the sensorgncrease CPU utilization on a given processor.
The truth values of the predicates on the unobserved senso@ueries over hidden variables: In many scenarios, there
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may be interesting variables that cannot be directly obienge.

served, but that can be reasoned about. For example, Data acquisition: Irrespective of the model selected, when

a sensor network that has sensors for monitotérgpera-  and how to acquire data is one of the key issues that needs
ture, pressureandlight, but not for monitoringain, we can  to be addressed. In most of the scenarios that we envision
never “observe” rain directly, but it may be possible to infer a model-based system being deployed, the cost of acquiring
whether it is raining or not based on the values of the observand/or transferring data is the dominant cost. For example,
able variables. There has been much work on hypothesizing sensor networks, both the cost of sampling data, and the
about hidden variables (in the above example, we knew becost of communicating it to the basestation are high — for ex-
forehand about existence of an unobservable variable; theggmple, in a recent analytical study, we estimated that 98% of
may be cases where we have first infer that a hidden variablenergy in a typical sensor network data collection scenario
exists), and learning structures containing them [25]. We exwas consumed sampling sensors or communicating. In dis-
pect to be able to leverage these existing techniques in ouributed system where the data is being generated all over
work. the world, minimizing thdatencyin answering the query
Influence queries: Use of probabilistic models also opens could be the optimization goal. There are two aspects to this
up avenues for asking sophisticated analysis queries. On@oblem:

such class of queries amgfluence querigswhere the user « Whento acquire data: This is partly dependent on
might want to know which attributes are most closely cor- the model and the user query. To maintain the re-
related with the value of a particular attribute. Such queries quired confidence in the answers it provides, the model
can be used to help infer causality or determine when sen-  ¢4d ask for more samples of the underlying data. In
sors in an area are redundant. For example, a user might many cases, we expect that the same confidence may

ask the question: “What percentage of the traffic on fing be achieved in many different wayise., by sampling
predicted by the traffic on links andk over all time?” different sets of attributes of the data. Because of this,
5 Challenges the question ofvhento acquire data will typically be

tightly integrated with the question dfow it is ac-
Given these applications and queries, we now discuss some  quired.
of the challenges they present, followed by a set of tech- « How to acquire data: Most of the environments we

nigues we are exploring to address these challenges. have discussed so far exhibit highly non-uniform cost
Model selection: Choosing the best model for the given structures. For example, in sensor networks, the costs
guery workload and environment is a key issue. The choice  of sampling different attributes can be wildly different.
of model affects many aspects of our approach: Also, the multi-hop nature of communication in sen-

« Accuracy of the answerd®ecall that we provide prob- sor networks means that sampling sensors closer to the

abilistic answers to the user, and the confidence in the ~ base station is cheaper than sampling far away sensors.
answers provided relies on the assumption that the unissues surrounding when and how data is collected are
derlying data follows the model with sufficient accu- amongst of the most interesting algorithmic challenges in
racy. If this is not the case, the answers provided bythe development and deployment of model-based systems.
our models could be erroneous. Training and retraining: In general, a probabilistic model
* Ability to answer certain types of querieSome mod- s only as good at prediction as the data used to train it. For
els are more naturally suited to answer certain typesnodels to perform accurate predictions they must be trained
of queries. For example, outlier detection requires then the kind of environment where they will be used. That
system to continuously sample sensors and check the@oes not mean, however, that well-trained models cannot
against the model to see if they have a low probabilitydeal with changing relationships over time; for example, the
of occurring. To do this efficiently, we may require a model we used in BBQ[21] uses different correlation data
model that is distributed across the nodes in a system.depending on time of day. Extending it to handle seasonal
* Algorithmic aspects of queryingThe techniques to variations, for example, is a straightforward extension of the
query the model efficiently are highly dependent on thetechniques we use for handling variations across hours of the
choice of the model. The space and time requirementgay. Typically in probabilistic modeling, we pick a class of
of different models can vary by orders of magnitude. models, and use learning techniques to pick the best model
Selecting a suitable model for the data is one of the criticaln the class. The problem of selecting the right model class
challenges in the deployment of model-based systems.  has been widely studiee.@, [50]), but can be difficult in
Transparency in model selection and usageAlthough ~ Some applications.
different models may be better suited for different environ- In Section 6, we outline a more general Bayesian ap-
ments and for different classes of queries, developing a conproach that integrates querying of the data with learning.
pletely new system for each different model may be a wast®ata model and query language:Our initial efforts have
of time and development effort. Ideally, using a new modelfocused on building simple Gaussian models and demon-
should involve little to no effort on the part of user. Given a strating that they can answer certain classes of queries [21].
large variety of models that may be applicable in various dif-However, we do not have an integrated acquisition-oriented
ferent scenarios, this may turn out to be a tremendous chattatabase system that includes notions of uncertainty or mod-



