
QUIC: Handling Query Imprecision & Data Incompleteness
in Autonomous Databases

Subbarao Kambhampati, Garrett Wolf, Yi Chen, Hemal Khatri
Bhaumik Chokshi, Jianchun Fan, Ullas Nambiar

Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ 85287, USA

ABSTRACT
As more and more information from autonomous databases
becomes available to lay users, query processing over these
databases must adapt to deal with the imprecise nature of user
queries as well as incompleteness in the data due to missing at-
tribute values (aka “null values”). In such scenarios, the query
processor begins to acquire the role of a recommender system.
Specifically, in addition to presenting answers which satisfy the
user’s query, the query processor is expected to provide highly rel-
evant answers even though they do not exactly satisfy the query
predicates. This broadened view of query processing poses sev-
eral technical challenges. We propose a decision theoretic model
for ranking answers in the in the order of their expected relevance
to the user. This model combines a relevance function that re-
flects the relevance a user would associate with answer tuples and
a density function which reflects the each tuple’s distribution of
missing data. Adoption of this model foregrounds three general
challenges: (i) how to assess the relevance and density functions
automatically (ii) how to support efficient query processing to re-
trieve relevant tuples and (iii) how to make users trust the recom-
mended answers. We present a general framework for addressing
these challenges, describe a preliminary implementation of the
QUIC system and discuss the results of our preliminary empirical
evaluation.

1. INTRODUCTION
The popularity of the World Wide Web has lead to the

presence of multiple online databases that are often laxly
curated and readily accessible to lay users. An important
challenge facing the database community is to develop ef-
fective mediators that can handle the data incompleteness
(caused by lax curation) and query imprecision (caused by
the lay user population). This challenge brings to the realm
of structured data many issues that traditionally were only
handled in information retrieval. Dealing with this chal-
lenge is further complicated by the fact that the databases
are autonomous and only support query-based access to the
mediator.

Data Incompleteness: An increasing number of online
databases are being populated with little or no curation. For

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

example, databases like autotrader.com are populated us-
ing automated extraction techniques which crawl text clas-
sifieds and by car owners entering the data through forms.
Similar techniques are also used in integration systems for
scientific data such as CBioC (cbioc.org). Unfortunately,
these methods are error prone (c.f. [17]) which leads to
databases that are incomplete in that they contain tuples
having many null values. In fact, on a random sample of
25,000 tuples from autotrader.com, we found that almost
34% were incomplete!1

Query Imprecision: More and more lay users, be they
causal web users, or domain experts that are nonetheless
database novices, are accessing autonomous databases on
the web. Often these users do not clearly define what they
are looking for and many times the form-based query formu-
lating tools do not support imprecise queries. Imprecision
can involve posing queries that are either overly general [6]
or overly specific [15] w.r.t. the information that is truly
relevant. For example, users end up asking queries such as
Q : CarDB(Model=Civic) when they actually want to ask
the query Q′ : CarDB(Model≈Civic) (where “≈” is to be
interpreted as “like”). A car of model Accord that does not
exactly satisfy the query can be relevant if the user was look-
ing for a reliable Japanese car but over-specified the query.
Further more, the query may be over-general in that among
all the answer tuples, the ones with a lower mileage are pre-
ferred more by the user. A mediator system should be able
to support such imprecision in the user’s queries and return
tuples which do not exactly satisfy the query constraints but
nevertheless are likely to be relevant to the user.

Example: Consider a fragment of online Car database DBf

as shown in Table 1. Suppose a user poses an imprecise
query Q′ : σModel≈Civic on this table. Clearly tuples t1 and
t6 are relevant as they are exact answers to the query. In
addition, the tuples t4 and t7 might also be relevant if there
are reasons to believe that the missing value might be a
Civic. Finally, tuples t2 and t8 might be relevant if Civic is
considered similar enough to Accord and/or Prelude.

Ideally, a query processor should be able to present such
implicitly relevant results to the user, ranking them in terms
of their expected relevance. In this paper, we present a
general framework as well as a specific current implementa-
tion, called QUIC aimed at solving this problem. We start
with the philosophy that query imprecision and data incom-
pleteness are best modeled in terms of relevance and density
functions. Informally, the relevance function assesses the rel-

1This type of incompleteness is expected to increase even
more with services such as GoogleBase and Craigslist.com
which provide users significant freedom in deciding which
attributes to define and/or list.

