Maitri: A Format-Independent Framework for Managing
Large Scale Scientific Data

Rishi R. Sinha, Arash Termehchy, Marianne Winslett, Soumyadeb Mitra, John Norris
University of lllinois
201 North Goodwin Avenue
Urbana, lllinois 61801

{rsinha,termehch,winslett,mitrai,jnorrisy@uiuc.edu

ABSTRACT

Even traditional commercial database systems do not scale
to the size of today’s large scientific data sets, whose growth
is outpacing Moore’s Law. Instead, scientists are wedded
to special-purpose data formats and their associated I/0O li-
braries, even though these libraries provide only basic func-
tionality. Thus there is a need for a scalable data man-
agement system that can support these formats and, when
needed, provide more sophisticated functionality for index-
ing, buffering, caching, concurrency control, metadata man-
agement, and querying.

This demonstration showcases Maitri, a framework that
can be used to address these needs. The Maitri frame-
work consists of a set of standard, very narrow interfaces for
format-agnostic, loosely-coupled libraries offering aspects of
the functionality listed above. Format independence is pro-
vided by Maitri’s block manager module, which encapsulates
all code that is specific to a particular scientific data format,
and calls the appropriate scientific I/O library to read and
write data in that format. The demonstration shows the
Rocketeer visualization toolkit running with subsets of the
Maitri module implementations to visualize rocket simula-
tion output data. The Rocketeer runs show the efficiency
that can be gained by layering format-agnostic query, buffer-
ing, and/or indexing facilities atop scientific I/O libraries.
The demonstration also shows that despite their narrow in-
terfaces, the implementations of Maitri modules work to-
gether very effectively.

Categories and Subject Descriptors

H.2.8 [Database Applications|: Scientific Databases; H.3.1
[Content Analysis and Indexing]: Indexing Methods

General Terms

Scientific Data Management

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

3" Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

219

Keywords

Indexing, buffer management, block management

1. INTRODUCTION

Today’s high-speed computers and automated sensing tech-
nology make it very easy to collect and generate data. For
example, the 12 TB of data currently exported by the Sloan
Digital Sky Survey (SDSS) are used by scientists around the
globe to study astronomical phenomena, and a week-long
plasma physics simulation at Tech-X Corporation outputs
over 1 TB. The upswing in data generation and collection is
outpacing Moore’s Law, straining the ability of computers
and especially disks to keep up. Brute force approaches to
data analysis will soon resemble searching for a needle in a
haystack. Scientists need innovative data management fa-
cilities to store, visualize, and analyze enormous amounts of
data efficiently.

Researchers have worked to adapt database technology to
the needs of scientists [5, 11]. The most successful of these
efforts are probably SQL Server for SDSS and Oracle for bi-
ological data. Yet close examination of the SDSS query log
shows that scientists use the relational part of SDSS only to
find data of potential interest. Once interesting data have
been found, the scientists download a less processed form
of the data objects in a non-RDBMS format, go through
the laborious process of cleaning them at home, and ana-
lyze them, all without a relational system. Similarly, there
are loud rumblings of discontent with Oracle in the biology
community. Most of the reasons for this lack of success have
been documented previously, along with the unmet needs
and the special characteristics of scientific data and queries
[3, 4, 7, 8, 10]. For example, failure has been attributed
to the lack of support for arrays, need for considerable per-
formance tuning expertise, lack of portability, expensive or
non-existent parallel versions, monolithic architecture, use
of proprietary file formats, and scientists’ dislike of (learn-
ing) SQL. Perhaps surprisingly, performance is also often
an issue. For example, a typical commercial data warehouse
might hold 2 TB, while the Center for Simulation of Ad-
vanced Rockets (CSAR) at UIUC can generate that much
data in a week. To quote Mike Folk, CEO of The HDF
Group, “It’s not unusual for scientists to start with rela-
tional databases, which often work well up to a point, but
then people find that they don’t scale to their problem sizes.
This is when people start taking a look at what we’re doing
with HDF.”

