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ABSTRACT

Wireless sensor networks are poised to enable continuous data col-
lection on unprecedented scales, in terms of area location and size,
and frequency. This is a great boon to fields such as ecological
modeling. We are collaborating with researchers to build sophisti-
cated temporal and spatial models of forest growth, utilizing a va-
riety of measurements. There exists a crucial challenge in support-
ing this activity: network nodes have limited battery life, and radio
communication is the dominant energy consumer. The straightfor-
ward solution of instructing all nodes to report their measurements
as they are taken to a base station will quickly consume the net-
work’s energy. On the other hand, the solution of building mod-
els for node behavior and substituting these in place of the actual
measurements is in conflict with the end goal of constructing mod-
els. To address this dilemma, we propose data-driven processing,
the goal of which is to provide continuous data without continu-
ous reporting, but with checks against the actual data. Our primary
strategy for this is suppression, which uses in-network monitoring
to limit the amount of communication to the base station. Sup-
pression employs models for optimization of data collection, but
not at the risk of correctness. We discuss techniques for designing
data-driven collection, such as building suppression schemes and
incorporating models into them. We then present and address some
of the major challenges to making this approach practical, such as
handling failure and avoiding the need to co-design the network
application and communication layers.

1 Introduction

Wireless sensor networks have potential to provide a wealth of data
about the environments in which they are deployed. This is tem-
pered by sensor nodes’ limited battery life. One of the main en-
ergy consumers is radio communication, which far outweighs the
costs to execute CPU instructions or take simple readings such as
temperature. The cost to continuously transmit all readings from
within the network to an offline base station is enormous, yet the
data must somehow be delivered to the user. Therefore, there exists
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a great need and opportunity to increase energy efficiency through
distributed, in-network processing.

One prominent direction in sensor data management is model-
driven processing [10, 9, 8]. This approach assumes a probabilis-
tic model of the sensor readings that offers information such as
distributions of individual readings, correlations among different
types of readings at the same node, and spatial correlations among
readings from different nodes. Given a query over the sensor read-
ings, this model is used to minimize the energy spent, both in trans-
missions and sampling, and provide an acceptably accurate result.
For example, to satisfy a query for a particular node’s temperature,
we may substitute in measuring voltage, because temperature and
voltage are highly correlated and measuring voltage is less expen-
sive [10]. As another example, for a query identifying nodes whose
values fall within a certain range, we need only request values from
nodes for which the model cannot predict with enough certainty
their inclusion in or exclusion from the query result. Model-driven
captures the intuition that in many deployments, predictable cor-
relations will exist among different types of measurements, and
among different nodes. This is a tremendous insight for avoiding
total data collection.

A Case for Data-Driven Processing We are currently working
in collaboration with a group of ecologists and statisticians at Duke
University to deploy and maintain a wireless sensornet in Duke
Forest to better understand how forest tree growth, survival, and re-
production are influenced by changes in climate, atmospheric car-
bon dioxide, disturbances, and other environmental factors. The
sensornet measures a variety of readings, including temperature,
light, rainfall, soil moisture, sap flow, etc. The monitored environ-
ment will undergo controlled experiments involving burning, her-
bivore exposure, etc. Using high-resolution data collected from the
network, our collaborators are developing sophisticated ecological
models incorporating these variables.

In this project we have found the model-driven approach not nec-
essarily the best starting point. As is often the case in scientific
and exploratory uses of sensornets, we do not always know a pri-
ori what models best describe the sensor values being monitored.
Since data alone is the “ground truth,” our collaborators want to
collect all data, instead of entrusting rudimentary models to avoid
data acquisition. The concern is if these models turn out to be in-
adequate (and they often do), we might miss important data points
that would allow us to construct better models. One of our ecologist
collaborators has quipped, “in environmental monitoring the model
is never correct.” That is, models help us understand the environ-
ment, but they are not precise enough to accurately stand in for ac-
tual readings on a per-measurement basis. This utmost emphasis on
wanting the data leads us to an alternative approach, which we call
data-driven processing. This approach does not assume we begin



with a good model of the sensor values. In the extreme, it assumes
nothing about the environment in which the sensornet is deployed.
Data-driven processing still uses models, but only as optimization
guidelines (more on this later), so even inaccurate models do not
lead to data loss.

Optimizing SELECT * With emphasis on collecting all data, it
should not be surprising continuous SELECT * is the dominant
query for data-driven processing. Much of the research in our
project now focuses on optimizing this query, instead of complex,
database-like queries. While in a traditional database system,
SELECT * is uninteresting in terms of optimization possibilities,
its continuous sensornet version is quite amenable to interesting
suppression techniques. The naive alternative, continuous report-
ing, requires each node transmit its value to the base station in each
time step, resulting in heavy message traffic. Suppression, on the
other hand, monitors conditions within the sensornet such that data
is only transmitted when readings diverge from expected (or simply
default) behavior. The simplest example is value-based temporal
suppression, where each node reports only if its value has changed
beyond some threshold since last reported. This technique is quite
effective when sensor values change slowly. Still, we can advance
suppression further, to handle scenarios where nodes change regu-
larly but predictably, and where changes across nodes exhibit spa-
tial correlations. A number of suppression schemes have been pro-
posed [2, 6, 13, 17, 22, 23, 25]. Suppression is a powerful concept,
but many challenging issues remain to be addressed, e.g., how to
identify missing reports as suppressions, rather than failures. These
problems are addressed throughout this paper.

Although there have been some recent examples of data-driven
processing in the literature [21], including by some of the designers
of model-driven [2], we believe this approach has been understud-
ied relative to the model-driven approach. The goal of this paper is
to present the key issues in data-driven processing and techniques
for applying them to application design. We have encountered the
following issues in designing our own deployment, and generalize
them for broad applicability.

e Suppression: This is the driving technique behind supporting
continuous queries without continuous data streams. We define
suppression schemes for supporting continuous queries. Most
sensornets likely exhibit temporal and spatial correlations among
node readings, which are encoded within models. This behavior
can be incorporated into schemes such that with limited mes-
saging within the network, no or few messages are sent to the
base station. Suppression, including incorporation of models, is
covered in Section 2.

e Message failure: Sensor networks are prone to message drops.
This is especially detrimental to suppression schemes, where
non-reports are expected, but now may be the result of fail-
ures, rather than suppression. In Section 3 we discuss methods
for augmenting suppression schemes against failure, and tech-
niques for detecting failure and then inferring the actual read-
ings and process parameters.

e Application/communication layer interaction: Sophisticated sup-
pression schemes involving careful communication among mul-
tiple nodes strain the lower communication layer to provide ef-
ficient routing between such nodes. While merging these layers
would greatly complicate application development, some hooks
between them are necessary. In Section 4 we describe the mile-
stone framework, for co-optimization of the layers.

e Data representation: Managing data produced in a sensornet
and the inferred at the base station is difficult. Presenting either
extreme of a view of only the data known with perfect certainty,
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or a completely sanitized version of all data are both inadequate
in most cases. The data is inherently probabilistic with complex
correlations. These correlations, as well as details of suppres-
sion and the constraints it enforces on inference must be repre-
sented. These open problems are discussed in Section 5.

e Role of models: Models are discussed extensively throughout
this paper. In general, models are utilized in data-driven for
optimization, but not at the expense of correctness. Further,
model-driven and data-driven are not static competitors; the trust
and responsibility given models largely defines where along the
spectrum between the approaches an application lies. This dis-
tinction can become tricky to follow, especially when discussing
of failure. We review use of models in Section 6.

