SwissQM: Next Generation Data Processing

in Sensor Networks

*

System Overview

Rene Mueller

Gustavo Alonso

Donald Kossmann

Department of Computer Science
ETH Zurich
Zurich, Switzerland
{muellren, alonso, kossmann}@inf.ethz.ch

ABSTRACT

Sensor networks are becoming an important part of the IT
landscape. Existing systems, however, are limited in two
fundamental ways: lack of data independence, and poor in-
tegration with the higher layers of the data processing chain.
In this paper we present SwissQM, a next generation archi-
tecture for sensor networks built to address these two limi-
tations. SwissQM combines a virtual machine at the sensors
with a powerful gateway as access point to the system. The
flexibility of SwissQM opens up the doors to sensor net-
works with richer functionality, data model independence,
optimised performance, and smooth integration into the rest
of the architecture. SwissQM supports adaptability (e.g.,
push down strategies), multiple users and applications, high
query turn-around, extensibility (e.g., user defined function-
ality), and optimised use of resources. The paper describes
SwissQM, the features it provides, and examples of its use.

1. INTRODUCTION

Thanks to Moore’s law, the I'T industry has seen comput-
ers getting smaller, cheaper, and more powerful during the
last three decades. Now and in the coming years, comput-
ers are increasingly being enhanced with powerful sensing
devices. Computing devices extended with sensors are also
being combined into sensor networks to tackle larger data
acquisition tasks, e.g., monitor the behaviour of a large pop-
ulation of animals [14] or monitor the climate of a large ter-
ritory [17]. Commercial applications of sensor networks in-
clude supply chain management [2], support of elderly peo-
ple [16] and security facilities for manufacturing sites and
homes [1].

*The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

3" Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

Nevertheless, building and deploying sensor networks re-
main elusive and difficult tasks. Most existing deployments
use application specific, hard-coded software. Typically, there
is little support for data independence, high level abstrac-
tions, multiple users, and, above all, integration with the
higher layers of the data processing chain. Systems are also
very rigid on how sensors can be programmed and what the
sensor network can do.

Several research projects are addressing some of these lim-
itations. Most relevant to the work reported in this paper
are three projects at UC Berkeley: TinyOS, TinyDB, and
HiFi. TinyOS [6] is an operating system for small sensing
devices based on event processing and a C derivative called
NesC. It is designed to operate on sensing devices with lim-
ited storage, processing capabilities and battery life times.
TinyDB [13] is built on top of TinyOS and provides a declar-
ative query interface (SQL dialect) to the sensor network as
well as some capabilities for in-network data processing and
aggregation. Finally, the HiFi project [5] proposes a staging
architecture to acquire, clean, and aggregate data acquired
through applications such as TinyDB. This and work such
as [7] indicate that higher-level abstractions and more pow-
erful platforms at the sensor network level are needed.

The XTream project at ETH Zurich is a recently estab-
lished research effort that aims at developing a comprehen-
sive platform for supporting the entire data cycle in sensor
networks: from the data acquisition to the data processing
and storage, including deployment, optimisation, routing,
and embedding within end user devices. This paper de-
scribes one of the key components of XTream: SwissQM
(Scalable WlreleS Sensor network Query Machine). In
short, SwissQM is intended as the next generation architec-
ture for data acquisition and data processing in sensor net-
works. Its main objectives are to provide richer and more
flexible functionality at the sensor network level, a more
powerful and adaptable interface to the outside world, data
independence, query language independence, optimised per-
formance in a wider range of settings than current systems,
and smooth integration with the rest of the data process-
ing architecture. SwissQM is based on a specialised virtual
machine that runs optimised byte code rather than queries.
As a result, SwissQM does not make any assumptions about
the query language used (e.g., SQL or XQuery), about the
deployment strategy of the underlying sensor network (e.g.,
one single network or multiple networks), and can easily
provide highly efficient multi-user support. Compared to

existing systems, SwissQM provides a generic high-level,
declarative programming model (it can support both SQL
and XQuery) and imposes no data model (e.g., relational or
XML). SwissQM is also Turing-complete and supports user
defined functions, window queries, complex event generation
at the sensor level, an extensible instruction set, sophisti-
cated optimisations, sensor over-provisioning, and overlap-
ping but distinct sensor networks. All these features make
it possible to implement in SwissQM many and important
optimisations that are either not possible or rather cumber-
some to implement in existing systems.

2. SWISSQM

2.1 Design Considerations

SwissQM has been designed with several requirements in
mind:
(1) Separation of sensors and external interface: SwissQM
should not implement any particular query language. The
programming model should be independent of the query lan-
guage used. It must also be dynamically adaptable. As
a result, the sensor nodes should not contain application
specific functionality (e.g., the ability to parse SQL or join
operators). Such functionality is treated as a dynamically
deployable extension.
(2) Dynamic, multi-user, multi-programming environment:
SwissQM should not impose restrictions on the query sub-
mission and change rate, nor in the number of queries that
can be run concurrently (beyond the inherent limitations of
the underlying hardware).
(3) Optimised use of the sensors: The only processing at
the sensor nodes should be that related to capturing, aggre-
gating, and forwarding data. Anything else should be there
only because it has been pushed down from above. This
increases the memory available for data and leaves room for
more queries and/or more sophisticated processing such as
event generation or user defined functions.
(4) Extensibility: SwissQM should be programmable to in-
clude the ability to implement user defined functions and the
ability to push down functionality from higher data process-
ing layers. Extensibility also refers to SwissQM itself: It
should be possible to dynamically extend and modify the
behaviour of SwissQM as needed.