263

Id Make Model Year Color Body Style

1 Honda Civic 2000 red coupe
2 Honda Accord 2004 blue coupe
3 Toyota Camry 2001 silver sedan
4 Honda null 2004 black coupe
5 BMW 3-series 2001 blue convt
6 Honda Civic 2004 green sedan
7 Honda null 2000 white sedan
8 Honda Prelude 1999 blue coupe

Table 1: Fragment of a Car Database

evance the user places on a tuple t with respect to a query
Q. The density function attempts to capture the probability
distribution that an incomplete tuple is in reality represent-
ing a complete tuple t in that all their non-null attribute
values are the same.

Challenges: Given information about relevance and den-
sity functions, it is possible, in theory, to rank a set of pos-
sibly incomplete tuples in terms of their expected relevance
given a specific query. Simple as it sounds, realizing such a
query processing architecture presents several technical chal-
lenges, brought about mostly due to the autonomous nature
of the databases, and the impatience of the user population:

Ranking Challenges: (i) We need a way to combine the
density and relevance functions to provide a ranking of the
tuples. (ii) Since the users are often impatient, we need
methods for automatically and non-intrusively assessing the
appropriate relevance function. (iii) Since the databases are
autonomous, we need methods for automatically assessing
the density function.
Optimization Challenges: Since often the query proces-
sor has only a form-based interface to access the databases,
we need to be able to rewrite the queries appropriately in
order to retrieve tuples that are likely to be relevant to the
user. This necessitates novel query rewriting techniques.
Explaining/Justifying Answers: Since the query pro-
cessor will be presenting tuples that do not correspond to
exact answers to the user’s query, it needs to provide expla-
nations and justifications to gain the user’s trust.

We have been addressing these challenges in the context
of a preliminary prototype called QUIC. Our aim in the
rest of this paper is to (i) describe the broad issues that
arise in tackling these challenges and (ii) describe the ap-
proaches that have been taken in the current implementation
of QUIC. The architecture of QUIC is shown in Figure 1.
QUIC acts as a mediator between the user and autonomous
web databases. Because of the autonomous nature of these
databases, QUIC has virtually no control or prior knowledge
over them. QUIC computes relevance and density functions
from a probed sample of the autonomous databases. These
functions are in turn used to reformulate the user query in
order to retrieve tuples that are relevant even though they
may not be exact answers. The retrieved tuples are ranked
in terms of a ranking function that we call expected relevance
ranking. The ranked results are returned with an explana-
tion of the ranking scheme. The current implementation of
QUIC uses approximate functional dependencies (AFDs, c.f.
[10]) to mine and represent attribute dependencies. As we
shall see, AFDs wind up being useful in multiple ways in
QUIC.

Contributions over Prior Work: The problem we ad-
dress brings together several core database challenges — in-
cluding uncertainty, incompleteness and query imprecision,
to the context of web with its autonomous databases and lay
user population. The problems of data incompleteness and

Autonomous

Database

Domain

Information
Sample

Database

Query

Reformulator

Sampling Queries Rewritten Queries

Result Tuples

Base

Result Set

Extended

Result Set

Expected

Relevance

Ranker

User Query

User Query

Certain Answers+

Uncertain Answers+

Similar Answers

Relevance Function (R)

Estimator

Density Function (P)

Estimator

Mine AFDs

Learn Na ïve Bayes

Classifiers

Relevance Function(R)

Density Function(P)

AFDs

Compute Value

Similarity

ExplanationExplainer

Sampler

QUIC

Compute Supertuples

and similarity graph

Figure 1: QUIC System Architecture.

query imprecision have, in the past, been tackled in isolation
in traditional databases. However, the methods tended to
involve direct modification of the databases, to rewrite null
values (e.g. [11]) or to insert similarity measures between
attribute values (e.g. [13]). The autonomous nature of the
web sources, as well as the impatience of the lay users pre-
cludes straightforward adaptation of these methods. The
complications include the need to automatically, indirectly
and non-intrusively assess relevance and density functions,
as well as the need to use these assessed functions in re-
formulating the user query so as to retrieve tuples that are
expected to be of relevance to the user.