2 Suppression

Suppression is the key technique for supporting continuous queries
without continuous reporting. The network, on its own volition,
chooses when to push data to the base station. The intuition is if
the network and base station can agree on an expected behavior, the
network need only report when its readings deviate from that. The
challenge is encoding expected behavior within the network, such
that actual behavior can be efficiently evaluated against it.

The design space for suppression is enormous. Suppression can
be utilized in a multitude of ways, even for the same query. Value-
based temporal suppression, mentioned in Section 1, leverages the
expectation node values are unlikely to change in a given timestep.
Each node sends a message only when its value does change be-
yond some threshold since last reported. This scheme allows com-
putation of SELECT =, since the base station maintains the last
value reported from each node within the threshold. If values change
frequently, this degrades to continuous reporting. Spatial suppres-
sion is also possible. Snapshot [21] allows individual nodes to re-
port on behalf of a local cluster, as long as nodes in the cluster have
values within some threshold of the representative. This approach
leverages the expectation that nearby nodes will have similar val-
ues, and minimizes the number of messages directed to the base
station. If nodes do not exhibit spatial correlation, this degrades to
continuous reporting.

The design space extends to more sophisticated schemes that
leverage both temporal and spatial correlations. Naturally, the ef-
fectiveness of a scheme for a particular deployment depends on
how well it captures the correlations existing in the deployment.
In order to manage the design process, we now define a general
framework for suppression schemes.

2.1 Suppression Scheme

Definition A suppression scheme is a set of suppression links de-
ployed within the network. A link maps a suppression/reporting
relationship between an updater node and an observer node. Each
link synchronously maintains, with some error, a vector of quanti-
ties, X, between the updater and observer. X; denotes the vector
at time ¢ as instantiated by the updater. X, denotes the vector as
computed by the observer. X serves as input to the observer for
producing its own X vectors, to use on downstream links (observer
becomes updater). Eventually, a querying node (such as the root)
receives an X; and uses it to produce query results. Variables x ;
and 2, refer to ith quantity in the vector at the updater and ob-
server, respectively. X may contain node readings, process param-
eters, and any other quantities used by the scheme. Each quantity
may be generated locally at the updater (e.g. a reading taken by it)
or derived from quantities received from its own upstream updaters.

For each suppression link, the user defines per-quantity precision



Figure 1: Suppression Scheme Graph.

bounds for each entry in X; and X;. Predicate function g(X;, X;)
returns true if X; is within a prescribed error tolerance of X;. For
example, the function may be component-based, such that each &+ ;
must be within some range of x; ;. X; and X, are considered syn-
chronized if g is true. The synchronization requirement dictates the
communication necessary, if any, between the updater and observer
in each timestep. The following functions encode the requirement.
The updater maintains encoding function:

L4 f€7LC(Xt7 Xi—1,.. )

The observer maintains decoding function:

o faec(rt, Xe—1, Xt—2,...)

The updater uses ferc to generate report 7 for transmission to the
observer so the observer can derive X; within precision bounds.
If no message is needed, 7 is denoted L, for suppression. Note
because fen. uses previous settings of X, it implicitly considers
previous messages sent to the observer. The observer uses fgec
to interpret 7; and derive Xt. If no message is received, it sets
r¢ = L. Assuming no failure, X necessarily meets the precision
requirements, though the observer has no way to verify this.

. Note the relationships between fenc, r: and X, and fge. and
X are defined by the scheme programmer. For example, X might
contain several readings and a single parameter, 6. 7., when not
suppressed, may only consist of updates to 6, from which all other
quantities in X are derived. We give examples in Section 2.2.

The suppression scheme is a graph of suppression links. An ob-
server node may maintain links with one or more updaters, and may
itself then become an updater for one or more observers. The node
maintains a function h; for each downstream observer to transform

X,’s received from its updaters into its own X t(J), to then be syn-
chronized with a downstream observer. h functions are defined by
the scheme programmer.
Message Dependency Each h; also establishes a dependency be-
tween X;’s derived from updater messages to X t(j ). Xt(j ) in turn
determines what is transmitted downstream for the observer to de-
rive X t(J ). These dependencies are intra-node links. We distinguish
these from suppression links because they have no explicit impact
on what is transmitted between nodes, but instead have impact on
when that transmission may take place. Figure 1 depicts a por-
tion of a suppression scheme graph, with the middle node, serving
as an observer and then updater, enlarged. The suppression links
are shown as solid arrows, while the intra-node links are shown as
dashed arrows. As observer for three suppression links, the node
uses fqec functions to derive X,, X3 and X.. As updater for two
suppression links, it uses fenc functions to derive messages to be
transmitted downstream for derivation of Xg4 and Xe. Internally,
the node shows dependency on X, and X, to produce X4, and on
Xb and XC to produce Xe.

By merging suppression and intra-node links, we derive the A-
graph, a directed graph whose vertices are the h functions at all
network nodes.
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Lemma 1. A suppression scheme is feasible only if its h-graph
contains no cycles.

In a particular timestep, only nodes with h functions not waiting
on upstream messages may immediately transmit (X vectors from
such functions are populated using input generated completely lo-
cally). If a subset of h’s at different nodes all wait on one another in
a cyclical fashion, the suppression scheme waits indefinitely. The
scheme completes when all terminal nodes (serving as observers,
but not as updaters) receive their messages. In most query process-
ing applications, this will be a single node, the root. The suppres-
sion scheme supports a particular query if X maintained by the root
is sufficient to produce the query result.

2.1.1 Discussion

Why go through the exercise of producing a general definition for
suppression schemes, when its absence has not prevented us or oth-
ers from designing schemes? We want a definition that is flexible,
but exposes the important features that characterize and differenti-
ate schemes. The definition provides a number of benefits:

e Compared with low-level programming of network messages,
this abstraction makes it easier to reason about suppression al-
gorithms. For example, it is simpler to understand the correla-
tion an algorithm exploits, prove its correctness (both for feasi-
bility and for supporting queries), and evaluate energy cost.

e It allows cost-based optimization in scheme design. While the
design space of possible schemes remains enormous, many pos-
sibilities can be quickly eliminated due to cost. For example, a
scheme with intricate spatial constraints, but higher expected
cost than temporal suppression, should not be considered.

o It allows identification of optimizations general to all schemes,
in contrast to application-specific optimizations. These can be
presented as such and implemented once for all schemes.

e The definition can be adapted to a new application programming
abstraction. Existing approaches require programmers to either
plan each message by hand, or else provide only a limited set
of communication patterns, such as collection and dissemina-
tion [3]. A suppression API will give programmers more con-
trol over collection, but while factoring out common tasks. We
imagine, for example, setting a cluster abstraction by simply
selecting a set of cluster members. The choice of cluster leader
may be left to the API, which can make the optimal decision.
The API is accompanied by cost analysis to assist in refining
scheme designs.

2.2 Examples

‘We now demonstrate how the general definition can be specified to
a series of existing suppression schemes.