2.2 A SwissQM Sensor Network

A SwissQM sensor network is built using a gateway node
and one or more sensor nodes. The gateway node is assumed
to have sufficient computing power and no energy or mem-
ory restrictions. The gateway acts as the interface to the
system. The sensor nodes are assumed to be resource con-
strained devices, running on batteries. The sensors perform
the actual data acquisition. In this paper we concentrate on
the Query Machine (QM), the virtual machine that runs on
the sensor nodes, and we will only explain the functionality
of the gateway when needed (see [15] for an example of the
type of processing occurring at the gateway).

The sensor nodes are organised into a tree that routes data
towards the root, where the gateway node is located (Fig. 1).
This is the same strategy as used in, e.g., TinyDB, since
a tree facilitates in-network aggregation and reduces the
amount of routing data a node has to keep. Details about
creation and maintenance of the routing tree are beyond the
scope of this paper. Here we assume that every node has a

sensor
network

node

|
|
|
|
|
|
|
|
wireless | !
|
|
|
!
|
|
|
|
|
L

Figure 1: Sensors nodes are organised in a tree
topology with the root node connected to the gate-
way

link to a parent closer to the gateway. We also assume there
is a single tree although SwissQM is being built to support
multiple independent trees and individual node addressing.

2.3 The Sensor Network Gateway

Requirements 1 and 2 have led to a more radical separa-
tion between the functionality of the sensor nodes and the
gateway that is typically encountered in sensor networks.
Since all sensor networks require such a gateway, SwissQM
has been designed to exploit the gateway as much as possi-
ble. Unless dictated by optimisation strategies (e.g., minimi-
sation of data transfer), everything that can be done at the
gateway is done there rather than at the sensor nodes. Thus,
the gateway provides all external interfaces, as well as query
optimisation and compilation facilities. At the sensor nodes
one finds only the code that is strictly needed to capture, ag-
gregate, and propagate the data. Any additional code, e.g.,
user defined functions, is located at the sensor nodes only if
explicitly pushed down by the gateway. The resulting archi-
tecture has considerable advantages. SwissQM can support
a wide variety of interfaces (as dictated by requirement 1,
e.g., SQL, XQuery, Web services) and these interfaces can
change over time without requiring changes to the code in
the sensor nodes. Sophisticated optimisation strategies can
be implemented at the gateway without affecting the perfor-
mance of the sensor nodes. The gateway is also the natural
place to implement data cleaning pipelines and virtualisa-
tion such as those described in [7].

The gateway works as follows: The gateway processes user
queries and replies with data streams. The user queries can
be expressed in various languages. The gateway processes
and combines the user queries into a smaller, more optimised
subset of virtual queries. The virtual queries are expressed
in an internal format suitable for multi-query optimisation,
query merging, subexpression matching, window-processing
optimisation, etc. The optimised virtual queries are then
transformed into network queries expressed in the byte code
understood by the sensor nodes. This three-tier mechanism
virtualises the sensor network and permits multiquery opti-
misation (requirement 2) across user queries for a more ef-
ficient use of the sensor network [15]. Thanks to the virtual

).,

group expressions Send
r'&\ r__)% send/receive

Transmission Buffer

SR

p— Bytecode
R— —
p— Interpreter

executin
program @ Operand

sensors

Synopsis

installed
programs

Figure 2: Query Machine Components

query step, it is also possible to use multi-query optimisa-
tion on queries submitted through different interfaces, e.g.,
through SQL and XQuery.

2.4 The Query Machine

Requirements 3 and 4 motivated us to implement the sen-
sor nodes as a stack-based virtual machine, the Query Ma-
chine (QM) (the name emphasises the dual role of query
engine and virtual machine). The instruction set in the
QM is a small subset of the Java Virtual Machine [11] ex-
tended with specialised instructions to reduce the size of
the programs. The QM uses a uniform type to simplify
the implementation and reduce the footprint of the QM.
All data types are represented as 16-bit signed integer types
(Booleans are represented using C-style semantics). Float-
ing point types are not supported to keep the size of the in-
struction set as small as possible (the necessary conversion
can be easily done at the gateway and that way all opera-
tions at the QM are on integers—see requirement 3). The
QM includes the following components shown in Fig. 2: An
Operand Stack that stores 16-bit elements used as operands
and results of instructions. A Transmission Buffer that tem-
porarily holds data that are to be sent or were received but
not yet processed. It is accessed through an index over the
16-bit data elements. A Synopsis data structure is used to
keep state for the execution of aggregation queries. A set of
Sensors. A set of QM Programs expressed in QM byte code
(produced at the gateway from the user submitted queries).
The current version of the QM is 7.5 thousand lines of NesC
on top of TinyOS 1.1. It runs on Berkeley Mica2 motes (At-
mel ATmega 128L micro-controller, 128 kB Flash memory
for program storage and 4 kB of SRAM for dynamic pro-
gram data such as stack and heap). The core of the QM
(byte code interpreter and associated logic) takes 23 kB of
Flash memory.