In response to the shortcomings of commercial databases,

domain and computer scientists developed binary-file-based
user-level libraries that store data in formats designed specif-
ically for scientific data. These range from generic formats
like HDF and netCDF to domain specific formats like ROOT
for high energy physics and FITS for astronomy. These sys-
tems allow the scientists to store data with their associated
metadata and access them efficiently through the associated
libraries. However, the libraries’ navigational model for ac-
cess requires significant programming for each query. Fur-
ther, the libraries’ file-based approach has had the unantici-
pated side effect that as the data size increases, the number
of files usually gets very large (e.g., an 11 GB data set at
CSAR has 7152 files). Indexing and multi-file data retrieval
are absent from these libraries, and scientific tool program-
mers expend considerable effort to provide multi-file meta-
data management, buffering and caching facilities in their
tools. Often scientists need data from several sources, each
adopting a different format and requiring use of a different
API. Thus scientists have to double as data management
experts, taking time better spent doing science.

Even if a vastly improved data management facility were
made available to scientists, in many cases it would be hard
for them to adopt it. A number of scientific communities
have already standardized on a data format and schema for
their domains, and data that do not adhere to that format
will not be sharable or be accessible by the tools developed
by the community. Further, specific formats and schemas
are often chosen for a large long-term project at its incep-
tion, such as while a new satellite is being built. Once a
large amount of data has been collected or generated, and
tools have been written to access that data in a certain for-
mat and schema, it is impractical to convert the data and
rewrite the tools.

If neither commercial databases nor current scientific I/O
libraries will able to handle the scientific data management
challenges of the near future, and it will be very hard for sci-
entists to migrate to new facilities, then how can we improve
matters? We must allow scientists to use their choice of for-
mat and schema, while introducing new functionality and
enhancing scalability. Intuitively, we could satisfy almost
everyone by taking the high-level functionality of a DBMS,
pasting it on top of a variety of scientific I/O libraries, and
changing the look and feel of the query language. In the-
ory, this can be done by enhancing the functionality of to-
day’s scientific I/O libraries, by extending ORDBMSs to
work better with scientific data, or by introducing an en-
tirely new approach that combines aspects of both worlds.
We have adopted the third course of action, for the following
reasons.

Assumptions about the data storage format are
built into DBMSs, making them incompatible with the
vast amounts of legacy scientific data stored in a different
format. The removal of these assumptions will impact much
of the DBMS (which makes it a great research topic). Fur-
ther, commercial DBMSs generally use proprietary storage
formats, which are unacceptable in most scientific domains.

Without native support for arrays in the storage
model, access methods, and query language, DBMSs
will find it hard to compete with scientific I/O libraries
on performance and usability of large data repositories. While
commercial DBMSs have made great strides in extensibility,
and the interest in column-oriented storage and the decom-
position storage model [2] is also a move in the right di-

220

rection, the array data type remains a second class citizen
in commercial DBMSs and it seems unlikely that this will
change in the next decade.

If the groups that maintain today’s scientific I/O libraries
each separately make significant enhancements in library
functionality and performance, scientists will still have
to learn a variety of different APIs to gather all the
data they need from different sources. We can avoid this
problem (and reduce the cost of the enhancements) by en-
capsulating the new functionality into modules that can be
layered on top of multiple libraries.

To enhance a variety of scientific data storage formats
with the high-level functionality of a DBMS, we propose
the Maitri framework, whose most notable characteristics
are as follows:

Loosely coupled, non-monolithic architecture. Maitri’s

framework consists of very narrow interfaces for a block,
buffer, index, metadata, and query manager. With few ex-
ceptions, a scientific tool writer can include the managers
s/he needs and omit the remainder.

Many different module implementations. The im-
plementations behind Maitri interfaces can take many dif-
ferent forms, making the framework flexible, adaptable, and
extensible. This extensibility allows a tool writer to pick the
most appropriate implementations for the tool at hand, and
upgrade them in the future without disturbing end users.

Format independence. Format- and schema-dependent
code resides only in Maitri’s block manager module, which
must be instantiated by a scientific tool writer before that
tool can use Maitri. A block manager implementation will
typically use a pre-existing scientific I/O library to navigate
through a schema in the native format of that library, and to
read and write data in units that are meaningful and appro-
priate for the tool. In return for the effort of writing a block
manager, the tool writer can take advantage of the high-level
functionality that is provided by Maitri’s other modules and
is not available in the scientific I/O library. Further, the
high-level functionality can be implemented once and used
with a variety of different block managers, each correspond-
ing to a different storage format.