Assessment of relevance and density functions are spe-
cial cases respectively of the general problems of “util-
ity/preference elicitation”[4, 5] and “density estimation”[9,
16, 17] that have been studied extensively in the AI, statis-
tics and pattern recognition communities. The challenge
we face is adapting, from this welter of literature, the right
methods that are sensitive to the autonomous nature of the
databases as well as the possibly non-cooperative user pop-
ulation. Given that our treatment of incomplete tuples in-
volves converting them into uncertain tuples, work on prob-
abilistic databases[3, 18, 2] shares some of our goals. It
however focuses on single centralized databases, assuming
that the uncertainty in the base data is already quantified
and can be recorded and handled within the databases them-
selves. In contrast, QUIC focuses on autonomous databases,
and thus must assess the uncertainty in the base data auto-
matically and handle the uncertainty by the mediator with-
out modifying the underlying databases.

Work on QUIC is built on our previous work on the AIMQ
system [15] that focuses exclusively on query imprecision,
and our more recent work on QPIAD [12] which focuses
exclusively on data incompleteness. QUIC extends these
prior efforts both in terms of addressing query imprecision
and data incompleteness together, as well as investigating
a larger spectrum of methods for assessing relevance and
density functions, and using them for query rewriting.

Organization: In the next section, we discuss how QUIC
handles each of the challenges discussed above. In each
sub-section we first discuss the broader challenges, and then
present the current approaches taken in QUIC. This is fol-
lowed in Section 3 by an empirical evaluation of the current
implementation of QUIC. We conclude with a discussion of
the directions we are currently pursuing.

264

2. CHALLENGES & CHOICES MADE
In this section, we define Expected Relevance as the ba-

sis for ranking results in the presence of query imprecision
and data incompleteness. We use t̂ to denote a (possibly
incomplete) tuple of a database D and t to denote a com-
plete tuple. A complete tuple has a non-null value for each
of the attributes, while an incomplete tuple has null values
for some of its attributes. A tuple t is considered to belong
to the set of completions of t̂ (denoted C(t̂)), if t and t̂ agree
on all the non-null attribute values.

2.1 Expected Relevance Ranking Model
The expected relevance ranking of a (possibly incomplete)

tuple t̂ given a query Q by a user U over a database D,
ER(t̂|Q, U, D) is specified in terms of two independent func-
tions, the relevance function R and the density function P
as defined below.

σModel≈Civic Civic Accord Prelude Corolla
Relevance 1.0 0.78 0.59 0.48
Density 0.62 0.21 0.17 0.0

Table 2: Relevance for the query Q′ : σModel≈Civic and
Density for tuple t̂4.

Relevance Function R: The relevance function,
R(t|Q, U), is the relevance that user U associates with
a complete tuple t as an answer to the query Q. Ta-
ble 2 shows a possible relevance function for the query
Q : Model≈Civic. Here R(t|Q, U)=1 for tuples having
Model=Civic, 0.78 for tuples with Model=Accord, 0.59 for
tuples with Model=Prelude, and so on. Moreover, it need
not be the case that all tuples having Model=Civic are of
the same relevance to the user. Specifically, by considering
the user’s query to be under specified, we can give varying
relevance scores to tuples with the same values for the con-
strained attributes (c.f [6]). For example, given two tuples
each having Model=Civic, it could be the case that the car
with lower Mileage is more relevant to the user even though
they may not have made it explicit.

Density Function P: The density function, P(t|t̂, D), is

the probability that a (possibly incomplete) tuple t̂ from

database D corresponds to a complete tuple t ∈ C(t̂) (where

C(t̂) is the set of completions of t̂). Table 2 shows a possi-

ble density function for the incomplete tuple t̂4, which esti-
mates the probabilities of the possible values of the null over
the domain of the Model attribute (for example, based on
the rest of the attribute values and correlations between at-
tributes). In this case, the distribution of possible values is:
0.62 probability for Civic, 0.21 for Accord, 0.17 for Prelude,
etc.