2.5 QM Bytecode

Table 1 shows the basic set of instructions of the QM.
The length of a QM instruction is 1, 2 or 3 bytes, depend-
ing whether it has zero, a one-byte or a two-byte immediate
field. The top group in Table 1 includes stack-manipulation
operations (e.g., dup, swap), arithmetic (e.g., iadd) and con-

trol instructions (e.g., if_icmple). The complete instruction
set of SwissQM is shown in Table 2 in the appendix. The
mnemonics and the semantics are identical to their counter-
parts defined in the Java Virtual Machine Specification [11].
The remaining four groups are query specific extensions.
The load/store group includes instructions for accessing the
transmission buffer and the synopsis. The sensing instruc-
tions access the physical sensors or system parameters and
push the obtained value onto the stack. Two transmission
instructions are provided: send_tb sends the content of the
transmission buffer whereas send_sy sends the current ag-
gregation state stored in the synopsis. The aggregation in-
struction merge is described in Section 2.7. Following re-
quirement 4, the instruction set is modular. As need dic-
tates (or device capabilities evolve), additional instruction
classes can be added or removed (e.g., more sophisticated
aggregation or floating point support). Additionally, when
SwissQM is ported to a different platform the instructions
of sensing instruction class have to be adapted in order to
reflect the physical sensors (humidity, barometric pressure,
acceleration, etc.) that are available on that particular plat-
form.

Table 1: Instruction set of the Query Machine
| | # instructions |

stack operations 16
arithmetic operations 11
control instructions 13
load/store instructions 9
sensing instructions 7
transmission instructions | 2
aggregation instructions | 1

Total [59 ‘

As mentioned, the core of the QM requires 23 kB of Flash
memory. The 59 instructions require another 10 kB. The full
QM with the complete instruction set uses 33 kB Flash and
3 kB SRAM (including space for dynamic program data).
For comparison, TinyDB uses 65 kB of Flash and 3 kB of
SRAM memory. As in all sensor networks [13], the pro-
gram execution is dominated by the time used to send data.
A send_tb instruction requires 25 ms for a single result
message (22 bytes) if no contention occurs at the network
MAC layer. The execution of a sampling instruction requires
about 400 ps. The execution of all other QM instructions
takes approximately 50 us or about 400 CPU cycles.

2.6 QM Programs

For the purposes of this paper we consider a network query
to be equivalent to a QM program. The translation process
from a virtual query to a QM program is through templat-
ing, a well-known compiler technique. During the transla-
tion phase the query is optimised. The optimiser precom-
putes constant parts of expressions and also identifies com-
mon subexpressions in the selection-clause list, the group-by
list and in the selection-predicate. By identifying common
subexpressions and reordering the computation of the ex-
pressions the final program size can be reduced considerably
for complex queries.

QM programs consist of three code sections, each executed
at different times. The init section is executed once upon

program start. It is used to initialise state in the synop-
sis before the program starts producing the first data tuple.
The delivery section is executed once per sampling period.
This is where the sensors are sampled, data gathered and
merged in the local synopsis. The reception section is ex-
ecuted upon arrival of a message from a child. It extracts
the data from the child’s message and merges it with the lo-
cal synopsis. As an example, consider the following XQuery
expression where sensor nodes send their ID to the gate-
way when the temperature exceeds 60°C. The temperature
sensor is sampled periodically every 10 seconds.

for $n in xt:sample($sensors, 10s)//node
where $n/temp gt 60
return $n/nodeid

In this query xt:sample is a user defined function in the
XTream scope that takes a URI (the sensors) and sampling
period as input and returns a sequence of elements. The
XML schema defines the sensor network as a sequence of
<node/> elements, of which each has a <nodeid/> and a
<temp/> element. In XQuery gt denotes the greater-than
relation. The delivery and reception sections of the corre-
sponding QM program are as follows:

.section delivery, "@10s"
get_temp # read temperature sensor
ipushb 60
if_icmple end # skip if temp<60
get_nodeid # read node’s 1D
istore 0 # store it at pos. 0
send_tb # send transmission buffer
end:

.section reception

send_tb # forward tuple from child

The temperature sensor is sampled and the reading pushed
onto the stack (get_temp, line 2). In line 3 (ipushb), the
constant 60 is pushed onto the stack. The sensor reading
and the constant are then compared (if_icmple, line 4).
If the temperature is < 60 the execution is resumed at la-
bel end, which marks the end of the section. Otherwise
the node’s identification number (deploy-time parameter) is
read (get_nodeid, line 5) and stored at position zero in the
transmission buffer (istore 0, line 6). The last instruction
in the delivery section (send_tb, line 7) sends the transmis-
sion buffer, i.e., the ID, to the parent node. When a node
receives a message from one of its children the message is
placed in the transmission buffer and the reception section
is executed. In this example, the data from the transmission
buffer is immediately forwarded (send_tb, line 11). This is
the default behaviour (if the reception section is not present,
the data from the child is simply forwarded). In general,
the reception section indicates how to merge the data from
the child with the local synopsis. Taken together the two
program sections in the example take 10 bytes of program
memory.