Better scalability. As their users will testify, the most
popular scientific I/O libraries are significantly faster than
traditional DBMSs for scanning typical large data reposito-
ries. The use of scientific I/O libraries as the lowest layer
in the Maitri framework means that Maitri users can enjoy
this same performance advantage. Where the libraries’ per-
formance falls short is in multi-file and selective data access;
Maitri’s buffer, index, and query manager interfaces and im-
plementations are designed to overcome those limitations.

Better query interfaces. Today’s scientific tool query
interfaces typically allow users to restrict the values of a
handful of variables (e.g., temperature > 0 AND pressure <
100). Though scientists may not like SQL, in the long term a
declarative query language is key to providing more powerful
query capabilities in tool interfaces. Maitri is designed to
allow the graceful adoption of declarative query languages
for tools’ selective data access.

The remainder of this paper is organized as follows. In
Section 2, we present the Maitri architecture and its aston-
ishingly narrow module interfaces. In Section 3, we discuss
the functionality of the current implementations of these in-
terfaces and point out numerous open problems specific to
scientific data management that can be investigated within

saueiqiy
on
synusIds

- a

Maitri

Scientific
Tools

Figure 1. Architecture of the Maitri Framework for Scientific
Data Management.

the context of the Maitri framework.

2. MAITRI ARCHITECTURE

As shown in Figure 1, the Maitri framework provides a
scientist with the most important features of a database in
a modular lightweight package. End-user scientists usually
access data through visualization and analysis tools. Maitri
is intended to work both in coordination with such tools
and as a standalone system. In essence, Maitri is a grey
box between the scientific tool writer and the scientific I/O
libraries being used to read and write the data.

When all of Maitri’s modules are in use, the flow of control
for processing a query is as follows. First, a scientific tool
or user opens a data repository through a call to the query
manager (QM). Subsequently, the tool or user can forward
a query to the QM. The QM asks the metadata manager
(MM) for metadata about the repository and the attributes
being queried (such as whether the attributes have indexes).
The QM plans how to execute the query; depending on the
QM’s level of sophistication, this process can be trivial or
very complex. During execution of the query, the QM passes
control to the index manager (IM) to execute selected
parts of the query. The QM then uses the MM to find out
which data blocks to read to process the rest of the query.

Although scientific data is generally read-only once it is
written, there are certain interesting cases where concur-
rency control is needed. (Unfortunately, space limits prevent
us from describing them here.) Before reading or writing
data or metadata that may be subject to conflicting access,
the QM can invoke the concurrency manager (CM) to
lock those objects and/or the data blocks containing them,
using an appropriate lock mode defined in that particular
instantiation of the CM. The QM calls the buffer man-
ager to read the blocks into memory buffers efficiently. The
buffer manager invokes the block manager to efficiently
read blocks of data in a particular file format and schema.

Most of the Maitri managers are present in standard DBMSs.

The most novel aspect of the Maitri architecture is the use
of the block manager to encapsulate format-specific code,
as discussed in more detail in the next section. The second
novel aspect is in our intent that many scientific codes will
not use all of the Maitri managers. If a tool writer chooses
to omit the query manager (say), the writer is responsible
for implementing the equivalent functionality directly in the
tool. The tool can still access Maitri through any other in-
stantiated module interface. For example, simulation codes
are write-intensive. Their writers may choose to use just

221

Metadata M:
ctacata Vanager Buffer Manager

addBlock()

rea.dBIock() Block Manager
waitBlock()
finishBlock() Block(ID)
deleteBlock() read()
Query Manager write()

getlterator()

getBlockId(number)
getIndex(attribute)
getBlockNumber(objectld, attribute)
getBlockNumbers(attribute)

iterator query(string)

getNext(iterator)

Index M:

= \ Concurrency Control Manager

create() lock(object or block, mode)

bulkInsert()

unlock(object or block, mode)
query()

Figure 2. Maitri APls.

a buffer and block manager, as an easy way to get excel-
lent overlap of writes and computation. The functionality
that such codes require in terms of metadata management,
a query language, and indexing will often be so trivial that
it is simplest to code it directly in the tool. As another
example, for archived, read-only data and metadata, there
is no need to call a concurrency control manager. On the
other hand, visualization tool writers will typically prefer
to access data through a query manager. In this case, the
writer needs to know the Maitri query API and the query
language supported by the particular implementation of the
query manager being used. The writer does not need to
learn a new query language for each storage format.