Temporal Schemes We begin with value-based temporal sup-
pression. The suppression link graph consists of link between each
node and the root (i.e. a one-level link tree), where the node is an
updater and the root an observer. At each node X has a single com-
ponent z, its reading. g returns true if two readings are within €,
of one another. Each node maintains a local variable ¢’, the time at
which its value was last transmitted. Its encoder function is:
fenc(l’h -Tt/) = e J_wt gﬂtﬁI{WISit,' -
The root for each link has decoder function:
Li'tfl-f—'l“t lf’/'t#J_

i’t71 if Ty = L

2.2.1 Soil Moisture

We next examine model-encoding temporal suppression schemes
for monitoring soil moisture. In our forest modeling efforts, soil

.'it:
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Figure 2: Soil Moisture Model

moisture is an important measurement. Moisture increases dra-
matically during precipitation, and then falls off either due to sub-
surface run-off or transpiration by the forest. Precipitation events
can be modeled as a Poisson process with amount of precipitation
drawn from an exponential distribution. Modeling soil moisture is
more involved. The rate of decrease in moisture after a precipita-
tion event depends on the value of the moisture, m(t). Figure 2 de-
picts the rate of decrease in m(t) as a function of m(t) for a single
sensor node. We will focus on the right-most portion of the model,
when moisture is above field capacity. We examine two per-node
suppression schemes: PAQ [25] and exponential regression.

For both methods, the link graph is identical to that of value-

based temporal. Each node maintains a link with the root. PAQ
employs linear regression to have a node predict its reading each
timestep using the previous three readings and parameter values,
o, B, ye, e The prediction for x; is as follows.
ai(ze—1 —ne) + Pe(we—2 —ne) +ve(xe—3 — ne)
«, (3, and ~y are derived by regression and 7 is the mean value of
the past readings. These parameters evolve over time, necessitating
their subscripts. The root knows the parameters and simultaneously
makes the same prediction. If the node’s prediction is within e, of
its reading, it suppresses. Otherwise, it has the option of trans-
mitting the reading as an outlier, or revising and transmitting the
parameters. The details underlying this decision are in [25] and are
local to each node. For our purposes, we abstract these away by as-
suming the node has boolean functions modelRefit and outlier.
If |zt — x¢t—1| > €z, one and only one of these returns true (oth-
erwise, neither are true). If modelRefit returns true, the function
has also updated a¢, B¢, v+ and 7:. Note modelRefit and outlier
must mimic the prediction made at the root, using the previous three
predictions (Z¢—1,L¢—2, T¢+—3) rather than the actual readings.

We now place PAQ in our framework. X = [x¢, ax, B, Ve, e]-
g dictates a separate ¢ for each component of X. ¢, is user-defined.
€a, €3, €y and €, are all set to O (i.e. the root is notified of any up-
dates). Each node has encoder function:

o, Be,ye, e if (modelRefit)
fenc = Tt if (ou‘tlier)
1 otherwise
The root has decoder function:
Bt — C}h Bt vt TZt ) if ry :.[at, Bty Y, 1t
Qt—1,0t—1,9t—1,7Mt—1 otherwise
Tt ifry = xy

G (Be—1— 1)+ Be(Ze—2—1)

e (Te—3—1)¢) otherwise

We next look at exponential regression. Each node has a predic-
tion model for suppression: x¢ = i1 + Bi. Xt = [T, au, Bi)-
Like PAQ, €, is user-defined, while €, and eg are 0. Each node has
encoder function:
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Figure 3: Suppression Results

o, B¢ if (modelRefit)
fene = x¢  if (outlier)
1 otherwise
The root has decoder function:
dt7ﬁt at, B R ifry = [Oéuﬂt]
Qt—1,Pt—1 otherwise
. Tt ifry = x¢

e { Gu(ie—1) + B otherwise

Framing both of these approaches as suppression schemes makes
for an elegant comparison. First, they both use local suppression
at each node. This commonality is exposed in their suppression
link graphs, which are identical. The differences are the encoding
and decoding functions. Given the probability of how often each
component of X is suppressed, it is straightforward to predict the
cost of each scheme.

We now return to Figure 2. Moisture drops exponentially when
moisture is high (on the right side of the graph). We expect a sup-
pression scheme aware of this to have an advantage over those that
do not. This is a good example of the role of models in data-driven
acquisition. All of the discussed schemes produce readings within
e, of the actual. But because exponential regression best mod-
els the data, it should have the most accurate predictions and the
most suppression. In Figure 3, we compare suppression rates for
value-based, linear regression (PAQ), exponential regression, and
a Kalman filter variation [17] using simulated moisture data. Er-
ror tolerance is varied on the x-axis and corresponding suppression
rate is plotted on the y-axis. We see exponential regression indeed
achieves the best suppression rate, though the improvement over
the others is not dramatic. We are investigating these types of com-
parisons further.

2.2.2  Spatio-temporal Suppression

We next look at a suppression scheme that exploits not just tem-
poral correlations at individual nodes, but spatio-temporal corre-
lations between multiple nodes. This requires monitoring spatial
conditions in-network, so the suppression scheme will not consist
solely of links between each node and the root.

Conch The scheme is one we have previously designed, Conch
[23]. We examine a value-based version of it, making it a spatio-
temporal equivalent of value-based temporal suppression. Note we
employ a different version of error tolerance than published in [23]
that better mirrors the prior temporal schemes (we discuss both
shortly). The main idea is to monitor network edges connecting
neighboring nodes; specifically, we monitor the difference in value
between each edge’s endpoint nodes. The root maintains the cur-
rent difference across each such edge. The intuition is to choose
edges whose nodes are correlated; when their values change, they
will change synchronously by similar amounts, and the difference
will not change and be suppressed. We next define monitoring of
edges in our suppression framework, and then describe how to build
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a suppression scheme to support SELECT * from these.

Monitoring an edge requires communication, and thus a suppres-
sion link, between its endpoint nodes u; and w2, and then another
link between w2 and the root. g at w; returns true if values are
within €, of one another. X at u: contains only its reading, z. u1
maintains a local variable, ', the time in which it last transmitted
to us. u1 has encoder function:

_ Tt — Ty if|$t—$t/| > €
ene — 1 otherwise
w2 has decoder function:
N i’t71 =+ 7t if?”t 75 1
Tt = ~ .
Ti_1 ifry =L

Note these functions are the same as used by the node-root link for
temporal suppression.

u2 measures its own reading, y. X at ug contains only the dif-
ference in readings across the edge, A. To produce this, us has
function ha = y¢ — @+. g returns true if two A’s are within ea of
one another. u2 maintains a local variable, ¢, the time in which it
last transmitted to the root. u2 has encoder function:

o Ay — Ay if |At — At//| > €
fene = € otherwise
The root has decoder function:
At _ Atj1+rt if r¢ #J_
Atfl if Tt = 1

Though more details are available in [23], we now briefly ex-
plain how to support SELECT * with edge monitoring. In one spe-
cial case of Conch, we monitor the root with temporal suppression
and monitor a set of edges such that they form a spanning tree over
the network. If a single node serves as u2 for multiple edges, its
X contains a A for each. Its encoder function suppresses A’s that
have not changed by more than ea since last transmitted, and re-
ports those that have.

