
Web-scale Data Integration: You can only afford
to Pay As You Go

Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin (Luna) Dong,
David Ko, Cong Yu, Alon Halevy

Google, Inc.
jayant@google.com, jeffery@cs.berkeley.edu, shirleyc@cis.upenn.edu, lunadong@cs.washington.edu,

dko@google.com, congy@eecs.umich.edu, halevy@google.com

ABSTRACT
The World Wide Web is witnessing an increase in the amount of
structured content – vast heterogeneous collections of structured
data are on the rise due to the Deep Web, annotation schemes like
Flickr, and sites like Google Base. While this phenomenon is cre-
ating an opportunity for structured data management, dealing with
heterogeneity on the web-scale presents many new challenges. In
this paper, we highlight these challenges in two scenarios – the
Deep Web and Google Base. We contend that traditional data in-
tegration techniques are no longer valid in the face of such hetero-
geneity and scale. We propose a new data integration architecture,
PAYGO, which is inspired by the concept of dataspaces and em-
phasizes pay-as-you-go data management as means for achieving
web-scale data integration.

1. INTRODUCTION
Since its inception, the World Wide Web has been dominated

by unstructured content, and searching the web has primarily been
based on techniques from Information Retrieval. Recently, how-
ever, we are witnessing an increase both in the amount of struc-
tured data on the web and in the diversity of the structures in which
these data are stored. The prime example of such data is the deep
web, referring to content on the web that is stored in databases and
served by querying HTML forms. More recent examples of struc-
ture are a variety of annotation schemes (e.g., Flickr [14], the ESP
game [33], Google Co-op [16]) that enable people to add labels to
content (pages and images) on the web, and Google Base [17], a
service that allows users to load structured data from any domain
they desire into a central repository.
A common characteristic of these collections of structured data is

that they yield heterogeneity at scales unseen before. For example,
the deep web contains millions of HTML forms with small and very
diverse schemata, Google Base contains millions of data items with
a high degree of diversity in their structures, and Google Co-op is
producing large collections of heterogeneous annotations. Hetero-
geneity in this environment is reflected in two aspects: First, the
same domain can be described using multiple different schemata
(e.g., multiple Google Base schemata describing vehicles); Sec-

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

ond, there may be many ways to describe the same real-world entity
(e.g., multiple ways of referring to the same product or person).
The presence of vast heterogeneous collections of structured data

poses one of the greatest challenges to web search today. To take
a concrete example, suppose a user poses the query “Honda Civic”
to a web-search engine. We would like the engine to return (and
properly rank) results that include, in addition to unstructured doc-
uments, links to web forms where the user can find new or used
cars for sale, links to sites where car reviews can be found, en-
tries from Google Base that may be relevant, and links to special
sites that have been annotated by car enthusiasts as relevant. If
the user further specifies a geographic location with the query, the
engine should specialize the results appropriately, and perhaps in-
clude links to Honda dealers in the area, or a link to an appropriate
dealer locater form.
Improving search in the presence of such heterogeneous data on

the web leads to a fundamental question: are too many structures
(i.e., schemata) akin to no structure at all? In other words, are
we doomed to query this content with traditional web-search tech-
niques based on Information Retrieval? Or can we extend tech-
niques from data management, in particular from heterogeneous
data integration, to improve search in such contexts?
This paper contends that traditional data integration techniques

are no longer valid in the face of such heterogeneity and scale.
Thus, we propose a new data integration architecture, the PAYGO1
architecture, as a methodology for approaching this challenge. The
PAYGO architecture is inspired by the concept of dataspaces [15]
that emphasizes pay-as-you-go data management.
We begin by describing two data management efforts at Google

in some detail, and use them to expose the challenges faced by
web-scale heterogeneity. First, we discuss our work on searching
the deep web. We describe how the scale of the problem affects two
alternative approaches to deep-web querying: run-time query refor-
mulation and deep-web surfacing. The former approach leaves the
data at the sources and routes queries to appropriate forms, while
the latter attempts to add content from the deep web to the web
index. We also describe the first study of the deep web that is
based on a commercial index; the study suggests that the deep web
contains millions of sources. Second, we consider Google Base
and describe how schema when available can be used to enhance
a user’s search experience. This improvement, however, comes at
the expense of large-scale heterogeneity that arises naturally as a re-
sult of the large numbers of independent contributions of structured
data to Google Base. Additionally, we touch briefly upon annota-
tion schemes to further illustrate the challenges and opportunities
of structured data on the web.