Figure 2 shows the interface that each Maitri module cur-
rently exports. Due to space limitations, we have omitted
most function arguments and return values in the figure.
The interfaces are the outcome of over a decade of work-
ing directly with scientists and with the HDF group (and
thus indirectly with thousands of other scientists); on the
basis of this experience we claim that the narrow interfaces
for the index, query, buffer, and block managers support
95% of the data management needs of the scientists we have
worked with. Our experiments with the indexing, buffer-
ing, and block manager modules have left us confident in
the effectiveness and completeness of these APIs for today’s
typical scientific data management needs.

With the current implementations of Maitri interfaces, the
flow of control for a typical query is as follows. Consider
the query “select velocity where temperature in [100, 500]
& pressure in [5, 21]”, over a database with an index on
temperature. On receiving the query, the QM asks the MM
to return links to indexes to temperature and pressure. The
MM returns a link to the index to temperature and returns
a null for the pressure index. A call to the IM then produces
the IDs of the objects that have temperature between 100
and 500. The QM uses the MM to find out which buffers
to read to evaluate the constraint on pressure. The QM
also uses the MM to determine whether these buffers will
also provide values of velocity (in practice, scientists will
have stored the velocity and pressure values separately on
disk). The QM then asks the buffer manager to read the
required blocks in a background thread. The QM tells the
buffer manager which blocks it will be reading in the future,
so the buffer manager can prefetch them while the QM is
working on the pressure constraint for another block. The
buffer manager calls the block manager to read the pressure
and temperature data in their native formats.

The interfaces in Figure 2 omit 90% of the calls that one

might find in the API of a modern scientific I/O library or
DBMS; where has all the complexity gone? Some of the
complexity lies in the arguments passed to the managers.
For example, the QM accepts strings in an arbitrary query
language that can be as simple or complex as needed. Some
of the complexity is hidden inside the managers. For exam-
ple, a QM can have a sophisticated optimizer; a CM can
have many different lock modes; and a block manager may
need to make many calls to the underlying I/O library to
instantiate a data block.

The interfaces allow an inept tool designer to really make a
mess of things. This decision is deliberate. Without Maitri,
tool designers are responsible for all aspects of data man-
agement except those encapsulated by the I/O libraries they
use. Maitri does not free them from all these responsibilities.
Instead, our intent is for Maitri to allow programmers to col-
laboratively build up layers of enhanced functionality that
can be shared across groups and reused in many different
contexts, so that tool writers will often be able to manage
data at a higher level of abstraction and with greater power
than they can without Maitri. Maitri does not free tool
writers from all performance tuning responsibilities, either.
The responsibility for performance tuning will lie primarily
with the writers of block managers.

3. MAITRI MODULES
3.1 Block Manager

In traditional databases, a block refers to a logically con-
tiguous portion of a file on disk. In Maitri, a block refers
to a set of logically co-located objects that are to be read
and written as a unit [6]. Only the block manager can
read, write, parse, and understand the internal structure
of blocks—and those are its chief responsibilities. The block
manager is format dependent, and will usually be schema
dependent as well; this sacrifice allows the rest of the man-
agers to be written to be format independent. The block
manager interface defines the following methods:

INTERFACE BLOCK {
Block(BlockID id);
read();
write();
Record getInstantiations(Attributes);
Record getInstantiations();

}

A BlockID object (which encapsulates metadata required
to read/write the block) must be initialized before the corre-
sponding block can be read or written using the block man-
ager’s read() and write() methods. Once a block has been
read into memory, the block manager’s getInstantiations()
method can be called to parse and extract part or all of the
data in the block, and place the data in newly created Maitri
Record objects. The developer of a tool that will use Maitri
must implement the getInstantiations method. Each Record
object contains the values of the attributes for a particular
object that resides in the fetched block.