Two example Conch spanning trees are shown in Figure 4. For
each edge, the root knows the current difference between its ver-
tices within ea. To derive any node’s value, the root finds a path
of edges in the spanning tree from itself to the node (by definition
of spanning tree, exactly one path must exist). The root then starts
with its own value and modifies it by each edge difference in the
path, a process called chaining. Many different spanning trees can
be built over a single network. As we see from the scheme decla-
ration, the cost of monitoring a particular edge is tied to how often
z changes by more than €, and the cost to communicate from u1
to uz, and how often A changes by more than e, and the cost to
communicate from uz to the root. If two nodes’ values demonstrate
high correlation, their edge is a good candidate for monitoring; it
will seldom need to report to the root. Suppose in Figure 4, each
shaded region exhibits a particular behavior, such that all nodes in
a single region are correlated. Any edge between nodes in the same
region will never report to the root, while edges between nodes in
different regions will frequently report. The goal in building the
spanning tree is to select as few edges that cross regions as possi-
ble. In both examples, each with three regions, we are forced to
choose two such edges. Imagine we trade the spanning trees, such
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that the tree in 4a is assigned to the environment in 4b, and vice-
versa. It is easy to see reporting costs will increase in both cases.

Error We see interesting implications for suppression parameters
ez and ea. The suppression link graph has hierarchy of depth two.
At ug, %+ can diverge from x; by as much as e¢;. Thus, A may
diverge from y: — x+ by €,. This error accumulates at the root:
At may diverge from y: — x¢ by € + ea. The same problem
carries over to chaining. For each edge involved in chaining to
a particular node, error accumulates. For a chain of length [, the
computed node’s value has error up to l(ez + eA). To achieve the
same accuracy as temporal suppression, it is necessary to use lower
€ values, and likely different €’s for each edge. It is important to
understand the error implications of a suppression scheme. The
suppression link graph view of the scheme exposes this.

Original Conch suppression works as follows. Nodes monitor
not z, but the discrete quantity, z’ = |z/e|, with error bound of
0. Differences are computed on discrete quantities, also suppressed
with error bound 0. We estimate &+ as x}¢, and can guarantee £ <
¢ < &t + €. The advantage of this approach is it makes chaining
less susceptible to error accumulation. The disadvantage is this
discretization is somewhat artificial; small changes in actual value
that happen to cross a discretization step must be reported.

2.3 Toward an Optimization Framework

We are building toward a framework for suppression optimization.
The first component of this is the suppression scheme definition.
As mentioned, this allows us to manage the large design space of
suppression schemes, and to evaluate cost for each. We foresee
two levels of optimization. The higher level is the compile-time
decision of what scheme should be deployed in the network, such
as temporal suppression and, as we have seen with soil moisture,
what models can be monitored within that scheme.

The lower level is at run-time. The network itself makes dy-
namic adjustments to suppression. For PAQ, this involves deciding
when a sequence of outliers actually signifies a change in process
parameters (on which suppression will now be based). The mois-
ture model contains three distinct components. An effective sup-
pression scheme must encode all of them and know when to shift
between. One possibility is to set choice of model as a state pa-
rameter in X, reported only when the node shifts, and suppressed
otherwise. In these cases, the ability to modify suppression is pre-
compiled within the network, and need only be invoked by nodes
at run-time.

A final question is how and when to make externally initiated
changes to the suppression scheme. For example, the base station
may contain a rain sensor, making it better qualified than individual
nodes to decide whether increased moisture readings are outliers
or a shift to the high-moisture component of the model. Further,
the base station collects a great deal more information than any
particular node. Any sweeping changes to the scheme, which likely
come with high energy cost, should be made by the base station.

End Goal We have extensively discussed the use of suppression,
design of suppression scheme, and integration of models into these.
Beside our omnipresent goal of energy-efficiency, it is easy to lose
sight of what we hope to achieve. To that end, we have the follow-
ing succinct vision for suppression:

1. No messages reach the base station reporting expected behavior.

2. For each unexpected phenomenon affecting the network, only
one message reaches the base station.

If all nodes are affected similarly by the same event, they should de-
tect this in-network and not independently report it to the base sta-
tion. Nevertheless, this goal must be tempered by the in-network



Figure 5: Conch Failure

cost to coordinate the single report. In the end, this vision is a
guideline to motivate suppression scheme design rather than some-
thing to be achieved in practice.

3 Message Failure

Failure is a serious problem in sensornets, with message loss com-
mon. Experimental results have shown transmission loss rates to be
at times 50% and higher, with congestion blamed for the majority
of these [16]. Congestion causes message interference, where mul-
tiple messages are sent in the same air space, causing all of them to
be corrupted. When message buffers at nodes fill to capacity, nodes
must either drop messages as they arrive, or delete messages from
their buffers; in either case, messages are lost. These findings were
from a high-traffic network running a continuous reporting applica-
tion. To some degree, suppression should naturally mitigate these
problems. Other work blames failure on functioning, but unreli-
able, links, for which multiple transmissions are likely needed to
achieve successful delivery [26, 27]. In outdoor deployments, en-
vironmental interference can certainly cause message loss. In ours,
for example, connectivity degrades during the summer, when there
is more foliage. Failure not only occurs at the message level, but
at the bit level within each message. For now we assume corrupted
bits are corrected (message is successful) or cannot be (message
fails) at a lower level.

Failures are detrimental to suppression schemes. In the absence
of failure, observers assume non-reporting suppression links have
not transmitted a message, but suppressed. Failure creates ambi-
guity: now an observer must consider the possibility its updater
did transmit a report, but that it was lost. For value-based tem-
poral suppression, a single lost report from a node results in the
node’s value being mis-set by the base station. For more complex
schemes, the impact may be more widespread. Figure 5 depicts
a Conch example, labeled with the latest reported value for each
spanning tree edge, with r as the temporally monitored root. In the
current timestep, the edge a — c reports its difference rising from
0 to 5. Suppose this report is lost. It is easy to see the base station
will mis-calculate the values of nodes c, e, g, f and b in chaining.
The single failure affects all node values computed using a — ¢,
and continues to affect them at least until @ — ¢ changes again and
attempts to report. Without further effort, the base station has no
way to differentiate suppressions and failures and remedy this.

Coping at the Network Layer The most straightforward strat-
egy for coping with failure is to eliminate it. At the medium-
access (MAC) layer, we can require each message along a single
hop from sender node to receiver be followed with an acknowledg-
ment message from the receiver. If no acknowledgment is received
after some time, the sender sends the original message again. Af-
ter some number of attempts, however, the sender must give up.
At that point, the MAC layer may return the transmission back to
the communication layer, and request an alternative path be used.
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Eventually, the sender may run out of paths and attempts at each
and give up entirely. Fundamentally, there is no way to fully elimi-
nate the chance of failure.

Coping Implicitly Some applications assume there is enough
naturally occurring redundancy from temporal and spatial corre-
lation in data to compensate for failure. In continuous reporting
applications, if values are received from most nodes, missing ones
can be filled in with neighbors’ values. If a node’s value is missing
in one timestep, it can be filled in with the average of its values in
adjacent timesteps. The suppression algorithm Ken [2], which tries
to maintain an accurate model of the network at all times, assumes
any mistakes due to failure will eventually be corrected when re-
ports are received. They use heartbeat messages to ensure mistakes
do not last indefinitely.

Our Approach We have advocated heavily for using suppres-
sion specifically because it removes redundancy in network report-
ing, saving energy. This raises important questions. If redundancy
is necessary to compensate for failure, is there any point to using
suppression? Or in coping with failure, will we revert suppression
schemes back toward continuous reporting?