Expected Relevance ER: Our ranking function,
ER(t̂|Q, U, D) can now be defined as:

ER(t̂|Q, U, D) =
∑

t∈C(t̂)

R(t|Q, U)P(t|t̂, D)

It is easy to see that the ERR model is general enough
to handle traditional database query processing where the
relevance and density function are dirac delta functions
(R(t|Q, U) = 1 if t.A = v and 0 otherwise and P(t|t̂, D) = 1

if t̂ = t and 0 otherwise) as well as query processing under
data incompleteness and/or query imprecision.

Processing the query Q : Model≈Civic on the car
database, we retrieve not only the tuples that exactly satisfy

Q, namely t1 and t6, but also highly relevant tuples, includ-
ing incomplete tuples t̂4 and t̂7, and similar tuples t2 and
t8. These tuples are then ranked and presented in the de-
creasing order of their expected relevance based on the ERR
model, where both the relevance and density functions are
considered.

2.2 Estimating Relevance Function
Broad Challenges: Assessing the relevance function in
general involves preference elicitation. For example, pref-
erences could be used to determine relative importance of
attributes as well as similarity between two attribute val-
ues. In the web scenarios, preferences could be obtained
in several ways: (i)Preferences can be directly expressed
by users as part of their queries. Several IR systems al-
low user specification of imprecise queries. The problem is
that shifting the burden of preference expression to the users
does not normally work well (ii) Preferences can be learned
by monitoring user’s clickstream or stare patterns. How-
ever, individually monitoring every user’s preferences might
be expensive. (iii) Preferences can be learned indirectly by
analyzing users’ past query patterns. Understanding the
trade-offs offered by these approaches is an open problem.

Current Implementation in QUIC: QUIC currently fo-
cuses on imprecision due to overly-specific queries. Rather
than assess user-specific relevance functions, QUIC attempts
to assess relevance functions for the whole user popula-
tion. Further more, QUIC assumes that relevance func-
tion is based on attribute value similarity and attribute im-
portance. Currently, three alternative approaches are sup-
ported for computing the value similarities: content based
filtering, collaborative filtering which uses the click patterns
of the user population (where available), and co-occurrence
statistics.

Content Based: In QUIC’s content based relevance mea-
surement, we learn a relevance function between two at-
tribute values without any user interaction. QUIC issues
a query binding each attribute value pair (AV) to a sam-
ple database, where the query result forms a supertuple
for that AV pair (given a set S of tuples, a supertuple
tS is constructed as a tuple of bags, where each bag con-
tains the possible values a particular attribute took in the
tuples in S [15]). QUIC computes the similarity between
supertuples (as measured by Jaccard coefficient with bag
semantics) to estimate the similarity between AV pairs:

SimJ

(
t1S .Ai, t

2
S .Ai

)
=

|t1S .Ai∩t2S .Ai|
|t1

S
.Ai∪t2

S
.Ai| , where t1S , t2S are the su-

pertuples, and t1S .Ai (t2S .Ai) is the bag of values of attribute
Ai in t1S (t2S).

Co-click Based: In contrast to the content based rele-
vance function assessment which does not involve actual user
transactions, we also tested collaborative filtering based on
co-click patterns. In this implementation, we obtained user
clickstreams from the Yahoo! Autos (autos.yahoo.com)
web pages by scraping the collaborative recommendations
provided by the site. Specifically, each car’s web page con-
tained 1 to 3 recommendations for other cars which were
viewed by people who also viewed the car on the given page.
Using this information, we create an undirected weighted
similarity graph for attributes like Make and Model (where
multiple links between two nodes are reduced to a single link
having a weight equal to the total number of links between
the nodes).

Let CSim(N1, N2) denote the co-click similarity between
two nodes N1 and N2 in the similarity graph. If N1 and
N2 are connected by an edge, we have CSim(N1, N2) =

265

SimC(N1, N2) = α(1−W (N1,N2)/(avg(agg(N1),agg(N2))), where
agg(N1) is the aggregate sum of the weights for all links
between N1 and all other nodes, W (N1, N2) is the weight
of the link between nodes N1 and N2, and α is a parameter
between 0 and 1.