1PAYGO is an acronym for Pay-As-You-GO, the key tenet of this
architecture

342



Two principles arise from our experiences. First, web-scale het-
erogeneity is not about modeling a domain or set of domains. On
the web, we need to model everything. Therefore, we cannot ex-
pect to address the challenges with a system that is based on a well-
designed schema. Second, web-scale integration is a pay-as-you-
go, ongoing process. It starts with little semantic glue, and uses
a set of mechanisms to continuously improve the integration over
time. Hence, web-scale data integration architecture needs to in-
clude the mechanisms for supporting this process.
Based on these principles, we describe the PAYGO data integra-

tion architecture. In PAYGO, there is no single mediated schema
over which users pose queries. Instead, there are sets of schemata
that are clustered into topics. Semantic mappings between sources,
the core of data integration systems, are typically approximate.
Queries are typically posed as keywords, respecting the main search
paradigm on the Web, and are routed to the relevant sources. To
support all of the above, a PAYGO-based system needs to model
uncertainty at all levels: queries, mappings and the underlying data.
Of course, all aspects of PAYGO are infused with a pay-as-you-go
philosophy.
We are currently building the first PAYGO-based data integration

research prototype at Google. We describe some of the challenges
in building a PAYGO-based system, and some of our preliminary
work in this direction.
The paper is organized as follows. Section 2 details specific

cases of structured data on the web, including their scale and chal-
lenges. Section 3 outlines the PAYGO data integration architecture.
Section 4 describes related work, and Section 5 concludes.

2. STRUCTURED DATA ON THEWEB
In this section, we analyze three scenarios where structured data

arise on a web scale and highlight the data integration challenges
that arise in each case. First, we use the Deep Web to illustrate the
amount of structured data that might lie hidden in web-accessible
databases and thereby the potential for structured data techniques
on the web. We describe the challenges in making this structured
data searchable through current search engines.
Second, we use Google Base to illustrate the extent of hetero-

geneity that can arise when considering large collections independently-
contributed structured data. We describe the possibilities and chal-
lenges for structured querying over such heterogeneous data.
As a third example of structured data on the web, we also briefly

touch upon annotation schemes (e.g., Google Co-op, Flickr). While
such annotations are a much lighter-weight form of semantics, the
goal is to add more structure to the web to support better and/or
vertical search services (i.e., search within a single domain).
In each scenario, we outline the current techniques used and their

limitations. Thus, in addition to exposing the challenges, our goal is
to use these scenarios to identify the desiderata for data integration
systems of the future that aspire to integrate structured data on a
truly web-scale.

2.1 The Deep Web
The deep (or invisible) web refers to content that lies hidden be-

hind queryable HTML forms. These are pages that are dynami-
cally created in response to HTML-form submissions, using struc-
tured data that lies in backend databases. This content is consid-
ered invisible because search-engine crawlers rely on hyperlinks to
discover new content. There are very few links that point to deep-
web pages and crawlers do not have the ability to fill out arbitrary
HTML forms. The deep web represents a major gap in the cov-
erage of search engines: the deep web is believed to be possibly
larger than the current WWW, and typically has very high-quality

No. of pages with web forms 23.1 million
No. of distinct actions 5.4 million
No. of distinct signatures 3.2 million
No. of web forms with at least one text input 1.5 million
No. of likely deep web sources: at least one text input
and between two and ten total inputs 647,000
No. estimated deep web sources (scaled
estimate based on an index size of 1B web pages) 25 million

Table 1: Extent of the Deep Web: the number of web forms in
a 25-million page random sample of the Google index.

content [3].
There has been considerable speculation in the database and web

communities about the extent of the deep web. We take a short
detour to first address this question of extent. In what follows, we
provide an estimate of the size of the deep web in terms of the
number of forms. This measure will give us an idea of the quantity
of structured data on the web and hence the potential and need for
structured data techniques on a web-scale.