2.7 In-network aggregation

Our approach to in-network aggregation follows the TAG
idea of TinyDB [12]. We use a tree topology to forward the
data and to aggregate along the path to the gateway. In
general, aggregation is applied together with grouping. For
instance, consider the following query:

SELECT building, floor, AVG(temp), MAX(light)
FROM sensors
GROUP BY building, floor SAMPLE PERIOD 10s

The aggregate expressions AVG(temp) and MAX(light) are
computed for each building-floor pair. The query thus
has two grouping expressions and two aggregate expressions.
For AVG the aggregation state is a pair {c, s) consisting of the
sum s and the number of summands c. For MAX the aggre-
gation state is a single value. Aggregation is implemented
with the merge instruction. The merge instruction is para-
meterisable and has the form

merge(m m,aggopq, . . . ,aggopm)

The first parameter is the number of grouping expressions
n. The second parameter m is the number of aggregation
expressions that follow. aggop, are constants that specify
the aggregation operations. n, m, and the aggregation type
constants are pushed on the stack before calling the merge
operation. The following aggregation operations are cur-
rently supported: COUNT, MIN, MAX, SUM, AVG, VARIANCE. The
required stack layout for the merge instruction as well as the
definition of the aggregation operations is shown in Table 2
in the appendix. For the example above, the code excerpt
for merging is as follows:

ipushb MAX
ipushb AVG
ipushb 2
ipushb 2
merge

An example of a merging step for a complex query is given
in Section 3.1 and Fig. 3. The synopsis is a table dynam-
ically built for each program. It contains one row for each
group, in the example it is one row for each building-floor
pair. The layout of the local synopsis and the transmission
buffer are implicit and established by the code in the de-
livery section when the data captured from the sensors is
written to the transmission buffer'. Merging occurs both
in the delivery and the reception section. In general, data
from the children is merged as it arrives whereas the lo-
cal data is added at the end of the sampling period. The
merge instruction performs a nested-loop join of the table in
the local synopsis and the table in the transmission buffer
and overwrites the local synopsis. By default (as in the ex-
ample) the synopsis is cleared automatically at the end of
each sampling period. For temporal aggregation over sev-
eral sampling periods (window queries) clearing the synopsis
can be overridden. Explicit clearing of the synopsis is im-
plemented with the clear_sy instruction.

2.8 Multiprogramming

We provide multi-query support on two layers: first, by
merging different user queries into a virtual query (see 2.3)
and second, by multi-programming in the QM. Multi-pro-
gramming in the QM is done through sequential execution
of the programs. The execution duration of a program is
typically short compared to the sampling interval. Program
execution including data capturing and merging is in the

!The data received from a child is written by the delivery
section of that child and thus will match the format estab-
lished by the delivery section of the parent.

order of microseconds. Data transmission is in the order of
milliseconds. Sampling periods are in the order of seconds
or larger. Thus, without any further optimisation, it is pos-
sible to run a number of programs even with the shortest
sampling period of one second. For instance, in the example
shown in Section 3.1 the execution of the reception section
takes 27 ms on Mica2 sensor nodes, with a sampling period
of 30 seconds. From a CPU point of view there is room
for over 1000 such queries. Of course, there is a trade-off
between the number of programs that can be executed and
the memory available to each program, i.e., the size of the
synopsis for storing aggregation state, the size of the stack
and the transmission buffer. When combined with query-
merging and multi-query optimisations it is possible to sup-
port a relatively large number of user queries (in [15] we run
over hundred user queries).

2.9 Program Propagation

One of the unspoken limitations of ad-hoc sensor networks
is the restricted message size. Large messages increase col-
lisions and the probability of transmission errors on an al-
ready unreliable medium. Different radio platforms provide
different message sizes. For example, the ZigBee MAC layer
(IEEE 802.15.4) used on MicaZ and Telos nodes defines a
maximum message size of 102 bytes. We use Mica2 nodes
a with a proprietary ChipCon radio transceiver and a gross
message size of 36 bytes. With the bytes used by the MAC,
broadcast, and routing layers of TinyOS, the application
message size is only 24 bytes. Larger message sizes are very
convenient for data processing and query propagation. For
instance, TinyDB uses TinyOS packets of 49 bytes instead
of the smaller packets of 36 bytes. This 30% increase in mes-
sage length is one of the reasons why such large data losses
are observed in TinyDB deployments [7]. We intend to ex-
plore this issue in more detail in the future. In SwissQM
we opted for the smaller 36 bytes message size. This is one
of the reasons why we strive for compact byte code and
the use of a complex instruction set (e.g., the merge opera-
tion). Programs that are too long are transmitted from the
gateway in several messages, called fragment messages. We
use a sophisticated protocol to guarantee reliable program
distribution (beyond the scope of this paper and highly de-
pendent on the type of deployment one wants to achieve;
the default in SwissQM is to use TinyDB’s single network
paradigm where all the nodes do exactly the same; this is
rather limiting but simplifies the dynamics of reliable pro-
gram distribution and adding and removing nodes).

For comparison, TinyDB provides a query processing en-
gine that is run on the sensor nodes. A query is distributed
from the gateway into the network. TinyDB does not dis-
tribute the “raw” query string directly, instead, the query is
split at the gateway according to the fields and expressions
in the selection-clause, the where-predicate and the group-
ing list. For each sensor attribute accessed and each expres-
sion in the query one query message is sent. Everything
else being equal, our byte code dissemination mechanism is
more efficient than the query dissemination mechanism of
TinyDB, especially for small queries.