While the block manager looks relatively simple, a good
choice of definition of blocks is critical to good runtime per-
formance. For example, if the data set is stored in many
individual 2MB files, then a block should be defined as an
entire file. On the other hand, if each file is 2GB, it is
likely that a different definition of a block is needed for

222

good performance. Without Maitri, scientific programmers
are already implicitly saddled with the task of block def-
inition (i.e., deciding how much data to fetch at a time),
so in a sense we can hardly make things worse than they
already are. However, without good prefetch and write-
behind facilities, scientific programmers could never hope
to achieve top performance. With the buffer manager’s ex-
cellent prefetching and write-behind facilities, it is time to
raise expectations. At a minimum, we need to help the pro-
grammer understand how different implementations of the
block manager can change the performance of the tool being
developed. Thus an excellent topic for future research is the
development of guidelines and automated facilities that will
help tool programmers to tune their block managers, i.e., to
choose good block definitions.

3.2 Query Manager

Our current query manager implementation supports a
very simple query language. All data entry is handled by
bulk inserts, and all query conditions take the form of DNF
range restrictions on attributes. The query optimizer gen-
erates an execution plan that uses all indexes available for
restricted attributes, and then performs sequential scans to
evaluate the restrictions on the remaining attributes. While
this is sufficient for a surprisingly large proportion of scien-
tists’ needs, clearly one can do much better. In general, this
area consists of uncharted waters packed with interesting
research topics.

3.3 Metadata Manager

Scientific data are accompanied by a great deal of meta-
data, much of it associated with the provenance and storage
encoding of the data. Typically, no analysis can be done
without the metadata. Researchers who have addressed
metadata management for scientific data [1, 8, 9] typically
use a database engine to store the metadata, with the actual
data residing in scientific-format binary files. This guaran-
tees fast file I/O for data and sophisticated data manage-
ment capabilities for metadata, but can cause problems for
portability and/or performance. Maitri’s metadata man-
ager is loosely coupled with the other Maitri modules, so
that any existing metadata manager implementation can be
wrapped and used in Maitri—DBMS, special-format binary
files, ASCII files, mathematical formulas or lookup tables.
We have implemented two metadata managers for Maitri
and identified several new research challenges for metadata
management, which space limits prevent us from describing
in this version of the paper.

3.4 Index Manager

Researchers have pointed out that traditional indexes such
as B trees, hash tables, and even R trees, KD trees, and
oct trees do not work very well with scientific data; bitmap
indexes are the leading proposal for a general-purpose al-
ternative [3, 12, 10]. While Maitri’s modular architecture
supports the use of many different kinds of indexes, we have
bet the farm on a hierarchical enhancement of bitmap in-
dexes that we call multi-resolution bitmap indexes. Our
previous experiments with multi-resolution bitmap indexes
showed excellent performance for range queries, regardless
of the number of attributes being restricted or the width of
the range restrictions [10].

3.5 Buffer Manager

Maitri’s buffer manager is a modified and extended version
of the Godiva buffer manager [6], which uses a relatively sim-
ple API to allow the programmer to specify blocks of data
that can be read and stored in memory together. Godiva
also allows the application developer to specify prefetching
and buffering hints, which Godiva will use in deciding when
to fetch/write a block and when to evict a block from its
cache. Godiva fetches and writes blocks in a background
thread. In Godiva, the block manager is an integral part of
the buffer manager; in Maitri, the block manager is an in-
dependent entity and the buffer manager is format indepen-
dent. All Maitri modules must call the appropriate block
manager when they need to read or write blocks on disk,
and when they need to extract information from blocks in
memory.

When the query manager asks the buffer manager to read
a block, the buffer manager initializes the block, and then
uses the block manager’s readBlock() methods (provided by
the scientific tool writer) to read the data from disk. The
tool writer provides hints to the buffer manager on how
to most efficiently read the required data, using the meth-
ods addBlock() (which adds the block to the list of active
blocks), readBlock() (a blocking call that forces the block to
be read), waitBlock() (a blocking call that waits until the
block is read in the order in which addBlock() calls were
made to the buffer manager), finishBlock() (which removes
the block from the list of active blocks but still keeps the
block in memory for later use), and deleteBlock() (which
removes the block from memory). While the scientific tool
processes the data already read, the background I/0 thread
reads the blocks registered using the addBlock() method. A
detailed description of Godiva and a performance study of
with visualization tools can be found elsewhere [6].

3.6 Concurrency Manager

Once written, scientific data is generally read /append only.