We will not revert. Suppression lets us remove redundancy so
we can add it back in a controlled fashion. There exists a funda-
mental trade-off between redundancy cost and benefit. If we rely
on natural redundancy, we have no control over this trade-off. By
explicitly adding redundancy we have very flexible control. If cer-
tain suppression links are very reliable, for example, we need not
add much redundancy to them or on their behalf. In general, redun-
dancy is a component of suppression scheme design.

3.1 Application-Level Redundancy

The goal in application-level redundancy is not to reduce failure
(as with MAC layer re-transmission), but to make applications ro-
bust to it. The base station’s ability to produce a correct (within
user-defined error) query result does not hinge on any particular re-
ports successfully transmitting. This has a number of advantages
over re-transmission (though the two can be applied in concert).
First, if many re-transmissions are needed on average, that strat-
egy may become quite expensive. The application redundancy we
propose can often be added onto existing messages, saving on over-
head costs. Second, programming nodes at the application-level is
arguably easier than at the lower MAC and communication layers.

We rely on both redundancy and models of network behavior to
produce a query result. This is clearly a blend of data-driven (re-
dundancy) and model-driven (model) techniques; we discuss how
to tune between these.

3.2 Examples

Temporal Suppression We begin with value-based temporal sup-
pression. A node only transmits when its value differs by more than
€ since its last transmission. We make a subtle tweak to minimize
the impact of failure. Until now we have had the node transmit
the difference from the last transmission, potentially saving a small
number of bits versus transmitting the new value itself. The differ-
ence is used to update the node’s value stored at the base station.
With this approach, however, failures accumulate on top of one an-
other and, even when interrupted by successful transmissions, per-
petuate indefinitely. There is never a re-calibration that tells the
base station the correct value. To prevent this, on each transmis-
sion we report the new value itself. This means we at least learn
the correct value on each successful transmission, eliminating the
effect of previous failures on future derivations. The sacrifice of a
few extra bits is likely not significant. This illustrates the types of
modifications we must make to deal with failure.



We now examine four versions of value-based temporal suppres-
sion. The first is the standard version, while the latter three add
redundancy to their payloads at increasing cost.

e Standard
e Counter
e Timestamp
e History

Regardless of version, as before, a node only transmits if its value
differs by more than e since last transmitted. With each transmis-
sion, however, the application payload differs. This means the
number of reports, and thus the total overhead paid on behalf of
the lower network layers (MAC and communication), is identical.
We prefer this approach to sending messages at more timesteps and
paying more overhead. The root uses the received messages to fill
in the set of the node’s readings over time, V' (v; denotes the read-
ing at time ¢). If it does not know the exact reading for a particular
time, it tries to fill in one of two special symbols: s for suppression
or f for failure. Combined with e, these place constraints on the
possible actual values to be used later in producing results. If the
base station cannot distinguish between s and f, it fills in na, for
“not available.”

Differentiating the Approaches Standard simply transmits the
node’s reading. If the base station receives a report at time ¢, it sets
v to the received reading. If it does not, it must set v; to na.

A node running Counter increments a local counter on each re-
port sent to the root and adds it to the standard message. Suppose
the root receives reports with none between at t and ¢t + z + 1, but
with non-consecutive counter values ¢ and ¢ + f + 1. The root de-
tects f failures and z— f suppressions have occurred in z timesteps.
It can estimate a recent failure rate of f/z from the node, and can
enumerate (;) possible suppression/failure scenarios to fill in the
gap between reports. Using knowledge of a model and reports from
other nodes, some permutations may be more likely than others,
letting us express the actual values in V' with some likelihood, or
generate samples of them.

A node running Timestamp includes in its reports a list of times-
tamps of the last n times in which it transmitted, ordered from most
recent going backward. The root applies this list to V' as follows:

e Loop through each time k from current time ¢ back to the earli-
est time listed in the timestamp list.

e If k is listed in the timestamps and vy, is currently set to na, set
v to f.
e Else if k is not listed in the timestamps, set vy to s.

This playback fills in timestamps as s or f, but only backward to
the earliest listed timestamp. Prior to that, there is no way to dis-
tinguish failures from suppressions. The greater n, the more con-
secutive failures must occur for timestamps to be left as na. We
expect a small constant n to be effective, and not add much cost
compared to Counter. Knowing the exact positions of s’s and f’s
lets us place bounded constraints on the actual values in V. For
example, if we know v; and identify v:y1 as a suppression, v¢y1
must be within {v; — €, vy + €}.

History, finally, transmits along with the last n timestamps, the
readings taken at them. Given the same n, for each v; Timestamp
identifies as f, History fills in the actual reading. If n is high
enough to eliminate all na’s in V/, this is sufficient to bound all
readings within e.

It is easy to see as the versions increase in payload size and there-
fore consume more energy in transmission, we also increase our
knowledge, or certainty, about the values in V. We illustrate this
trade-off by comparing Standard and Timestamp experimentally.
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Both schemes have € set to 0.3 and are aware raw data is generated
according to an auto-regressive(1l) process. We examine a series of
four consecutive timesteps, where only the endpoints are reported
at the base station. The series produced by each scheme are:

e Actual: {—2.5,-3.5,-3.7, 2.7}

e Standard: {—2.5,na,na, —2.7}

e Timestamp: {—2.5, f, s, —2.7}
‘We have constructed 2-D joint scatter plots to show possible recon-
struction combinations of the two missing values. Figure 6 shows
a joint scatter plot of samples inferred using Standard, while Fig-
ure 7 shows samples from Timestamp. We observe Timestamp
establishes stronger bounds, eliminating many possible reconstruc-
tions. Qualitatively, we see two scenarios: one where the second
value rises above -2.2 and one where it falls beneath -2.8 (the lat-
ter scenario is the correct one). In either case, because the third
value is a suppression, each of its samples must be within 0.3 of
the sample generated for the second value.

Conch We have discussed a variety of ways to add redundancy to
temporal suppression. For Conch, we again report not the changes
in difference for each monitored edge, but the actual difference, to
prevent failures from compounding over time. We sketch out one
idea for adding redundancy to Conch that adds additional moni-
tored edges. For example, in Figure 5, we can add edge » — c to
provide another path from r to each of c, e, g, f and b. The edges
are used to construct linear constraints on the true edge differences.
For this example, (r — a) + (@ — ¢) = (r — ¢). If this con-
straint does not hold, at least one of the three edges must have failed
to report a change.

While detecting failure is important, it still leaves the problem of
inferring the true node values. The more redundant edges added,
the more evidence there is with which to produce the correct val-
ues, but of course at an added cost. It is not clear how to best
add redundancy. This likely involves a combination of extra edges
and the per-report additions used for temporal suppression. What
edges should be added? Ideally, there should be multiple indepen-
dent paths to each node. Further, edges meant to “cover” for one
another must not have correlated failure, or else they provide no
benefit and only extra cost.

3.3 Inference

The inference problem is to determine the actual sequence of val-
ues, or a sample of them, as in the examples depicted in Figures 6
and 7. This is quite complex and here we simply sketch the input,
output, and strategies. First, the temporal suppression examples
show how the suppression scheme, notably ¢, and redundancy pro-
vide constraints on possible reconstructions of the raw values. Us-
ing constraints based on on evidence drawn from the network is a
data-driven concept. We can also utilize models of node behavior,
such as the AR(1) used in the examples. Even when values can-
not be hard-bounded, such as with Standard, AR(1) dictates the
actual values are unlikely to deviate far from timestep to timestep.
This is visible in Figure 6, where the distributions for 2 and z3
are conditioned on the known values z1 and x4. Using a model in
this way is clearly a model-driven concept; the samples are not de-
rived purely using evidence drawn from the network. It is possible
to control model reliance. We can diminish its importance relative
to data-driven evidence by, for example, lowering € or increasing
redundancy. The samples are then influenced more by constraints
than the model, but at increased cost. We see another fundamental
trade-off, then, between energy cost and reliance on model. Aside
from reconstructing the actual readings, we can also try to learn the
model process parameters. In our deployment, where the end goal



Figure 6: Missing values are na.

is to construct models of forest growth, this may be preferable.