3. EXAMPLES

3.1 Conventional Streaming Queries

The following query is specified in a streaming variant of

SQL (as introduced in [13]) and is used to analyse the corre-
lation between temperature and brightness (light) readings.
Assume that the light sensor produces only unprocessed raw
values from the A/D converter. Further assume that the
light sensor has an offset reading that needs to be accounted
for. The goal of the query is to average temperature read-
ings of sensor nodes that have similar brightness readings.
The groups are built by first removing the offset and then
forming bins by applying integer division.

SELECT (1light-512)/10, AVG(temp)
FROM sensors GROUP BY (light-512)/10
SAMPLE PERIOD 30s

This simple query illustrates very well key differences be-
tween SwissQM and TinyDB. The query contains expres-
sions to be computed as part of the query evaluation. TinyDB
does not encode complete expression trees. Instead, all ex-
pressions must match a fixed format of the form:

(attribute)
| (aggregate)((attribute) (operation) (constant))

Therefore the range of expressions supported by the cur-
rent version of TinyDB is limited. In SwissQM, the query is
translated into byte code. Using traditional compiler tech-
niques expression trees are translated into a short sequence
of byte code instructions. Moreover, the query can easily
support arbitrarily complex expressions (within the inher-
ent limits of memory available to QM programs) since we
do not impose a hard-coded expression format. In order to
compare with TinyDB, we simplified the grouping expres-
sion from (light — 512)/10 to light. TinyDB uses three
query messages (120 bytes in total) to disseminate the query.
In our case the corresponding QM program requires only
20 bytes (two fragment messages). The byte code for the
original query is as follows:

.section delivery, "@30s"
get_light
ipushw
isub
ipushb 10
idiv
istore 0
get_temp
istore 1
iconst_1
istore 2
ipushb 5
iconst_1
iconst_1
merge
send_sy

512

store group expression
sum := temp

count := 1

agg: AVG =5

number of agg expr: 1
number of grp expr: 1

.section reception

ipushb 5 # agg: AVG =5
iconst_1 # number of agg expr: 1
iconst_1 # number of grp expr: 1
merge

Fig. 3 shows the layout of the synopsis for this example. A
group is identified by the value of the grouping expression.
The aggregation state for AVG consists of a sum/count pair.
Fig. 3 also shows the layout of the transmission buffer as

Synopsis
—

Transmission Buffer

roups
R index 0 1 2
LT T 1 group gum eout
group sum count aggregate
expression
aggregate
expression group

Figure 3: Layout of synopsis and transmission buffer
(during delivery section) for the grouping aggrega-
tion query

is used in delivery section. Here the aggregate state con-
tributed by the own sensors is prepared and merged to the
local synopsis in merge. When the reception section is exe-
cuted the transmission buffer contains the partial aggrega-
tion state received from the child. The size of the program
including the complex grouping expression is only 27 bytes
(two fragment messages).

3.2 In-Network Event Generation

Assume that a sensor network deployed in a building is
used to detect potential fire related alarms. It is reasonable
to assume that the presence of a fire is correlated with a
sudden increase in temperature. In the following example
the IDs of the nodes whose temperature reading increased
by more than 10% during the last 10 minutes are returned.
The corresponding query is:

SELECT s.nodeid
WHERE s.temp>1.1*w.mintemp AND s.nodeid=w.nodeid
FROM sensors AS s,
(SELECT nodeid, MIN(temp) AS mintemp
FROM sensors [RANGE 10min]
GROUP BY nodeid) AS w
SAMPLE PERIOD 2min

In the inner query, a window of the temperature reading
is created for every node. The query returns the smallest
temperature values observed during the last 10 minutes for
every node. These values are then compared with the cur-
rent temperature reading in the outer query. First, observe
that the window is maintained locally for each node, i.e., no
aggregation state needs to be exchanged. Second, in con-
trast to a centralised approach where the event detection
is done at the gateway, a message needs to be sent to the
gateway only if the predicate in the where-clause is satisfied.

The QM program implementing this query uses a win-
dow that contains the last five temperature samples. This
window is advanced every two minutes, resulting in a total
window width of 10 minutes. The window entries are stored
in a five element ring buffer. The buffer is implemented as
an array and an index next_insert that is used to determine
where to insert the next element. Fig. 4 shows the layout
of the synopsis where the ring buffer is stored. The array
occupies positions 0—4, the next_insert index position 5.
The bytecode listing of the corresponding QM program is
shown below.

The synopsis is initialised in the init section. Initially,
the ring buffer elements are set to 32767. This is the largest
positive value that can be represented using a 16 bit signed
integer type.

1 # initialise synopsis

2 # set syn[0..4]:=MAX (0z7(ff)

3 .section init

4 ipushb 4 #i=4

511: dup

6 iflt 12 # exit if i<0

7 dup

8 ipushw 0x7fff # push MAX

9 swap

10 istore_sy # synfi] := MAX
11 idec # 1 :=1-1

12 goto 11

1312: pop

14 iconst_0 # next_insert := 0

16

istore_sy 5

17 .section delivery, "@2min",'"manualclear"

18 # find min(synfi], i=0..N-1)

19
20

21

establish invariant
setup variant

iload_sy 4
ipushb 4

22 # loop variant i on top of stack, invariant below
23 # stack content: min(synfjl,j=i..4), i

2413: dup

25 iflt 15 # exit loop if i<0

26 dup_x1 # — 1,x,1

27 iload_sy # — i,x,synfi]

28 dup2 # — i,x,synfi],z,synfi]