If N1 and N2 are connected through a path (rather than an
edge) we compute CSim(N1, N2) by assessing the transitive
similarity by taking the product of all the SimC values along
the shortest path between N1 and N2.

Co-occurrence Based: These approaches leverage the
co-occurrence of words to measure the degree of sim-
ilarity between two objects. In QUIC implementa-
tion, we use co-occurrence data gathered by Google
Sets(http://labs.google.com/sets), a website that given an
item (e.g. a car model), generates a set of frequently co-
occurring items. We constructed an undirected graph for
co-occurrences of each Make/Model value in our sample
database, in a similar manner as generating co-click simi-
larity graph. After constructing the graph, the similarity
measurement between two nodes is computed in the same
way as the co-click based approach.

Given any of the attribute value similarity measurements
discussed above, we compute the relevance function of a
tuple t to Q with constrained attributes A1, ..., An as a
sum of the weighted similarity measurements for each of
the constrained attributes. Here the weights given to each
attributeare made to sum to 1 and are computed using the
mined AFD confidences as described in [15].

2.3 Estimating Density Function
Broad Challenges: Recall that given an incomplete tuple
t̂ from the database, the function P(t|t̂, D) gives the proba-

bility that a tuple t that is a completion of t̂ belongs to the
database. The function P is easy to specify if we have ac-
cess to the generative model of the database. For a relational
database with n attributes, the generative model is simply
the joint probability distribution P (A1, A2, · · · , An). Given

the joint, the individual P(t|t̂, D) functions can be computed
through conditioning and marginalization over the joint. So,
we can either assess the joint and use it to compute P func-
tions or assess P functions directly. The relative advantages
of these approaches depend on the tradeoffs between accu-
racy and learning costs.

Current Implementation in QUIC: Whether we learn
the joint distribution or the P function directly, one way of
going about is to learn their Bayes Net representations from
a sample of the database[16, 9]. The cost of learning the
distribution depends on the topology of the network. It can
be made simple by making strong assumptions on the inter-
actions between the attribute values. Given an incomplete
tuple t̂ with a null value on attribute Ai, we need to estimate
P(t|t̂, D), the probability of a completion t from the com-

pletion set C(t̂). In QUIC, we assume that tuples with more
than a single predicted null value are not likely to be ranked
high given their low relevance to the user hence we only
predict at most one null per tuple. In addition, we assume
independence between attributes, and assess the density
function by learning an AFD-enhanced Näıve Bayes Clas-
sifier(NBC) from a sample database [12]. First the system
mines the inherent correlations among database attributes
represented as AFDs[10]. Then it builds Naive Bayes Clas-
sifiers based on the features selected by AFDs to compute
probability distribution over the possible values of the miss-
ing attribute value for a given tuple. Specifically, given an
AFD Aj Ã Ai, where 1 ≤ j ≤ m, and t.Ai = vi, we have

P(t|t̂, D) = P(t̂.Ai=vi)×
m∏

j=1

P (t̂.Aj |t̂.Ai = vi).

We have also investigated other single attribute density
estimation techniques, most notably, learning general Bayes
Nets[12]. However, our experiments showed that the im-
proved accuracy of the learned Bayes Nets was not enough
to offset the significantly increased learning cost involved in
searching over the possible Bayes Net topologies (the advan-
tage of Naive Bayes Net is that the topology is fixed).

2.4 Relevance and Correlation-based Query
Rewriting

Broad Challenges: The ERR model we discussed in the
previous sections can be used to rank the answer tuples
in terms of their expected relevance, once potentially rel-
evant tuples are retrieved from the data sources. However,
to support practical query processing based on ERR over
autonomous databases, it is neither efficient nor feasible to
retrieve all tuples and then rank them. Rather, we need
to be pro-active in retrieving tuples that are likely to be
highly relevant answers to the user’s query (besides the ones
that exactly satisfy the query). Since most autonomous
databases only allow query-based access to their data, we
need to develop novel query rewriting techniques to support
this. These techniques would need to exploit the relevance
and density functions to rewrite the user query appropri-
ately. For example, in a used car data source scenario, given
a user query to retrieve Honda cars, we could (i) retrieve rel-
evant incomplete tuples by rewriting the query as selection
query on Accord, Civic etc. (to the extent that the assessed
density function says that Accords and Civics are correlated
with the make Honda. (ii) retrieve relevant complete tuples
by rewriting the query as retrieving Toyota cars (to the ex-
tent that the assessed relevance function says Hondas are
similar to Toyotas).