Nonetheless, there are at least two interesting research chal-
lenges for concurrency control with scientific data and meta-
data. Both problems have been driven by requests for new
HDF functionality from real-world scientists. The first prob-
lem occurs when multiple processors want to write com-
pressed simulation snapshot data as the same time. If all
processors write to different files, then the huge number of
output files causes metadata management headaches. If all
processors write to (different parts of) a single file, then it
is not clear how much space to allocate for a processor’s
output, due to the compression. To address this problem,
processors can compress relatively small amounts of data
and write them out in a log-style approach. Inexpensive
concurrency control is needed for the metadata associated
with the tail of the log, and also for other metadata that
subsequent readers will use to quickly find particular data
within the log format.

The second concurrency control problem arises with ap-
plications that want to process data from sources that are
still producing output. These read-write conflicts can occur
even in sequential environments, if data is appended while
another process is reading the data. If a scientist is do-
ing online data analysis and visualization as the data arrive,
then simultaneous reads and writes to the end of the file can
cause inconsistency in the analysis. Inexpensive concurrency
control is needed to address this problem.

223

4. DEMONSTRATION

The demonstration is based on the Rocketeer visualization
code (www.csar.uiuc.edu/F software/rocketeer/). Rocketeer
is a powerful tool for visualizing 3D scientific data sets, de-
veloped at the Center for Simulation of Advanced Rockets
at the University of Illinois. Rocketeer is primarily used to
analyze numerical results from rocket simulations, but it can
be used for viewing many other types of 3D data. Rocketeer
is written in C++ and uses the Visualization Toolkit, which
is based on OpenGL for accelerated graphics. Rocketeer
differs from many visualization tools in its ability to handle
many different types of grids on which the data is defined.
The grid may be non-uniform, structured or unstructured,
and multiblock. Rocketeer can display data from multiple
files and /or multiple data sets from the same file in a single
image. Rocketeer can perform a set of graphics operations
on a series of data sets, to produce frames for animation.
A parallel version of Rocketeer is available, but our demon-
stration uses the sequential version.

&
flid |
0100 e[Mesh
500 - (3 Sodlars
ees + [Coordinatesx
| Coordinatesy
0400 +) Coordinates?
0500 O
0500 w1 of
0700 = (D
e -) peonn
0900 o
%) et
1000 [thoEf
1100 w0 [tht
1200 % [dvel
WL sivel
ﬁgg w [vl
= Vectors
1500 o [thowt
1500 = [
(2 Tensors
Edit Thresholding
5.18761e-006
I
-
J [
0 518761008
Thisshold: |Less than upper mit |
ak Cancel |
Time range: 0-11 (0-8.11)
Fise 0 = e[Curent \rj
a 81 a
deoy | Renderer | On

(stan [~ [e (1

Figure 3. Rocketeer Visualization Toolkit.

Rocketeer can show a grid on the surface of the computa-
tional domain and indicate the value of a scalar variable on
that surface using a color scale. It can also display scalar
variables as multiple isosurfaces and/or on slices across the
X, y, or z axes. The surface, grid, isosurfaces, and slices
can be semitransparent and can be cut away to allow a
clearer view of the interior of a 3D volume. Rocketeer reads
data stored in HDF4 format (www.hdfgroup.org) format or
CGNS format (www.cgns.org). Metadata attributes stored

with the data help Rocketeer interpret the contents of the
file without additional user input.

Figure 3 shows the Rocketeer toolkit. The leftmost text
box lists the data sets read (each set is a set of points that
were calculated on a single processor). These are the blocks
that are being visualized in the image on the right. The
text box that is second from the left shows the variables
that are being visualized. The scalar values have one value
associated with every point, the vector values have 3 values
per point, and the tensors have 9 values per point. Each
attribute can be visualized on separate isosurfaces, and the
“Edit Thresholding” bar can be used to specify constraints
for a particular dimension.

We have modified Rocketeer so that it takes its input from
a Maitri implementation, rather than from its usual input
routines. We have also altered the handling of metadata so
that it is stored by the metadata manager, rather than in
the data files. This provides much more efficient metadata
management, and makes the initial load of Rocketeer much
faster for large data sets. We have also modified Rocketeer
to support user thresholding on attributes that are not being
visualized.

The demonstration consists of four main phases. The
first phase demonstrates the improvements afforded by the
Maitri buffer manager. In this phase, we show how hints
from the user can help in overlapping computation with I/O
to reduce total run time. In the second phase of the demon-
stration, we show how multi-resolution bitmap indexing sup-
ports efficient subsetting of data.