29 if_icmplt 14 # — t,x,synfi] jump if x<synfi
30 swap # — i, min(z,synfi]),maz(z,synfi])
3114: pop # — i,min(z,synfi)

32 swap # — min(z,synfi]),i

33 idec # 4= 1-1

34 goto 13

3515: pop

36 # stack content at the end of loop: min(synfi],i=0..4)

37

38 # insert new element into window

39 get_temp # read new sensorvalue

40 dup # — min_temp,temp,temp
a1 iload_sy 5 # get next_insert

42 istore_sy # syn[next_insert] := temp

43

14 # advance next_insert

45 iload_sy 5 # get next_insert

46 iinc # mext_insert := next_insert+1
a7 ipushb 5

48 irem

49

50

istore_sy 5 # next_insert := next_insert%5

51 # current stack content: .., min,temp

52 swap # —temp,min

53 dup # — temp,min,min

54 ipushb 10

55 idiv # — temp,min,min/10

56 iadd # — temp,min+min/10

57 if_icmple 16 # skip if temp<min+min/10
58 get_nodeid # read nodeid

59 istore 0

60 send_tb # send nodeid

6116:

The reception section is invoked every two minutes, i.e.,
when the window needs to be advanced. Then the minimum

nopsis:
Synopsis window with last 5 values

Index 0 1 2 3 4 5
Init. Value: | MAX | MAX | MAX | MAX | MAX » 0

points to insert position of next element

Figure 4: Layout of synopsis for example

value of the ring buffer elements is determined (lines 18-
35). Then the temperature sensor is sampled and the value
obtained stored at the next insert position of the synopsis
(lines 39-42). Afterwards, the next insert position is ad-
vanced (lines 45-49). Lines 52-57 evaluate the predicate
temp > 1.1-mintemp. If the predicate evaluates to true, an
event is detected and the node sends its ID to the root.

The size of the byte code is 62 bytes which can be dis-
seminated in 3 fragment messages. The execution of the
delivery section takes 40 ms on our Mica2 implementation.
The reception section is empty as data does not need to be
aggregated between nodes.

3.3 Adaptive Sampling

In principle, it is sufficient if sensor nodes only send data
when the observed physical phenomena change. This allows
answering queries directly at the gateway rather than fetch-
ing every tuple from the network. A similar idea has already
been proposed in [3] where a statistical model is run at the
gateway. Whenever the prediction of the model does not
reach the confidentiality specified in the query, the gateway
actively requests additional data from the sensors in order to
update the model parameters and thus increase the quality
of the prediction. In [3] the model at the gateway decides
when to acquire additional data. As an extension of this
idea, one can consider running a replica—or at least a sim-
pler, less complex model—at the sensor nodes that allows
the node to decide on its own when the model at the gateway
is outdated and requires new data to update its parameters.
By moving from a pull-based to a push-based mode of oper-
ation, the number of messages can further be reduced since
no explicit requests have to be sent.

We illustrate how a trivial strategy for adaptive sampling
can be implemented in SwissQM. The idea is very simple: in-
crease the sampling rate if the phenomenon changes rapidly,
otherwise decrease the sampling rate. The following pseudo
code and corresponding bytecode show how to implement
adaptive sampling.

int period = 0;
int count = 0;
int oldval = getlight();

executeEvery2min() {
int newval;
if (count == 0) {
newval = getlight();
if (abs(newval-oldval)>oldval/10) {
// change > threshold — decrease period
if (period > 0) {
// don’t change period if already fastest
period = period - 1;

24}

} else {

period =

}

oldval =

period + 1; //increase period

newval;

send(getnodeid () ,newval);
count = period;
} else { // no sampling required

count =

}

count - 1;

1 # initialise synopsis

2 .section init

3 iconst_0

4 istore_sy 0 # period := 0

5 iconst_0

6 istore_sy 1 # count := 0

7 get_light

8 istore_sy 2 # oldval := getlight();

9

10 .section delivery, "@2min", "manualclear"
11 iload_sy 1 # load count

12 ifneq 11 # jump if count # 0

13 get_light # — light

14 dup # — light,light

15 iload_sy 2 # — light,light,oldval

16 isub # — light,light-oldval

17 dup # — light,light-oldval,light-oldval
18 ifge 13 # skip ineg if > 0

19 ineg # — light,abs(light-oldval)
20

2113: iload_sy 2 # — light,abs(light-oldval),oldval
22 ipushb 10 # — light,abs(light-oldval),oldval, 10
23 idiv # — light,abs(light-oldval),oldval /10
24 if_icmple 14 # within limit then increase period
25 iload_sy O # — light,period

26 dup # — light,period,period

27 ifeq 15 # skip if already fastest

28 idec # decrement period

29 dup # — light,period-1,period-1
30 istore_sy O # period := period-1

31 goto 15

3214: iload_sy O # increment period

33 iinc

34 dup # — light,period,period

35 istore_sy O # period := period+1

36

37 # stack content: light,period

3815: istore_sy 1 # count := period

39 dup # — light,light

40 istore_sy 2 # oldval := light

41

42 istore 1 # send nodeid and light

43 get_nodeid

44 istore 0

45 send_tb

16 goto 12 # go to end of section

47

4811: iload_sy 1 # sampling skipped

49 idec # count := count-1

50 istore_sy 1

5112:

As the pseudo code shows, the program applies adaptive
sampling on the light sensor. The routine executeEvery2min
(line 5) is scheduled every two minutes, which determines
the shortest possible sampling period. For larger sampling
periods a variable count is introduced. When the routine is
scheduled the variable is decremented (line 22). Sampling is
only done when count reaches zero (line 8). Thus, all sam-
pling periods are multiples of 2 minutes. The initial value
assigned to count is the current sampling period stored in
period. This period is increased or decreased depending on
the difference between two consecutive samples newval and
oldval. When the difference is larger than +£10% the period
will be decremented (line 9 in the pseudo code). Otherwise
the period is increased. After each sample the node sends
its ID an the sensor value to the root (line 19).