Current Implementation in QUIC: To retrieve only
possible similar tuples and incomplete tuples with high ex-
pected relevance, QUIC rewrites (expands) an input user
query into a set of queries using the AFDs. Let us con-
tinue the running example Q′ : σModel≈Civic on Table 1.
First, certain answers t1 and t6 are retrieved as base set.
Given an AFD {Make, BodyStyle} Ã Model, we know that
car Model is closely related to its Make and BodyStyle.
If a tuple t̂ has the same Make and BodyStyle as a tu-
ple t in the base set, then t̂ is likely to be a relevant
Model to the user. Based on this intuition, the query re-
formulator generates Q1 : σMake=Honda∧BodyStyle=sedan and
Q2 : σMake=Honda∧BodyStyle=coupe. The ranking of Q1 is
the same as the ranking of a tuple Make = Honda ∧
BodyStyle = sedan ∧ Model = null with respect to Q′.
Similarly for Q2. Issuing the queries Q1 and Q2 will re-
trieve the extended result set, namely the tuples t2, t̂4, t̂7,
and t8. Among them, t2 and t8 are similar tuples whose
Model is relevant (but not equal) to Civic, and t̂4 and t̂7
are incomplete tuples, whose possible values of Model could
be Civic or relevant to Civic. Note that the ranking of t̂7 is
the same as the ranking of Q1, the ranking of t̂4 is the same
as Q2, while the ranking of t2 and t8 need to be computed
upon retrieval. Finally, the tuples from the extended result
set are returned to the user in ranked order.

2.5 Explaining Answers to Users
Broad Challenges: Given that our query processor is a
quasi-recommender system, it is important that its ranked
results are trusted by the user. While rank explanation is
critical enough in traditional databases (c.f. [8]), it is even

266

Figure 2: Snapshot of Ranking Function Evaluation User Study.

more critical in the presence of query imprecision and data
incompleteness. As a motivating example, consider a sce-
nario where the user gives a selection query QModel≈Civic,
and one of the tuples returned by the system has a null value
on model. Without an accompanying explanation, the user
would be hard pressed to understand why this is a relevant
answer for her query.

Current Implementation in QUIC: QUIC attempts to
explain the relevance of its answers by providing snippets
of its reasoning involving the assessed relevance and density
functions. In the example above, the first level explanation
may involve stating that the null value is 62% likely to be
“Accord” (by the density function) which is 78% similar to
“Civic” (by the relevance function). A further “drill down”
is used to provide additional details on the explanation. For
example, the density assessment could be justified in terms
of the AFDs, and the relevance assessment can be justified
in terms of co-click patterns.Figure 2 shows a snapshot of
the explanations provided during our user study.

3. EMPIRICAL EVALUATION
We have implemented a prototype of QUIC, a screen

shot is shown in Figure 2. Evaluating the effectiveness
of QUIC is challenging due to the absence of a bench-
mark which defines relevance judgements for database
queries. Therefore we have conducted small scale user
studies for empirical evaluation. We performed two
user studies with 10 people with none of them being
familiar with this work. We use an online used car
database cars(make,model,year,price,mileage,location,color)
extracted from Yahoo! Autos(available at
http://autos.yahoo.com).

Content Co-click. Co-occur.

Accord Accord Passport
Ram Prelude Odyssey
TL Corolla S2000

CR-V Accent Prelude
...

Table 3: Ranked similarity lists from the user study
for Q : σModel≈Civic.