We use a Bayesian approach to infer the raw values or process
parameters. This integrates all knowledge into inference, whether
encoded in the suppression scheme, reported from the network, or
from prior belief of the process parameters. This approach has the
attractive property of giving confidence measurements for the in-
ferred values and parameters, as opposed to simply mean values.
This is especially important for measuring scheme cost and trust
of models. It is easy to see the certainty benefit gained through
a particular cost and/or trust level. Confidence is also crucial to
post-processing efforts.

Post-Processing The confidence given by inference may leave
the user unsatisfied. In fact, if the user is always satisfied, the
scheme should arguably be tuned to lower confidence, and lower
energy cost. Post-processing directs gathering of additional evi-
dence from the network to raise confidence. Suppose the user de-
mands all raw values for a node be inferred within a size r range
with 95% confidence, and this is not achieved initially. Further sup-
pose the node archives its readings locally until its limited memory
forces evictions. For a limited time after inference, the root can
actively query the node to retrieve historical values. One obvious
strategy is to fetch all values for which inference confidence is too
low. More efficient solutions are possible, however. The root may
be able to acquire a limited set of values and contribute it as evi-
dence to infer all values, raising all confidence levels to sufficient
levels. The optimization problem is to find the minimum acqui-
sition cost subset of values that augments inference to derive all
values with sufficient confidence.

4 Interacting with the Communication Layer

The concepts we have discussed to this point focus mainly on the
application layer. There are many opportunities for optimizing in-
teraction between multiple layers, but danger in making coding
tasks too difficult. Nevertheless, the energy-efficiency of many of
our techniques depends on behavior at lower levels. In particular,
we now examine the communication, or routing, costs.

In Section 2 we examine several suppression schemes. None of
their suppression link graphs are very taxing to the communication
layer. Temporal suppression monitoring takes place locally at each
individual node. Conch edges are monitored between neighboring
nodes. When these nodes or edges generate reports, the reports
are turned over to the communication layer, which transmits them
to the root through whatever path it finds most efficient. These
suppression schemes do not request much of the communication
layer, though we see some conflict emerging in Conch. An edge
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Figure 7: Missing values are f, s.

is eligible for monitoring because its vertex nodes are neighbors;
they can communicate with one another directly. In the future, the
connection may degrade, and the communication layer will then
need to find an alternate, detour, route between the nodes, making
the edge less efficient to monitor. Conch must adjust by removing
that suppression link and adding replacement edges.

Example We plan to design applications with more complex spa-
tial reporting that require more than single-hop routing and so will
place a greater burden on communication. Consider the problem
of an in-network join query on three nodes, uq, up and u., produc-
ing readings x4, x» and z.. The join produces a result if all three
nodes’ values simultaneously exceed some value, p. This can easily
be modified to a window query to avoid synchrony issues.

The query need only notify the root when the result is non-empty,
i.e. when all three nodes’ values exceed p; otherwise the network
can suppress. Each node individually monitors its value against p
and suppresses if its selection predicate is not met. But can any
suppression be done in-network on the join? This is only possible
if it can be determined in-network whether or not all three of the
nodes pass. Once a node generates a value that passes its predi-
cate, the communication layer takes over sending a report of this to
the root. The application layer, oblivious to this routing, does not
know whether reports from each node, if generated, will converge
en route to the root. The application has no choice but to assume all
three nodes have generated reports, but convergence will not occur
until the root.

Suppose instead each node reports to some shared intermediate
node, um,, located close to all three of them. If u,, receives reports
from all three nodes, it transmits a report to the root. Otherwise, it
can safely suppress. The use of u,, is particularly beneficial if, say,
uq and up often pass their selection conditions, but u. does not, and
Unm, 18 located close to u, and u,. We can frame our options as sup-
pression schemes. In the first, the link graph consists of three links,
between each node and the root. In the second, the graph consists
of links between each node and u,,, and a fourth link between u,
and the root.

Routing Implications Setting an intermediate node, u,,, requires
the communication layer support point-to-point routing. Such
schemes exist [12, 20], but the sensornet operating system
TinyOS [1] currently most easily handles many-to-one communi-
cation, where all messages are directed to the root, and neighbor
communication, where all messages are single-hop.

Interspersing u., as an intermediate node can only increase the
path length between each of ug, up, and u., and the root. The
triangle inequality principle shows the shortest combined distance
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between u, and u,, and u., and the root, is greater or equal to
the shortest distance between u, and the root. Shortest path here
not only refers to number of hops, but also the number of transmis-
sions over those hops. An edge with poor connectivity necessitates
a greater expected number of re-transmissions than one with reli-
able connectivity. Even if u., initially lies within the shortest path
between u, and the root and seems to add no cost, reliabilities may
change over time such that the shortest path no longer contains .

This intuition is tested in Figure 8. We simulate a network by
setting node locations and constructing edges between all pairs of
nodes within some distance of one another. We then choose arbi-
trary pairs of sources and destination nodes. For each pair, we de-
termine the shortest path between them. We then set certain nodes
along each path as intermediate nodes that must be traversed, vary-
ing the density with which such nodes are imposed. A density of 1,
for example, means each node along the path is designated as inter-
mediate. A density of 1/6 means every sixth node is intermediate.
As long as all edges function, there is no additional routing cost
to traverse the intermediates; they all lie along the shortest path.
We then randomly fail edges in the network with some probability.
Failure rate is varied on the x-axis; for each rate, all edges fail with
that probability. With edges now missing, we again compute the
shortest path between each pair, both with no intermediates, and
with the imposed intermediates as dictated by density. For each
combination of density and edge failure rate, we plot the average
percentage increase in number of hops traversed between source
and destination when including the intermediates versus not.

As expected, the higher the density and the higher the failure
rate, the greater the increase in number of hops. The benefit to
in-network processing must be large in these cases to counter the
extra hops. On the other hand, when failure rate is low, we can
afford to impose more on routing, even if the processing benefit is
only slight. The goal is to find the optimal balance.

4.1 Milestone

‘We now formalize the trade-off between application processing and
routing burden. We label intermediate nodes milestones, from the
idea the communication layer has complete freedom in routing mes-
sages, but must deliver them to the milestones. For a source and
destination (such as the root) pair, by declaring one or more mile-
stones we ensure messages generated at the source will traverse the
milestones en route to the destination. This is illustrated in Figure
9, where the gray nodes signify both the freedom given the commu-
nication layer between milestones, as well as the application’s igno-
rance to what routes will be chosen. The application can count on
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messages arriving at the milestones and plan in-network processing
at them. The power of the milestone approach is it serves as a link
between the application and communication layers through which
we can balance costs, without requiring either know the details of
the other. At one extreme, we can declare every node a milestone,
forcing a static routing tree, but having maximal opportunities for
processing. At the other, we can declare no milestones, giving the
communication layer total freedom, but having no opportunities for
processing between sources and destinations.