eling, and it is not clear how such models can be integrated
in a general way into the existing relational data model and
query languages. One possible data representation is to at-
tach a probability distribution to each data point — several
proposals for probabilistic data models of this type have
been made in the literature [42, 3, 24, 27], and we may be
able to adapt this existing work. None of these approaches,
however, focus on the data acquisition or mode|-|earning |SF|gure 5:-MOCkup visualizati_on of a dlsplay used to visualize un-
sues. Instead, they concentrate representing user-specifig@ftainty in a stream of readings coming from a sensor.
uncertainty in the database; the approaches do not help us
address our principal challenge of acquiring appropriate data
to answer user queries at the desired confidences.

As an initial step towards supporting uncertainty in our
query language, we currently represent bounds as addi-
tional query predicates in SQL expressions, as in the query
shown in Figure 2 above, but there are a number of outstand-
ing questions about how a system deals with readings with
differing levels of uncertainty. For example, how can read-
ings with different uncertainties from different sub-queries
be composed into a final query result? What should we do
if our models cannot answer queries to a given confidence
level? Are there other representations besides confidence
that we should considee(g, absolute or relative deltas)?
Exposing uncertainty to the user: One issue with expos- X
ing uncertainty to the user is that it requires him or her torijgure 6: Mockup visualization of uncertainty display of a set of
understand the basics of probability. Although this may beemperature sensors (circles outlined in black) on Nantucket Is-
acceptable for scientific users who are used to statistical tesignd. Confidence in readings is represented by colored-dot density.
of significance and other confidence metrics, for the lay-
person, such notions will be quite confusing. One possishown on a portion of Nantucket Island). In this case, colors
bility is to convert probabilistic answers to definite answersfeépresent temperature estimates; large solid circles represent
when result confidence is above a give threshold, Suppresgae locations of sensors. White circles are inactive sensors
ing the uncertainty report. Though at first this appears to béhat were not involved in data CO”eCtilon.' Densely colored
no better than what traditional uncertainty-unaware databad€gions represent areas where there is high certainty on the
do, it is in fact substantially better as the user is never exteading, with sparsely colored regions having low certainty.
posed to answers that do not have a high probability of beThese certainties can be derived, for example, from a proba-
ing true. For example, in the case of the California Freewaypilistic model that represents correlations between the active
sensors given in the introduction, users wouldn't receive avSensors and the inactive sensors. Such a visualization al-
erage speeds for segments where the uncertainty was lol@Ws users to quickly determine where more sensors may be
preventing them from inadvertently using congested routesneeded, and to understand how well sensors are monitoring

The other possibility we are exploring is to avoid these? ar€d of mtere'st. _
concerns through the use of visualization tools. Figure 5 We are planning to build support for both types of uncer-
shows a visualization mockup of uncertainty in readingstainty visualization into our system.

from a single sensor. It shows a stream of temperature reagontinuous vs. snapshot queries:We plan to support
ings from a single sensor; the small circles represent pointgoth snapshot queriese., one-time queries about the cur-
of time when readings are actually captured. The contourgent state of the system, and continuous queriesqueries
represent different levels of uncertainty in readings. Theyhich the user wants to know the answers of on a peri-
darkest, narrowest band corresponds to a band of confidenggjic basis. Depending on the optimization goals, these two
about the most probable value of the sensor — in this casgjasses of queries pose different optimization challenges.
this band. The lighter, outermost band captures the ranggs “pull”. Pushing too much data towards the user can lead
of readings where the true value lies with 99% probability.tg wasted communication; on the other hand, having the sys-
This visualization could be built using a probabilistic model tem pull data for every snapshot query could lead to unrea-
such as our Gaussian model and provides an intuitive reprépnable latencies. For a continuous query, we must figure
sentation of uncertainty. out which nodes should stay active, when to do sampling
Figure 6 shows a second visualization of uncertainty in-and how to communicate the data from those nodes to the
formation for a query that collects readings from a set ofbase station. Though it is possible to optimize the data ac-
geographically distributed sensors (in this case, sensors agiisition process heavily, dynamic sensornet topologies can
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Figure 7:Structure of graphical model learned for the temperature
variables for a deployment in the Intel Berkeley Lab [56].
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6 New techniques | © ' d
In order to address the wide range of applications and newigure 8:Bayesian approach for learning the parameter of a coin:
queries described in Sections 3 and 4, and to surmount tH@) prior distribution, Beta(1,1); posterior distributions over the
challenges in Section 5, it is insufficient to simply adaptcoin parameter after observing: (b) 1 head, 1 tail; (b) 2 heads, 1
existing methods in data bases, machine learning and digail; (b) 29 heads, 19 tails.