Extent of the Deep Web: The numbers below are based on a ran-
dom sample of 25 million web pages from the Google index. Read-
ers should keep in mind that public estimates of index sizes of the
main search engines are at over a billion pages, and scale the num-
bers appropriately.
Our study is summarized in Table 1. To our surprise, we ob-

served that out of 25 million pages, there were 23.1 million pages
that had one or more HTML forms. Of course, not all of these
pages are deep web sources. Thus, we refined our estimate by at-
tempting to successively eliminate forms that are not likely to be
deep web sources.
First of all, many forms refer to the same action, i.e., the url that

identifies the back-end service that constructs result pages. In our
sample, there were 5.4 million distinct actions. Many actions, how-
ever, are changed on-the-fly using Javascript and therefore many of
them may refer to the same content. As a lower bound for the
number of deep web forms, we counted the number of hosts in the
different actions urls. We found 1.4 million distinct hosts in our
sample.
In order to refine our notion of distinct deep web forms, we com-

puted a signature for each form that consisted of the host in the form
action and the names of the visible inputs in the HTML form. We
found 3.2 million distinct signatures in our sample.
To further refine our estimate, we decided to count only forms

that have at least one text field. After all, if a form contains only
drop-down menus, check-boxes and radio buttons, it is conceivable
that a search engine can try all combinations of the form and get the
content in a domain-independent way. We also eliminated common
non-deep web uses of forms such as password entry and mailing list
registration. In our sample, 1.5 million distinct forms had at least
one text box.
Finally, forms that contain a single input are typically (but cer-

tainly not always!) of the type “search this site” and do not yield
new web content; similarly, forms with a large number of inputs
(say, 10) often capture some detailed interaction, e.g., booking an
airplane ticket. To further limit our numbers to forms that are likely
to offer deep web content, we counted the number of forms that
have at least one text input and between two and ten total inputs.
In our sample, we found 647,000 such distinct web forms. This
number corresponds to roughly 2.5% of our sample of 25 million
pages. Scaling this estimate to an index of one billion pages yields
25 million deep web sources. While a simple scaling of the num-
bers might not be statistically accurate (as would be true of any
unique aggregator), the numbers we show will serve to illustrate

343



the scale of the data. We are aware of only one previous study of
the number of web forms [8] that estimated 450,000 forms and did
not consider any of the filters that led to our final estimate.
To put this estimate in perspective, consider that each deep web

source may lead to a large amount of content (e.g., a single form on
a used car site leads to hundreds of thousands of pages [6]). Thus,
the amount of content on the deep web is potentially huge.
In addition to their large number, we observed that the semantic

content of deep web sites varies widely. Many of the sources have
information that is geographically specific, such as locators for
chain stores, businesses, and local services (e.g., doctors, lawyers,
architects, schools, tax offices). There are many sources that pro-
vide access to reports with statistics and analysis generated by gov-
ernmental and non-governmental organizations. Of course, many
sources offer product search. However, there is a long tail of sources
that offer access to a variety of data, such as art collections, public
records, photo galleries, bus schedules, etc. In fact, deep web sites
can be found under most categories of the ODP directory [28].

Indexing the Deep Web: Given the estimated number of forms on
the web, there clearly lies a potential for the use of structured data
techniques. We first consider a more direct question: how do we
go about making the content on the deep web searchable through
general purpose search engines?
The typical solution promoted by work on web-data integration

is based on creating a virtual schema for a particular domain and
mappings from the fields of the forms to the attributes of the virtual
schema. At query time, a user fills out a form in the domain of inter-
est and the query is reformulated for the relevant forms. In fact, in
specific domains (e.g., travel, jobs) this approach is used to create
vertical search engines. For example, Transformic Inc., a predeces-
sor to our current efforts, created the web site www.everyclassified.com
offering integration of newspaper and online classified sites in six
domains. The site was constructed by creating mappings from
these sites to carefully designed mediated schemata. Using semi-
automated schema mapping techniques (such as those described
in [10]), we were able to quickly incorporate over 5,000 different
form-based sites in a matter of about two man-months. For general
web search, however, the approach has several limitations.
The first limitation is that the number of domains on the web is

large, and even precisely defining the boundaries of a domain is
often tricky. Hence, it is infeasible to design virtual schemata to
provide broad web search on such content. (When such schemata
exist, however, we should definitely leverage them).
The second limitation is the amount of information carried in the

source descriptions. Although creating the mappings from web-
form fields to mediated schema attributes can be done at scale,
source descriptions need to be much more detailed, otherwise the
number of sites relevant to a query is typically large. With the num-
bers of queries on a major search engine, it is absolutely critical
that we send only relevant queries to the deep web sites; otherwise,
they will crash. For example, for a car site, it is important to know
the geographical locations of the cars it is advertising and the dis-
tribution of car makes in its database. Even with this additional
knowledge, the engine may impose excessive loads on certain web
sites. Further, the virtual approach makes the search engine reliant
on the performance of the deep web sources, which typically do not
satisfy the latency requirements of a web-search engine.
The third limitation is our reliance on structured queries. Since