The length of the resulting QM program is 64 bytes. It
can be sent using three program messages. In the bytecode,
the state kept by the program is stored in the three global
variables, which are placed in the synopsis: period at posi-
tion 0, count at position 1, and oldval at position 2. The
initialisation is done in the init section.

4. CONCLUSIONS AND OUTLOOK

In this paper we propose SwissQM as the next genera-
tion architecture for data acquisition in sensor networks. In
spite of operating in small and resource constrained devices,
SwissQM opens the doors to richer functionality, data model
independence, optimised performance, and smooth integra-
tion into the rest of the architecture. The two key design de-
cisions in SwissQM are the separation between gateway and
sensor nodes, and the implementation of a virtual machine
at the sensor nodes, rather than a query processor. This
gives us Turing completeness, independence at the sensor
side of the query language used, independence of the user
data model, and the necessary extensibility for pushing user
defined functions and complex aggregation operations all the
way down to the sensors.

4.1 Related Work

SwissQM borrows many ideas from several existing sys-
tems, mainly TinyDB [13]. The relation between TinyDB
and SwissQM has already been commented upon through-
out the paper. Beyond TinyDB, the most related work is
that done on virtual machines for small devices.

In [4] the authors note that the use of a single, general
purpose virtual machine (and execution model) cannot suit
every problem domain. They suggest a Virtual Virtual Ma-
chine (VVM), a universal virtual machine, that can run dif-
ferent bytecodes for domain-specific virtual machines. Vir-
tual machines for sensor networks have been proposed later
in [9]. The difference to this previous work is that the
SwissQM is a virtual machine specialised in data processing
rather than a generic platform for application development.
This makes SwissQM less general but better optimised.

Similarly, Giotto [8] is a runtime environment for embed-
ded control systems. It is composed of two virtual ma-
chines. The first one, called Embedded Machine (E ma-
chine), processes external events. The second, called Schedul-
ing Machine (S Machine), interprets code for which a tem-
poral execution order is specified. Thus, the execution of
SwissQM’s delivery section relates to code execution done
by the S machine whereas the code of the reception section
would map to the E machine. However, and unlike Giotto,

we are not aiming at hard-realtime systems. Hence we allow
arbitrary code in the delivery section, which gives us more
expressiveness.

Compiling queries into bytecode for virtual machines was
also proposed in [10]. However, in the version available
for download only a subset of the features described in the
paper seems to be implemented. In particular, it is not
clear how in-network aggregation is implemented. Further-
more, the system implemented aims at emulating TinyDB.
SwissQM tries to expand beyond what has been achieved
with TinyDB.

4.2 Future Work

SwissQM is a key element of the XTream project at ETH
Zurich. With the features of SwissQM presented in this pa-
per, we are now in an excellent position to implement in a
realistic setting various optimisation techniques such as the
maximisation of the life time of the sensor network if the net-
work is over-provisioned. We are also exploring the impact
of using XML at the gateway interface and the appropri-
ate language constructs needed to make XQuery capable of
dealing with sensor data streams and complex event gener-
ation.

Ultimately, SwissQM will be at the heart of the RAISE
(Redundant Arrays of Independent SEnsors) scenarios tar-
geted by XTream. The motivation for RAISE is quite sim-
ple: On the one hand, the prices for sensors are dropping
rapidly; on the other hand, it is still very difficult to pro-
vision a sensor network correctly. The idea of RAISE is to
simply over-provision the sensor network. That is, rather
than calculating exactly which sensors, batteries, and com-
puting power are needed at which place, RAISE suggests
to do a rough estimate and then take, say, twice or three
times as many sensors. This approach imposes risks and
opportunities at the same time. SwissQM offers the flexibil-
ity required to program the sensors such that the risks can
be avoided and the opportunities exploited. For instance,
redundant sensors that serve the same purpose (e.g., pro-
vide the same sensor readings at the same or comparable
locations) can coordinate in order to maximise their battery
life-time; if the sampling period is 10 seconds, for instance,
two redundant sensors can take their turns and each sensor
can stay asleep for 20 seconds. Another example involves
using adjacent sensor to sample different environment vari-
ables rather than using all sensors to sample everything (as
it is currently done). In both examples, the critical success
factor supported by SwissQM is that each sensor that runs
SwissQM can be addressed and programmed individually.
The exact protocols for RAISE are one important avenue
for future work. It should be clear, however, that a flexible
and powerful programming model as provided by SwissQM
is necessary in order to implement these optimisations.

5. REFERENCES

[1] Alarm, wireless security systems.
http://wuw.alarm.com.

[2] I. Bose and R. Pal. Auto-ID: managing anything,
anywhere, anytime in the supply chain. Commun.
ACM, 48(8):100-106, 2005.

[3] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-based approximate
querying in sensor networks. VLDB Journal,
14(4):417-443, 2005.