The third phase of the demonstration shows how the query
manager efficiently interleaves computation and 1/0. Since
bitmap indexes are primarily compute bound, we stream re-
sults from the bitmap index manager to the buffer manager
in such a way that the background thread of the block man-
ager can start reading the data while the index manager is
still determining which data buffers must be read. The query
manager also overlaps the reads with the complex calcula-
tions of the visualization tool that must be performed before
rendering can take place. This efficient overlap of reads and
computation is key for high performance. The third phase
also shows how consecutive visualizations can reuse results
from previous visualizations as beginning blocks for further
visualizations, showcasing the ability of the query manager
to optimize across multiple queries.

The fourth and final phase shows that the block manager
interface allows the visualization tool to switch between data
formats easily, by shifting from the HDF block manager to
the CGNS block manager.

S. CONCLUSION AND FUTURE WORK

We have proposed the Maitri framework as a way to let
scientists have their cake and eat it too. With Maitri, sci-
entists can keep their beloved data formats, along with the
good performance of the I/O libraries for those formats, be-
cause Maitri uses those libraries to read and write data.
Higher-level components of Maitri offer scientists lightweight,
mix-and-match, data-format-independent modules that pro-
vide many of the features of DBMSs (indexing, buffering,
concurrency control, declarative queries), without their draw-
backs (proprietary data format, lack of portability, poor sup-
port for arrays). Certain aspects of the Maitri architecture
make it possible for performance to scale beyond what scien-
tists obtain with DBMSs or scientific I/O libraries. In par-

224

ticular, the superior performance of scientific I/O libraries
for reading large repositories carries over to Maitri, through
Maitri’s use of these libraries for data reads and writes.
Maitri helps overcome the libraries’ performance problems
for many-file data repositories, by supporting background
prefetching and buffering across file boundaries. The price of
this enhanced functionality is that the scientific tool writer
must create a small amount of code to read and write data
blocks. Our experimental results show the performance ben-
efits of Maitri’s approach with real-world data. We have also
pointed out many remaining research challenges in creating
and tuning implementations of individual Maitri modules.

6. ACKNOWLEDGMENTS

The research is supported by the Department of Energy
under subcontracts B341494, DOE DEFC02- 01ER25508,
by NSF grant NSF ACI 02-05611, and by CSE Fellowship.

7. REFERENCES

[1] A. Choudhary, M. Kandemir, H. Nagesh, J. No,

X. Shen, V. Taylor, S. More, and R. Thakur. Data
management for large-scale scientific computations in
high performance distributed systems. In High
Performance Distributed Computing, 1999.

[2] G. P. Copeland and S. Khoshafian. A decomposition
storage model. In SIGMOD, 1985.

[3] Department of Energy Office of Science Data
Management Challenge. http://www.sc.doe.gov/
ascr/Final-report-v26.pdf, 2004.

[4] J. Gray, D. T. Liu, M. A. Nieto-Santisteban,

A. Szalay, D. J. DeWitt, and G. Heber. Scientific data
management in the coming decade. SIGMOD Record,
34(4), 2005.

[5] R. R. Johnson, M. Goldner, M. Lee, K. McKay,

R. Shectman, and J. Woodruff. USD - a database
management system for scientific research. In
SIGMOD, 1992.

[6] X. Ma, M. Winslett, J. Norris, and R. Fiedler.
Godiva: Lightweight data management for scientific
visualization applications. In ICDE, 2004.

[7] R. Music and T. Critchlow. Practical lessons in
supporting large-scale computational science.
SIGMOD Record, 28(4), 1999.

[8] J. No, R. Thakur, and A. Chaudhary. Integrating

parallel file I/O and database support for

high-performance scientific data management. In

IEEE SC, 2000.

B. Plale, J. Alameda, B. Wilhelmson, D. Gannon,

S. Hampton, A. Rossi, and K. Droegemeier. Active

management of scientific data. In Internet Computing,

2005.

[10] R. R. Sinha, S. Mitra, and M. Winslett. Bitmap
indexes for large scientific data sets: A case study. In
IPDPS, 2006.

[11] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and
J. Wu. Tioga: Providing data management support
for scientific visualization applications. In VLDB
Journal, 1993.

[12] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with efficient compression. ACM
Transactions on Database Systems, 31(2), 2006.

9