4.1.1 Optimization

The milestone optimization problem bridges the communication
and application layers. The former provides a collection of n? vir-
tual edges between each pair of network nodes, coupled with their
base costs. An edge’s base cost roughly corresponds to the number
transmissions needed to traverse it, summing both multiple hops,
and number of re-transmissions over the same hop. Thus, an un-
reliable edge between physically nearby nodes may have the same
base cost as a reliable edge between more distant nodes.

The application layer provides a set of source and destination
node pairs. Each pair represents a delivery requirement that must
be fulfilled by the application. For each delivery pair, one or more
adjacent virtual edges must be selected whose endpoints connect
the source and destination. For a given selection of virtual edges, it
is possible to compute the message cost across each edge. This
is based on the nature of the application such as, for example,
whether multiple source values converging at a virtual edge raise
or lower message cost. The optimization goal is to minimize total
cost. This is computed as the sum of the products over all uti-
lized virtual edges of base cost and message cost. This achieves
a clean interaction between the two layers. Both contribute input
to co-optimization, but neither need know what routing protocol or
application algorithm, respectively, supplies those inputs.

In-Network Join We now describe the optimization for our in-
network join. The application supplies three source-destination
pairs. The sources are uq,us, and u.. The destinations for all
three are the root. A source-to-root path must be supplied for each
pair. The message cost for each utilized virtual edge depends on
the number of sources converging at its first endpoint node. A vir-
tual edge originating at one of the sources has average message
cost equal to the probability z > p. For a virtual edge shared by
multiple sources, the message cost is equal to the product of the
converging sources’ probabilities (assuming independence). Thus,
we can reduce message cost by having the source nodes share vir-
tual edges. To achieve minimum overall cost, however, this effort
must be tempered by the base costs of the chosen edges. The opti-
mal setting is the choice of virtual edges that provides paths for all



source-destination pairs and minimizes total cost.
4.1.2  Suppression Scheme

At this point, milestone should seem closely related to our discus-
sion of suppression scheme design from Section 2. In fact, mile-
stone is general enough to evaluate suppression scheme cost and
therefore aid in scheme selection. The suppression link graph is
a set of virtual edges. Each node serving as an observer (i.e. the
non-leaves in the suppression link graph) is a milestone. We need
not worry about how reports are routed between updaters and ob-
servers, but only what such transmissions cost.

We expect our intuition developed in this section to carry over
to suppression scheme design. Programmers may be tempted to
translate a sophisticated model of network correlation into an in-
tricate suppression scheme with a deep hierarchy of suppression
links, and therefore many milestones. The communication burden
for such a scheme, however, may outweigh the suppression benefit.
The schemes which best balance these two costs will win out.

5 Data Representation and Storage

Following discussion on suppression and failure, it should be evi-
dent presenting query results to the user is non-trivial. One option is
to only show the raw data collected at the base station, in whatever
form it be. This would make us quite derelict in our duty to supply
query results, especially if we produce high levels of suppression
but do not explain what all the missing data means. On the other
hand, due to the inherent uncertainty in sensornets, it is irresponsi-
ble to simply present a standard, fully populated relational database
as though data has been manufactured locally without error.

Data collection is the focus of the data-driven approach, and the
details of this collection must be stored and presented. Storing
metadata is important, and includes what suppression scheme is in
use, as well as the suppression parameters, such as e. What should
be presented as data itself? That depends on the intended audience.
If the audience is not known, the best policy might be to store every-
thing, including samples for each raw value and process parameter.
The user can clean the data and store it in a relational database as
they see fit. ESP [18] is a SQL-like language for directing clean-
ing that may be suitable for this task. If the user is non-technical,
it may be adequate to present a cleaned view of the data, perhaps
using MauveDB [11], for example. We believe applications de-
signed for non-technical users should also build in expectations for
confidence levels that are satisfied automatically.

Finally, users such as our ecologist collaborators may not want
an automatically cleaned view of the data, whether they direct it or
not. They must know exactly what is known for sure from the sup-
pression scheme and what is estimated from the model. This is key
to accurately exposing the blend of data-driven and model-driven
techniques used. Consider the samples for missing values shown in
Figures 6 and 7. When a missing value following a report is known
to be a failure, we obtain hard bounds on its actual value. When
nothing is known about the missing value, we lose the hard bounds
but can still concentrate the samples as not having moved far from
the previous reported one. This is the type of subtle distinction that
must be efficiently encoded, and is especially important when con-
sidering the end goal of building models. If we sanitize the data
using a prior model, and then build a model from it, the new model
will certainly be biased toward the prior.

The challenge of representing probabilistic data in a relational
database is an active research area, and we are adding fuel to the
fire. The suppression scheme represents a new type of metadata.
Our probabilistic data contains temporal and spatial correlations.
These must not be lost in storing samples. In typical databases
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there is a lot of data to manage. Our data is uniquely characterized
by how much is missing. It may be more efficient to not eagerly
infer and store the missing data, but instead store the inference pro-
cedures, and fill in the missing data at run-time. Finally, our data
comes with not only probabilistic uncertainty, but also uncertainty
bounded by hard constraints.

6 Role of Models

In Section 1 we advertise the data-driven approach as an alternative
or complement to model-driven, where we do not produce query
results generated from models in lieu of the actual measured data.
We may appear to then contradict ourselves by proceeding to dis-
cuss models extensively in every section and how they can be used
to make data collection more efficient. We now provide discussion
to reconcile this apparent conflict.

The key distinction between data-driven and model-driven is the
degree of trust placed on models. In model-driven, models can
serve as substitutes for the readings generated in the network. In
data-driven, models are used for optimization, but do not affect
correctness. We design suppression schemes based on models of
network behavior. If such models turn out to be inaccurate or im-
precise, correctness of the collection is not affected; only efficiency
is. If we know nothing about a deployment or the nature of the
measurements we are taking, we may initially pay a high cost for
collection. Eventually, however, we will collect enough data under
a large variety of conditions from which to build models. These
models are worth the effort, and more valuable than if handed over
by a domain expert; they will be exactly specific to the deployment
and its node locations. A positive feedback loop develops: the more
data collection we perform, the more we learn about the network,
and the better we can optimize subsequent collection.

One of the important problems in data-driven acquisition is au-
tomating the refinement process for users not interested in con-
structing models. This allows the vineyard owner who has pur-
chased a ready-to-deploy sensornet kit [5] to remain oblivious to
the use and refinement of models, except to notice the improve-
ment in energy efficiency that lets him replace batteries less often.

Reliance on Models Data-driven is not a replacement for model-
driven. Instead, it fills in a trade-off spectrum between trust of mod-
els and energy cost. The less a user is willing to allow models to
influence query results, the more they must pay for actual checks
against the data. In this paper the trade-off appears most promi-
nently in Section 3, when discussing failure. Because we cannot
fully eliminate failure, it is extremely expensive, if not impossible,
to meet the extreme where models have no effect on correctness.
The inference process that produces query results combines data-
driven and model-driven concepts. Data-driven includes the sup-
pression scheme parameters (i.e., what a non-report, assuming no
failure, means) and redundancy that contribute constraints on the
possible reconstructions. Model-driven includes the use of a model
that probabilistically biases reconstructions. The influence of each
on these approaches is tunable. It is possible to use a very unin-
formative model that in conjunction with high failure and/or little
redundancy, will result in uninformative query results. In this case
we get a poor query result, but the model has little influence. It is
possible to add more redundancy such that, even with the uninfor-
mative model, the possible reconstructions are constrained enough
to make inference informative. In this case we get a good query re-
sult without much influence by the model, but have pay the added
cost for redundancy, either by monitoring more suppression links,
or transmitting longer reports for each.