tributed systems; we need new integrated approaches. Thliﬁ

i i techni that dd £ th ed both for learning a model from data, and to evaluate
section outiines techniques that can address some of tNexl, ¢\ rant model, addressing many of the model selection
issues as well as research directions that we are currentg

ursuin sues discussed above.
P g _ S Additionally, graphical models allow us to efficiently ad-
6.1 Representations for probability distributions dress hidden variables, both in terms of answering queries

Probabilistic models are the centerpiece of our approach. |1And of learning about hidden variables [25]. In the example
Section 2.1, we described very general probability distribuin Figure 7, each node could be associated with a faulty sen-
tions1p(X1’ )(27 . ,Xn) Choosing the appropria‘[e repre- sor hldden variable [43] When a node is faulty, the sensed
sentation for such distribution, allowing us to represent comValue is, for example, independent of the true temperature.
plex correlations compactly, to learn the parameters effecBY exploiting correlations in the temperatures measured by
tively, and to answer queries efficiently is one of the biggesthe nodes and sparsity in the graphical model, we can effi-
challenges in this research. Probabilistic graphical model§iently answer outlier queries.
are a very appropriate choice to address these issues [57].  Finally, there is vast graphical models literature for ad-
In a (probabilistic) graphical model, each node is associdressing other types of queries and models. For example,
ated with a random variable. Edges in the graph represeribese models can be extended to allow for efficient repre-
“direct correlation”, or, more formally, conditional indepen- sentation and inference in dynamical systems [8, 17], and to
dencies in the probability distribution. Consider, for exam-answer causal queries [58].
ple, the sensor deployment shown in Figure 7, where th<=6 5
attributes are the temperatures in various locations in the In=
tel Berkeley Lab. The graphical model in Figure 7 assumesThus far, we have focused on a two-phase approach: in the
for instance, that temperatures in the right side of the lab aréirst phase, we learn the probabilistic model, and in the sec-
independent of those in the left side, given temperatures innd, we use the model to answer queries. This is an artificial
the center¢.g, 7> andTy; are independent giveh o, Ts2,  distinction, raising many questions, such as when should we
andTs3). stop learning and start answering queries. We can address
The sparsity in graphical models is the key to effi- this issue by applying Bayesian learningipproach [6].
cient representation and probabilistic querying [14]. In |n a Bayesian approach, we start withrior distribution
discrete settings, for example, a naive representation of(@) over the model parameteés. After observing some
p(X1, Xz,..., X,,) is exponential in the number of at- yalue for the attributes, we use Bayes rule to obtairpas-

tributeSn, while a graphlcal model is linear i}mand, in the t-erior distributionover the model parametepé@ | X):
worst case, exponential in the degree of each node. In addi-

tion to reducing space complexity, reducing the number of p(0 | x) < p(x | O)p(O). 1)

parameters can prevent overfitting when the model is learned

from small data sets. Similarly, answering a query naively isThis process is repeated as new data is observed, updating

exponential inz, while in a graphical model the complexity the distribution over model parameters.

is linear inn and exponential in the tree-width of the graph.  Consider, for example, the task of learning the parame-
In our setting, in addition to allowing us to answer queriester of a biased coin; that is, the coin flips are independently

efficiently, graphical models are associated with a widedistributed according to the usual binomial distribution with

range of learning algorithms [34]. These algorithms can bainknown parameter. Typically, for efficiency reasons, we

Integrating learning and querying



choose a prior distribution that yields a closed form repre- SELECT" FROM sensors