Similarity Metric User Study: The first user study eval-
uates the effectiveness of content, co-click, co-occurrence
based similarity metrics. Each user was shown 30 sets of
lists. Each set contained a value for either a make or model
of a car. In addition, each set had 3 ordered lists of sim-
ilar makes/models, as shown in Table 3, which were pro-
duced using the content, co-click, and co-occurrence based
approaches (the lists were randomly shuffled and the users
were not given the methods used to generate the lists). Users
were then asked to order the lists in terms of how good the

Attribute Co-click Co-occur. Content

Make 63.3% 29.3% 7.3%
Model 74.7% 11.3% 14.0%

Table 4: Evaluation of Relevance Assessment.

ranked lists were to their own similarity relevance model.
Table 4 shows the percentage of the make/model lists pro-
duced by each approach that users found to be most consis-
tent with their own relevance model. As we can see, co-click
filtering is the most effective approach for similarity assess-
ment. Therefore, when the click streams are available,2 we
utilize the co-click based approach and choose content based
similarity measurement otherwise.

Ranking Order User Study: The second user study was
used to evaluate the ranked results produced by QUIC. 14
multi-attribute selection queries on the car database are
tested. For each query, the user was shown 10 tuples con-
sisting of similar and incomplete tuples ranked based on
Expected Relevance,3 along with the explanations. Each
tuple was then judged by the user as either relevant or not
relevant.

To evaluate our ranking based on the ER, we used nor-
malized R-Metric [1] which is defined as:

∑
i

ri

2
(i−1

9)
where i

is the ith ranked tuple, ri is 1 if the user found the tuple
relevant and 0 otherwise. The R-Metric computes the sum
of the scores for the tuples which the user found to be rele-
vant. As we can see, the formula gives more weight to the
higher ranked tuples than the lower ranked ones.

Figure 3 shows the R-Metric scores for 4 types of queries
where each type has the same set of constrained attributes.
It shows that the ER ranking is effective in recommend-
ing highly relevant tuples, with an average RMetric score
above 0.75 for all 14 queries. In particular, for queries con-
taining constrained attribute Make, the RMetric scores are
higher than the queries with constrained attributes Model
or Y ear. This is because the AFD for Make has a higher
confidence and corresponds with users’ domain knowledge,
making the incomplete tuples returned to be convincingly
relevant. These experiments show that our ERR ranking
model is effective in recommending relevant answers to the
users. Furthermore, 41% of the time, the users found that
the explanations offered by the system were useful.

Query Rewriting Evaluation: To show the effectiveness
of our query rewriting techniques in retrieving highly rel-

2In the current implementation, click streams were only
available for the attributes Make and Model hence content
based similarity was used for the remaining attributes.
3We do not show tuples that exactly satisfy the user query
because all such tuples are considered as equally relevant to
the user.

267

R-Metric Score Across Query Types

Make

Model

Year

Model

Color

Year

Make

Model
Model

Year

Overall

Average

0

0.2

0.4

0.6

0.8

1

Constrained Query Attributes

R
-M

e
tr

ic

Figure 3: R-Metric Ranking Scores Across Queries

evant results, we compare the ER rank of each individual
tuple in the extended query result set with the ER rank of
the query that was used to retrieve this tuple, and count the
number of rank inversions. For example, suppose rewritten
query Q1 is ranked higher than Q2, we would expect the
tuples retrieved by Q1 to have a higher rank than those re-
trieved by Q2. We count the number of tuples retrieved by
Q2 which actually have a higher rank than a tuple retrieved
by Q1. Then, we compute the number of inversions by divid-
ing this number by the total number of tuples retrieved by
query Q2. Table 5 shows the percentage of inversions over
4 different query types with an average of 3.4% inversion.
Thus, we can conclude that our query rewriting techniques
indeed retrieve highly relevant tuples first by issuing the
queries in order of their ERR rank.

Query Attributes % of Inversions

Make, Model, Year 3.4%
Model, Color, Year 3.9%
Make, Model 2.9%
Model, Year 4.6%

Overall Average 3.4%

Table 5: Percentage of Rank Inversions from the
query rankings to the individual tuple rankings.

In addition to the evaluation presented here, the empirical
studies in [12, 15] can be seen as ablation studies on QUIC.
In particular, the effectiveness of the AFD and NBC based
density assessment is evaluated in [12] and the effectiveness
of content-based relevance assessment is evaluated in [15].