queries on the web are typically sets of keywords, we need to con-
duct the reformulation by first identifying the relevant domain(s) of
a query and then mapping the keywords in the query to the fields of
a mediated schema. This is a hard problem in general and typically
requires some knowledge of the contents of the data source and the

values that are acceptable in any particular input field.
The above disadvantages led us to consider a surfacing approach

to deep web content. In this approach, deep web content is sur-
faced by simulating form submissions, retrieving answer pages,
and putting them into the web index. The main advantage of the
surfacing approach is the ability to re-use existing indexing tech-
nology; no additional indexing structures are necessary. Further, a
search is not dependent on the run-time characteristics of the un-
derlying sources because the form submissions can be simulated
off-line and fetched by a crawler over time. A deep web source is
accessed only when a user selects a web page that can be crawled
from that source, and then the user gets the most up-to-date content.
Similarly, the problem of identifying relevant deep-web sites is
mostly avoided because web search is performed on HTML pages
as before. In terms of schemata and source descriptions, the needs
of the surfacing approach are lighter. Instead of creating schemata
for individual domains and providing detailed source descriptions,
it is enough to identify some way of crawling the data by filling
in values for a subset of the form fields (in a sense, finding some
access path to the data). Hence, this approach can be more easily
applied to a much broader collection of domains.
While surfacing does make deep web content searchable, it has

some important disadvantages. The most significant one is that we
lose the semantics associated with the pages we are surfacing by
ultimately putting HTML pages into the web index. By doing so,
we overlook the possibility of exploiting the structure during query
time. Further, it is not always possible to enumerate the data values
that make sense for a particular form, and it is easy to create too
many form submissions that are not relevant to a particular source.
For example, trying all possible car models and zip codes at a used-
car site can create about 32 million form submissions – a number
larger than the number of cars for sale in the United States. Finally,
not all deep web sources can be surfaced: sites with robots.txt as
well as forms that use the POST method cannot be surfaced.
We would ideally like a solution where given an arbitrary user

keyword query, we identify just the right sources that are likely to
have relevant results, reformulate the query into a structured query
over the relevant sources, retrieve the results and present them to
the user. The problem of identifying relevant sources to user key-
word queries, which we call query routing, will be a key to any
web-scale data integration solution as we discuss later. We are cur-
rently pursuing the surfacing approach as a first step to exploring
the solution space in the context of the deep web.

2.2 Google Base
The second source of structured data on the web that we profile,

Google Base, displays a high degree of heterogeneity. Here, we
detail this degree of heterogeneity and describe some of the chal-
lenges it poses to web-scale data integration.
Google Base is a recent offering from Google that lets users up-

load structured data into Google. The intention of Google Base
is that data can be about anything. In addition to the mundane (but
popular) product data, it also contains data concerning matters such
as clinical trials, event announcements, exotic car parts, and people
profiles. Google indexes this data and supports simple but struc-
tured queries over it.
Users describe the data they upload into Google Base using an

item type and attribute/value pairs. For example, a classified ad-
vertisement for a used Honda Civic has the item type vehicle and
attributes such as make = “Honda” and model = “Civic”. While
Google Base recommends popular item types and attribute names,
users are free to invent their own. Users, in fact, do often invent
their own item types and labels, leading to a very heterogeneous
collection of data. The result is that Google Base is a very large,

344



self-describing, semi-structured, heterogeneous database. It is self-
describing because each item has a corresponding schema (item
type and attribute names). It is semi-structured and heterogeneous
because of the lack of restrictions on names and values.