WHERE light < 100 Lux AND temp > 20° C

sentation of the posterior in Equation (1); when such closed-

form solutions are possible, the prip©) and the likeli-
hood functionp(x | ©) are said to beconjugate In our

example, Beta distributions are conjugate to the binomial Gl D
distribution of the coin. Figure 8 illustrates the process of
Bayesian learning for our coin example: We start with the Traditional Plans A Conditional Plan
Beta(1,1) in Figure 8(a); here, the distribution over possibleFigure 9: A conditional query plan that uses different ordering of
coin parameters is almost uniform. Figures 8(b)-(d) illus-query predicates depending on the time of day.

trate the posterior distribution over the coin parameters aftefns gbservation can be utilized to construatanditional

succgssjve _observations. As more coin flips are observegﬂan as shown in the figure that checks the time of the day
the distribution becomes more peaked. Thus, when answefis; and evaluates the two query predicates in different or-

ing a query about the coin after a few flips, our answer will g1 gepending on the time. Assuming that the selectivity of
be uncertain, but after making a larger number of Observat'hetemp predicate i% at night, and the selectivity of the

tions, the answer will have significantly lower variance. Lléght predicate i% during day, the expected cost of this
|

These ideas can be integrated with our approach to avoigi, \vill be 1.1 units. a savings of almost 40%.

the need for a separate learning phase. Consider the Gaus- . . . .
sian distributions used in the BBQ system. Initially, we may More generally, in continuous queries, additional cost

be very uncertain about the mean and covariance matrix gtavings can be obtained by exploiting similarities between

this distribution, which can be represented by a highly unJueries. For example, if we know that the next query wil

. X ) . . ._require an attribute at a particular nofleand the current
certain prior (the conjugate prior for the covariance matrix | b | b d hen it i b
is the Wishart distribution). Thus, when faced with a query,query plan observes values at nearby nodes, then it Is proba-

. bly better to visit node as well in the current time step.
we will need to observe the value of many sensors. How- ) . .
The optimal solution to such long-term planning prob-

ever, using Bayesian updating, after we observe these senslce)}rmS can be formulated as Markov dedision process

values, in addition to answering the query at hand, we be: ;
come more certain about the mean and covariance matrixcg DP) [5, 60]. In an MDP, at ea(_:h time step, we observe
e current state of the system (in our setting, the current

the model. Eventually, we will be certain about the modeltNe curr .
parameters, and the number of sensors that we will neegIStrIbUtlon and query), and choose an action (our observa-

to observe will automatically decrease. This integrated apt'On plan); the next state is then chosen stochastically given

proach achieves two goals: first, the learning phase is confl'® current state (our next query and distribution). Unfor-
nately, traditional approaches for solving MDPs are expo-

pletely eliminated; second, using simple extensions, we ca

add dynamics to the parameter values, allowing the modé'rential in the number of attributes. Recently, new approx-
to change over time ' imate approaches have been developed to solve very large

MDPs by exploiting structure in problems represented by
6.3 Long-term query plans graphical models [7, 32]. Such approaches could be ex-

Modeling the correlations between different attributes in thd€nded to address the long-term planning problem that arises
system and also, the correlations across time, enables ttf&Our setting.

query planner to consider a much richer class of executiog 4
plans than previously possible.

One such interesting class of execution plans that we havéhus far, we have focused on algorithms where the proba-
explored in our previous work [20] areonditional plans  bilistic querying task occurs in a centralized fashion, and we
These plans exploit the correlations present in the data b§eek to find efficient network traversal and data gathering
introducing low-cost predicates in the query execution plarfechniques. However, in typical distributed systems, nodes
that are used to change the ordering of the more expensi@s0 have computing capabilities. In such settings, we can

In-network processing

predicates in the query plan. obtain significant performance gains by pushing some of the
As an example, consider a query containing two predi-Processing into the network.
catestemp > 20° C, andlight < 100 Lux over a In some settings, we can reduce communication by ag-

sensor network. Let thapriori selectivities of these two gregating information retrieved from the network [45, 35].
predicates bel and 1 respectively, and let the costs of We could integrate these techniques with our models by con-
acquiring the “attributes be equal to 1 unit each. In thaditioning on the value of the aggregate attributes rather than
case, either of the two plans a traditional query processaihe sensor values. Such methods will, of course, increase our
might choose has expected cost equal to 1.5 units (Figurelanning space: in addition to finding a path in the network
9). However, we might observe that the selectivities of theséor collecting the required sensor values, we must decide
two predicates vary considerably depending on whether thehether to aggregate values along the way.