We expect users to tune the trade-off between data-driven and



model-driven as their deployment matures. Initially, when noth-
ing is known about the deployment, it is worth the extra energy
to not be biased, and perhaps misled, by informative prior models.
Once accurate models of the deployment are constructed, however,
it may be acceptable to rely on those models and save energy in col-
lection. Still, when unusual conditions emerge naturally, or artifi-
cially for experimental purposes, the existing model may no longer
hold, and it is best to temporarily shift back toward data-driven.

7 Related Work

Model-Driven vs. Data-Driven Sensornets typically exhibit cor-
relation. The model-driven approach is the first to aggressively ex-
ploit this by constructing a model over all nodes, times, and sensor
types [10, 9]. If information gleaned from readings from some ar-
bitrary point in the network somehow predicts readings in some
other arbitrary point, or at the same point in the future, these corre-
lations can be encoded. In parallel, we see a number of data-driven
approaches exploiting spatial correlation in local ways, typically
through clustering [14, 21], and exploiting temporal correlation on
a node-by-node basis [17, 6]. The former case focuses on hav-
ing a representative set of nodes stand in for all others, often with
the requirement each node be within one hop of its representative,
for ease of checking if each is accurately represented. The latter
case focuses on fitting stretches of data from individual nodes to
models, such that parameters can be transmitted in place of most
values. More recently, model-driven researchers have investigated
maintaining models in-network, rather than out [2, 25].

Model-driven faces the problem of presenting query results, given
their inherent uncertainty, to users, especially those without statis-
tics backgrounds [9]. We face the same problem in data-driven,
especially due to the influence of message failure. The avenue
of presenting a graphical interface to depict possible value set-
tings is promising. For users (or automated systems) that only care
about reaching particular certainty thresholds, we favor the post-
processing described in Section 3, combined with future tuning of
the suppression scheme (including redundancy).

Queries Ours is not the first paper to suggest SELECT * is a key
query and of special importance to collaborating scientists. This is
evidenced by the shear volume of work focused on total data col-
lection [17, 6, 25, 2, 23]. This list overlaps strongly with our above
list of prior data-driven research. There has also been considerable
work on specific continuous queries, including Deligiannakis et al.
on continuous aggregates using distributed error budgeting [7] and
our own work on extreme value queries [24].

Failure The vulnerability of sensornets to message loss has been
examined at all network layers. One major finding is edges between
network nodes do not either exist or not exist [26, 27]. Rather,
links exhibit a range of reliabilities. At the communication layer, it
is important to test edges and prioritize with discretion which can
be used for routing. Note this step returns physical link statistics,
different than the n? virtual links we use as input to milestone op-
timization in Section 4.1.

The lower network layers can minimize the probability messages
are not received by having recipients send acknowledgments back
to the sender, and having the sender re-transmit if no acknowledg-
ment is received. The number of attempts is capped. The applica-
tion layer provides the opportunity to make data collection robust
to failure; that is, arbitrary messages can fail without greatly com-
promising the application’s result. One interesting example of this
occurs in in-network aggregation. For duplicate-insensitive aggre-
gates like MAX, nodes can transmit multiple copies of their values
toward the root, assuming all will not fail, without affecting the
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result. This strategy fails for duplicate-sensitive aggregates like
COUNT and MEAN. The sketch [4] aggregates by hashing each node
id and value pair, and setting a subset of its bits accordingly. Ad-
ditional copies of the same pair will not affect the sketch’s setting.
At the root the overall setting of bits is used to approximate the
aggregate value.

The problem of missing data, the resulting ambiguity, and what
to infer about the true values, arises in a number of contexts. Khous-
sainova et al. describe such a problem for RFID sensors [19]. If
a particular tag is not scanned by a reader, is it not in the reader’s
area, or is it present, but failed to be read? Their solution, similar to
ours in Section 3, is to add integrity constraints into the reconstruc-
tion process (e.g. if a tag was detected by a reader in the previous
timestep but not by any in the current, it is more likely to be near
that reader than any other). The main difference from our approach
is these constraints are chosen offline by the user, whereas our con-
straints, encoded in suppression links, are actually monitored in the
network. These constraints then influence inference.

Application/Communication Layer Interaction Our work on
layer interaction is motivated by the need to structure the bound-
ary between them. Not surprisingly, there have been a number of
efforts focused on this boundary. For applications that transmit all
data to the root, Pattem et al. differentiate compression-driven rout-
ing and routing-driven compression [22]. When the network ex-
hibits strong spatial correlations among nodes, it is important such
values are routed to common points as quickly as possible using
compression-driven routing. Here the data is compressed, to be
sent on the root at reduced bandwidth. When there is little spa-
tial correlation, routing-driven compression is employed. Values
are transmitted to the root along the most efficient routes, and any
compression is done opportunistically.

Hellerstein and Wang pose the question of whether very specific
applications can be mapped onto the communication layer [15].
They focus on the Haar wavelet compression structure, where the
routing tree topology must match a rigidly structured Haar support
tree. Regardless of what single hop links are actually viable in the
network, using virtual edges (Section 4) overlayed on the network,
it is certainly possible to achieve this goal. The real question is
what the message costs are for supporting the Haar wavelet. Mile-
stone optimization is a framework for answering this. The choice
of virtual edges is constrained because only particular subsets con-
stitute a wavelet support tree. For each such subset, the bandwidth
over a virtual edge depends on the values converging at it.

8 Conclusion

We have introduced the data-driven approach for collection in sen-
sornets. Our motivation is to support continuous queries without
continuous data streams, while using the data generated in the net-
work as the ground truth. The primary technique for achieving
this is suppression, combined with use of models. We use mod-
els to optimize acquisition, but not at the cost of correctness. Ul-
timately, due to failure, it is difficult to completely eliminate re-
liance on models. We discuss techniques for coping with failure
by adding redundancy. We also discuss the milestone framework
for managing interaction between, but not merging, the application
and communication layers.

In this paper we have not declared how data acquisition should
be performed, but instead have provided general techniques that
expose trade-offs so application designers can make informed de-
cisions. Our suppression scheme definition generalizes a whole
class of applications and allows for consistent and simple compar-
ison among these. There is a trade-off between allowing models to



stand in for data and energy cost, particularly in handling failure.
We leave it to designers to choose points along this trade-off, but
ensure the consequences of these decisions are exposed, in terms
of energy cost and certainty of results. The milestone overlay ad-
dresses the problem of building applications while accounting for
routing costs, without needing to know details about the routing
protocol itself.

We anticipate a tremendous amount of work on application de-
velopment and are eager to see how the techniques in this paper
aid in that process and/or can be used to characterize the results
for the sake of comparison. We plan to develop more sophisticated
suppression schemes that delve deeper into encoding spatial con-
straints. As we design such schemes, we will also address the fail-
ure problem to find new ways to add redundancy and incorporate it
into inference. We also plan to develop sample applications using
milestone and determine if its interface gleans enough information
from the communication layer to accurately predict cost, so it can
then be used for application design.
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