Content Heterogeneity: Heterogeneity in Google Base occurs at
the level of item types, attributes, and attribute values.
Less than a year since its launch, Google Base already contains

over 10,000 item types that together contribute almost 100,000 unique
schemata (a unique set of attribute names associated with some
item). There are over 1000 item types that have more than 10 items.
While there are popular item types such as products, reviews, ve-
hicles, and housing, there are also a large number of more esoteric
item types like high performance car parts and marine engine
parts. In addition to the sheer complexity of handling such a num-
ber of item types, we also see two new challenges to schema man-
agement relating to Google Base. First, the large number of item
types form a specialization hierarchy. For example, an item can
alternately be described as a product, a car part, or a high perfor-
mance car part. Users choose such different item types naturally
and this leads to a proliferation of item types. Second, in addition
to naturally occurring heterogeneity, we find that heterogeneity oc-
curs in a different, almost malicious way. Users provide different
item-type names or attribute names in an attempt to improve their
ranking. Hence, we are witnessing a kind of database design by
the masses. Returning to our main themes, the result of these chal-
lenges is that we need a very different approach to schema man-
agement in the context of the web to understand this high degree of
heterogeneity.
To get a feel for the attribute-level heterogeneity, we looked at

the items of type vehicle, and found that there are over 50 distinct
attribute names that occur in 10 or more items. While this might
seem to be a large number, there is a core set of attributes that ap-
pear in a large number of items. This includes common attributes
like make, model, location, color, and price. A commonly oc-
curring type of attribute-level heterogeneity is one of complex at-
tributes. For example, color for some items includes both the inter-
nal color and the external color of a vehicle, while for others they
are separate attributes.
For heterogeneity at the level of attribute values, we considered

the different values for the attribute color of vehicles, and found
that there are over 250 different colors with 5 or more items. In ad-
dition to more frequent colors like “silver”, “white”, and “black”,
there are cars with the colors “polished pewter” and “light almond
pearl metallic”. An interesting heterogeneity challenge arises in
the extrapolation of domain specific similarities for attribute val-
ues (e.g., “polished pewter” is similar to “metallic silver”) and in-
corporating these similarities into query processing. We note that
the presence of structure (all the values mentioned in this case are
colors of cars) makes it possible to consider performing such rec-
onciliation, e.g., using domain-specific similarity measures. Such
reconciliation would not be possible for purely unstructured data.

Querying Google Base: Given that its contents are structured,
in principle it is expected that Google Base support semantically-
rich querying. However, web search users typically prefer key-
word queries and in most cases do not possess the expertise to pose
well-defined structured queries. As a result, Google Base faces two
main challenges: query routing to determine relevant item types
and query refinement to interactively construct well-specified struc-
tured queries. We illustrate these challenges by describing three
modes of querying Google Base supports, in increasing levels of
difficulty.
In the first mode of querying, the user specifies a particular item

type and perhaps provides values for some of the attributes (but not

all). This is essentially a structured query, but Google Base tries
to help the user refine it further by proposing a set of attributes
with drop-down lists of candidate values. For example, choosing
vehicle as an item type leads to possible refinements based on the
attributes make, model, color, and location. The user can further
continue to restrict search results by choosing specific values in the
drop-downs for the attributes. With each successive user refine-
ment, Google Base recomputes the set of candidate refinements.
Google Base proposes query refinements by computing histograms

on attributes and their values during query time. It chooses the at-
tributes that best help the user refine the current query. For exam-
ple, if the user is interested in “Honda Civic” and the location is
restricted to “Mountain View, CA”, then the drop-down values for
color change to reflect only the colors of Honda Civics available in
the Mountain View area.
In the second mode of querying, the user poses a keyword query

over all of Google Base. This method is the main mode of query-
ing on base.google.com. Here, Google Base must first suggest a
set of item types to show the user and perhaps a few example an-
swers. Hence, Google Base faces the problem of query routing
between different item types. For example, for the query “Honda
Civic”, Google Base proposes the item types vehicle and review.
By choosing one of the suggested item types, the user restricts the
search results to items of the chosen type.
The third mode of querying, and by far the most common one,

is a keyword query on the main search engine, google.com. Here
the user may not even be aware of the existence of Google Base
and is looking for any answer that may be relevant. In addition to
a very challenging query-routing problem (i.e., determining if the
engine should send a query to Google Base), there is the problem of
ranking answers across properties. For instance, the query “Honda
Civic Mountain View, CA” may return answers from multiple item
types in Google Base, from listings of Honda dealers in the bay area
(stored in the Google Local database), and from web documents
that may be highly ranked w.r.t. the query.
By iteratively proposing well-chosen query refinements, Google

Base enables users to construct structured queries. The better de-
fined queries as well as the ability to use domain-specific similarity
measures and ranking criteria lead to an enhancement in search ex-
perience.
While the above discussion demonstrates the ability to exploit

structure, observe that Google Base only queries over structured
data that it has complete knowledge about. In the case in a more
general web data integration solution, however, such knowledge
does not exist. Such a solution will also have to incorporate sources
with only source descriptions and summarized data contents. Such
a setting will further exasperate the heterogeneity challenges that
are in evidence in Google Base.