guery is being evaluated during the day or at night. For in- More recently, a suite of efficient algorithms has been de-
stance, in Berkeley, during Summer, the predicatécomp veloped for robustly solving inference tasks in a distributed
is very likely to be false during the night, whereas the predfashion [31, 56]. In these approaches, each node in the
icate onlight is very likely to be false during the day. network obtains a local view of a global quantity. For ex-



ample, each node computes the posterior probability over the query processor.
subset of the attributes given the sensor measurements at all Several proposals for probabilistic data models have been
nodes [56]; or each node obtains a functional representatiomade in the literature. For example, ProbView[42] provides
(e.g, a curve fit) of the sensoe(g, temperature) field [31]. a data model based on discrete pdfs, and shows how to an-
Given such distributed algorithms, we can push some ofwer a number of queries in such a domain. Getoor [26] ex-
the probabilistic query processing into the network, allow-plores a number of probabilistic extensions to the relational
ing nodes to locally decide when to make observations anéhodel, and shows how statistical models can be learned
when to communicate. When integrated with a system likérom relations. Barbarat al. [3] present some initial re-
BBQ, these methods allow the user to connect to any nodsults on probabilistic data models. Faradjianal. [24]
in the network, which can collaborate with the rest of thepresent a data model based on continuous pdfs. None of
network to answer queries or detect faulty nodes. these approaches focus on the data acquisition issues, but
7 Related work rather on representing_uncertainty in the Qatabase, anq_on
types of query processing that can be applied to probabilis-
There have been other model-based approaches for quefi¢ attributes.
answering that rely on a model-like abstraction [64, 55, 54, The probabilistic modeling techniques we describe are
39]. In most cases, the related work assumes a client-servgsed on standard results in machine learning and statistics
relationship, where the model runs on the server and moni(e_g, [62, 50, 14]). There are also a number of proposed
tors the value of a number of attributes at the clients. Thesgschniques for outlier detection [4, 1, 2]. We believe, how-
approaches maintain a bound or trajectory over each of thgyer, that our approach is one of the first architectures that
attribute values at the server, using that bound to predict thegmbines model-based approximate query answering with
Value. When the ClientS notice that their Value no Iongerquery processing and Optimization and an uncertainty_aware
fits the model, or when the server has sufficient bandwidthyata model and query language.
or energy, it will directly observe the attribute values and
update the model. Our approach differs from previous re8 Conclusions

search in that it uses mqltidimensional _probab_ilistic r_n_odelsl.he integration of database systems with probabilistic mod-
that track the relationship between attributes in addition toeling will enable database systems to tolerate loss, detect

gﬁr\gli;’:iii : f azﬁgzllvthfj]t:SmtggglqtsoeIl]/ec?étzTtisvzlféa(;g[?ns}gltgss, 0?fulty or erroneous inputs, and identify correlations that can
' b e used to improve query performance while enabling a

many attributes when a single attribute is observed; mOdel?ange of new types of queries. Such models are particu-

can be built across atiributes that are directly obsereeg] ( larly useful in acquisitional settings such as sensornets and

l('ght :ﬁﬁ‘g'g}?gaﬁf rgn?jeggﬁ\r/z)d ;[?ri\tl)vuetilasag %gﬁrsﬁgfsmeﬁntemet monitoring where the data acquisition costs are typ-
-9, Y) "~ ically very high; even for non-acquisitional applications, be-

rate). ing able to deal with noisy and lossy data in a seamless

roTcre]:irs?nhaii ?ﬁsré;ti?aisgtgr;vr%knﬁ n 2%2:10)3;??6”?(;] deétfwanner, and the ability to model and reason about data cor-
b 9 Y. 9 elations can prove to be tremendously useful. There are

like synopseor query answering much as we rely on proba—a number of architectural and algorithmic challenges asso-

bilistic models. For example, the AQUA project [30, 28, 29] ciated with fully integrating these techniques into database

proposes a number of sampling-based synopses that can prs(g/'stems and, although we believe we have taken some ini-

vide approximate answers to a variety of queries using %ial steps towards this end, we look forward to many years

gjgﬁ%nngjvg‘res ttote}::gﬁltair:rglﬁ ddea:iatr)métlsbeo.uﬁzgnoﬁuthpcpor?rZECOf fruitful cross-disciplinary research. We envision this re-
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