[4]

[5]

7]

[11]

[12]

B. Folliot, I. Piumarta, and F. Riccardi. A
dynamically configurable, multi-language execution
platform. In Proceedings of 8th ACM SIGOPS
European Workshop, pages 175—181, 1998.

M. J. Franklin, S. R. Jeffery, S. Krishnamurthy,

F. Reiss, S. Rizvi, E. Wu, O. Cooper, A. Edakkunni,
and W. Hong. Design considerations for high fan-in
systems: The HiFi approach. In CIDR, pages 290-304,
2005.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In Proceedings of ASPLOS-1X
2000, pages 93-104, 2000.

S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and
J. Widom. Declarative support for sensor data
cleaning. In Proceedings of PERVASIVE 2006, pages
83-100, 2006.

C. M. Kirsch, M. A. A. Sanvido, and T. A. Henzinger.
A programmable microkernel for real-time systems. In
Proceedings of VEE 2005, pages 35—45, 2005.

P. Levis and D. E. Culler. Maté: a tiny virtual
machine for sensor networks. In ASPLOS 2002, pages
85-95, 2002.

P. Levis, D. Gay, and D. Culler. Active sensor
networks. In Proceedings of NSDI 2005: 2nd
Symposium on Networked Systems Design &
Implementation, pages 343-356, 2005.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley Professional, second
edition, 1998.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation service for
ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131-146, 2002.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122-173, 2005.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In Proceedings of WSNA 2002, pages
88-97, 2002.

R. Miiller and G. Alonso. Efficient sharing of sensor
networks. In Proceedings of MASS 2006, 2006.

A. Sixsmith and N. Johnson. A smart sensor to detect
the falls of the elderly. IEEE Pervasive Computing,
3(2):42-47, 2004.

C. Tschudin, D. V. Muhll, S. Gruber, and 1. Talzi.
Permasense project, University of Basel.
http://cn.cs.unibas.ch/projects/permasense.

APPENDIX

A.

SWISSQM INSTRUCTION SET

Table 2 lists all instructions that currently implemented for
SwissQM. For each instruction the state of the operand stack
before and after the invocation is specified on the left and the
right of = respectively. « is used to designate the remainder
of the stack that is left unchanged by the instruction. The
encoding that is used to specify the aggregates for the merge
instruction is also shown.

Instruction Description

dup o, r = o, T,T

dup_x1 o, Yy, T = o, T,Y,T

dup_x2 o, 2, Y, T => O, T,2,Y,T

dup2 a7 y’x :> a’ y? -,L', y7x

dup2_x1 o, 2,Y, T = 0,Y,T,2,Y,T
dup2_x2 oW, 2,Y, T = Q,Y,T, W, 2,Y,T

. | pop a,T =«

g | pop2 a, Y, T = o

& | swap a,Y, T = Q, T,y
iconst_0 a=a,0
iconst_1 a=a,l
iconst_2 a=a,2
iconst_4 a= a4
iconst.ml a=a,—1
ipushb <int8> o = o, sign_ext(i)
ipushw <int16> a= a,t

o | iadd oY, T = o,y +T

‘5 | isub a,Y, T =,y —T

3 imul o, Y, T = Q,Y *T

o | idiv oy, T =, |y/z]

S | irem a,y,r = a,ymodzx

© | ineg o, = o, —X

% | iinc a,r=ao,r+1

E idec a,r=>a,x—1

= | iand a,y, = a,y&x

& | dor a,y, T = a,ylx
inot a,T=q,"x
if_icmpeq <int8> | a,y,z = a, jump ifz =2
if icmpneq <int8> | «,y,x = «, jump if = # z
if icmplt <int8> | a,y,z = «, jump if z < z

_ | if_icmple <int8> | a,y,z = a, jumpifz <z

S | if_icmpgt <int8 | a,y,x = «, jump if x > 2

2 | if_icmpge <int8> | a,y,z = a, jump if z > 2

8 ifeq <int8> a,r = a, jump if z =0
ifneq <int8> o,z = a, jump if ¢ # 0
iflt <int8> a,r = a, jump if z < 0
ifle <int8> a,r = a, jump if £ <0
ifgt <int8> a,r = a, jump if z > 0
ifge <int8> a,r = a, jump if £ >0
goto <int8> a = a, jump always
iload <int8> a = a,buf[i]
iload a,i = a,buf [i]
istore <int8> a,r = « and buf [i] =z

@ | istore a,x,i = « and buf[i] =«

& | iload sy <int8> o= a,synlil

S | iload-sy o,i = a,syn[il]

A istore_sy <int8> | o,z = «a and syn[i]l ==z
istore_sy o,z,i = o and synl[i]l =z
clear_sy clear synopsis
send_tb send transmission buffer
send_sy send synopsis
get_nodeid o = o, nodeid
get_parent a = a, parent

£ | get_light a = a,light

& | get-temp a = a,temp

& | getnoise a = a,notse
get_tone a = a, tonecount
get_voltage o = o, batteryvoltage
merge o,agg,., -,

a‘ggh m,n = o

£ code agg

= 1 COUNT

) 2 MAX n: number of groups

go 3 MIN m: number of aggregates

&0 4 SUM agg,: code of aggregate i

< 5 AVG

6 VARIANCE

Table 2: The SwissQM instruction set

	Text5: This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