2.3 Annotation Schemes
A growing fraction of structured data on the web is the content

created by a variety of annotation schemes. Annotation schemes
enable users to add tags describing underlying content (e.g., photos,
products, reviews, urls) to enable better search over the content.
The Flickr Service by Yahoo! is a prime example of an annotation
service for photo collections. von Ahn [33] took this idea to the
next level by showing how mass collaboration can be used to create
high-quality annotations of photos.
Recently, Google created the Google Co-op service that enables

users to create customized search engines (see http://data.cs.wash-
ington.edu/coop/dbresearch/index.html for a search engine devel-
oped for the database research community). To create a custom
search engine, a user identifies a set of labels or categories (known
as facets in Google Co-op) that are of interest to the community at

345



hand. For example, in the case of database research, these facets in-
clude PROFESSOR, PROJECT, PUBLICATION, JOBS. Web pages that fit
the various categories are manually (or otherwise) annotated, e.g.,
we would annotate the homepage of a database faculty with facet
PROFESSOR and pages that appear in DBLP with the facet PUBLICA-
TION. These annotations are uploaded in an XML format to Google
Co-op. The annotations can be used to either query for web-pages
that specify a particular facet, or to refine the results returned for
an earlier query. Facets can also be automatically triggered, e.g.,
if we were to search for data integration publications, the PUBLICA-
TION facet will be triggered, and the answers would include only
the pages annotated as publications.
The important point to note is that the annotations are very light-

weight – we only annotate to which facet the page belongs and
nothing else. Further, the integration problems faced in the context
of annotation schemes are somewhat simpler. Typically, the an-
notations can be used to improve recall and ranking for resources
that otherwise have very little meta-data associated with them (e.g.,
photos, videos). In the case of Google Co-op, customized search
engines can specify query patterns that trigger specific facets as
well as provide hints for re-ranking search results. The annotations
that any customized search engine specifies are visible only within
the context of that search engine. However, as we start seeing more
custom search engines, it would be desirable to point users to dif-
ferent engines that might be relevant.
The structure of data contributed by annotation schemes differs

in granularity from that in Google Base (simple aboutness tags as
opposed to attribute-value pairs) and the deep web. In fact, there is
a broad spectrum of structured data on the web. We highlight this
aspect of web data in [27]. Any web-scale data integration system
must gracefully incorporate structured data of varying granularity.

2.4 TheWeb-scaleData IntegrationChallenge
As observed in this section, there is a huge amount of structured

data already on the web, and it is going to increase further in the
coming years. This clearly presents the need and an opportunity
for query answering techniques that make use of the structure. The
utility of structure-aware search engines has already been demon-
strated to some extent by the success of specialized search engines
in specific domains (e.g., travel, weather and local services). Han-
dling content in a domain-specific way can potentially lead to better
ranking and refinement of search results.
But, by its very nature, the structured data will be very heteroge-

neous and current data integration architectures cannot cope with
this web-scale heterogeneity. The crux of the problem lies in the
fact that data on the Web is about everything. If the domain of
structured data on the web were well defined, many of the issues
we outlined above would disappear (as in the case of successful
specialized search engines).
One could argue that the problem is simply that there are many

domains (perhaps a few hundred) and we should simply model
them one by one. The issue, however, is much deeper. Data on
the Web encompasses much of human knowledge, and therefore
it is not even feasible to model all the possible domains. Further-
more, it is not even clear what constitutes a single domain. Facets
of human knowledge and information about the world are related
in very complex ways, making it nearly impossible to decide where
one domain ends and another begins. The only broad attempt to
model human knowledge, the Cyc Project [24], has been going on
for about two decades and has met with only limited success.
Even if it were possible to build a representation of all the do-

mains that appear on the Web, the representation would be inher-
ently brittle and hard to maintain. It is hard enough to manage
heterogeneity in a single domain, imagine trying to do it at such

Traditional Data Integration PAYGO Data Integration
Mediated Schema Schema clusters
Schema mappings Approximate mappings
Structured queries Keyword queries with query routing
Query answering Heterogeneous result ranking

Table 2: Comparison of components in traditional data inte-
gration and the PAYGO architecture.

scale. And if that was not bad enough, the representation needs to
be maintained in over a hundred languages.
To offer data integration services at web scale, we need a sys-

tem that can model arbitrary relationships in the world, can evolve
over time and offer best-effort answers at any point. The PAYGO-
integration architecture we describe in the next section attempts to
address challenges.