4. CONCLUSION & PROSPECTUS
In this paper we motivated the problem of handling

data incompleteness and query imprecision in autonomous
databases. We argued that effectively tackling this problem
requires solutions to density and relevance estimation, query
rewriting and result explanation. We showed that solving
these problems requires tools from decision theory, utility
elicitation, statistical learning, as well as core database tech-
niques for handling uncertainty and incompleteness. We
then summarized our current progress in designing a system,
QUIC, for handling these challenges. We ended by describ-
ing promising preliminary empirical studies on QUIC.

At the time of this writing, we are focusing on three im-
portant outstanding challenges: (i) handling attribute corre-
lations in assessing relevance and density functions (ii) sup-
porting more expressive queries, including joins and (iii) fo-
cusing on data-integration issues that arise in the context of
multiple autonomous databases. The first issue arises when
the database tuples contain multiple nulls and/or the user

query is imprecise across multiple constrained attributes.
In both cases, the density and relevance estimation tech-
niques need to consider the dependencies between the at-
tributes. A naive method would be to consider correlated
attributes as single super-attributes. We are investigating
assessment methods for relevance and density functions in
structured representations such as Bayes Nets, conditional
random fields and CP-nets [9, 16, 5, 17]. Supporting join
queries brings forth several of the core issues in probabilis-
tic databases (c.f. [3]), including the fact that the uncer-
tainty can no longer be represented in terms of the so-called
x-tuples, and requires c-tables [11]. We are investigating
the adoption of lineage-based uncertainty handling (c.f .
[3]). Finally, the presence of multiple autonomous databases
poses the challenge of selecting sources that can provide
tuples with the highest expected relevance with fewest re-
sources. We are considering adapting our work on source
selection (e.g. [14]) as well as collection selection (e.g. [7]).

Acknowledgements: We thank Aravind Kalavagattu, Za-
iqing Nie, Anhai Doan, Alon Halevy, John Tangney and the
CIDR reviewers for useful comments on earlier drafts.

5. REFERENCES
[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.

Automated ranking of database query results. CIDR, 2003.
[2] P. Andritsos, A. Fuxman and R.J. Miller. Clean Answers

over Dirty Databases: A Probabilistic Approach. ICDE
2006.

[3] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with Uncertainty and Lineage. VLDB
2006.

[4] J. Blythe. Visual exploration and incremental utility
elicitation. AAAI, 2002.

[5] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and
D. Poole. Cp-nets: A tool for representing and reasoning
with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research(JAIR), 2003.

[6] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum:
Probabilistic Ranking of Database Query Results. VLDB
2004.

[7] B. Chokshi, J. Dyer, T. Hernandez and S. Kambhampati.
Relevance and Overlap Aware Text Collection Selection.
ASU CSE TR 06-019. 2006.

[8] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan.
Ordering the attributes of query results. In SIGMOD
Conference, 2006.

[9] T. Hastie, R. Tibshirani and J. Friedman. Elements of
Statistical Learning. Springer Verlag (2001).

[10] Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Effi-
cient Discovery of Functional and Approximate
Dependencies Using Partitions. ICDE, 1998.

[11] T. Imielinski, and W. Lipski Jr. Incomplete Information in
Relational Databases. In J. ACM 31(4): 761-791, 1984.

[12] H. Khatri, J. Fan, Y. Chen, and S. Kambhampati. QPIAD:
Query processing over incomplete autonomous databases.
In Proc. ICDE, 2007.

[13] A. Motro. Vague: A user interface to relational databases
that permits vague queries. ACM TOIS 6(3), 1998.

[14] Z. Nie, S. Kambhampati: A Frequency-based Approach for
Mining Coverage Statistics in Data Integration. ICDE 2004.

[15] U. Nambiar and S. Kambhampati. Answering imprecise
queries over autonomous web databases. In ICDE, 2006.

[16] R.E. Neapolitan. Learning Bayesian Networks. Prentice
Hall. 2004.

[17] R. Gupta and S. Sarawagi. Creating Probabilistic
Databases from Information Extraction Models. VLDB
2006.

[18] D. Suciu and N. Dalvi. Foundations of Probabilistic
Answers to Queries. In Proc. SIGMOD. 2005.

268