3. THE PAYGO ARCHITECTURE
Having described specific challenges facing an increasingly struc-

tured web, we now outline the PAYGO data integration architec-
ture designed to address these challenges. We first discuss the
architectural components and principles underlying PAYGO con-
trasted with traditional data integration architectures and then de-
scribe these principles in more detail in the form of a research pro-
totype we are building at Google based on the PAYGO architecture.

PAYGO Components and Principles: We begin by briefly recall-
ing the main components of a traditional data integration system,
and then contrast them with the components of PAYGO.
A traditional data integration system offers uniform access to

a set of data sources through a mediated schema. The mediated
schema is purely logical; the data itself remains in the data sources.
To relate the contents of the data sources with the elements of the
mediated schema, a data integration system uses a set of seman-
tic mappings. Various languages have been proposed for specify-
ing these mappings [20, 25] and multiple techniques developed for
creating these mappings semi-automatically [30].
A query to a data integration system is specified in some sub-

set of SQL or XQuery, and is formulated in terms of the mediated
schema. When a query is posed, it is reformulated to access the data
sources. The reformulation process uses the semantic mappings to
(1) determine which data sources are relevant to the query, (2) for-
mulate appropriate sub-queries on the individual data sources, and
(3) specify how results from the different sources are combined
(e.g., via join or union) to produce answers to the query.
In the context of data integration on the web, however, these

techniques are no longer adequate. Thus, we propose a new data
integration architecture, PAYGO, that evolves the components de-
scribed above as well as incorporates new techniques to handle the
scale and heterogeneity of structured web data. See Table 2 for a
side-by-side comparison of traditional data integration components
with those in PAYGO.

Schema clustering: First, in PAYGO we cannot rely on a single
mediated schema. As described earlier, modeling data at web scale
requires that we model everything. Hence, instead of a mediated
schema, in PAYGO we have a repository of schemata. Schemata
in the repository will be clustered by topic. In addition, some
schemata may be treated in a special way. For example, we may
have selected schemata for particular domains, and these schemata
will act as hubs to which we strive to map other sources when possi-
ble. Note that some schemata may belong to multiple clusters (e.g.,
a data source about culture events in San Francisco may belong to
a clusters about culture, travel, events and artists).

346



Approximate schema mapping: In the presence of heterogeneity
at web scale, we cannot assume that exact semantic mappings be-
tween data sources exist. Not only is it hard to create such map-
pings and maintain them at web scale, but given the extremely
broad domain range of the data we must handle, it is not even clear
if there always exists a single correct mapping. Thus, schema map-
pings in PAYGO are fundamentally approximate. At the most ex-
treme case, a schema mapping can simply be a statement that two
schemata are related to each other and belong to the same cluster.
In other cases, the schema mapping may be the output of an auto-
mated schema mapping module, and hence be partially uncertain.
At the other end of the spectrum, a human will inspect a mapping
and correct it if necessary, thus deeming it certain. Unlike a tra-
ditional data integration system where schemata are mapped to a
single mediated schema, in PAYGO schema mappings can exist be-
tween any pair of sources. Therefore, a query in PAYGO can be re-
formulated over many intermediate and data source schemata thus
allowing for greater semantic integration. This is similar in spirit to
the multiple reformulations as in a peer data management system
(PDMS) [21].

Keyword queries with routing: The vast majority of queries on
the web are keyword queries; thus, we assume that queries to a
PAYGO-based system will be posed as such. Of course, in cases
where the user-interaction can support query refinement, we may
solicit help from the user to structure the query. Hence, as a first
step, we take a keyword query and try to reformulate it as a struc-
tured query. These reformulations, of course, produce necessar-
ily uncertain queries. We then proceed to select the relevant data
sources, but we need to do so in a different way since our mappings
are approximate and schemata of sources are organized in clusters.
We term this entire process query routing.

Heterogeneous result ranking: Finally, due to the approximate
nature of mappings and keywords in PAYGO, there no single true
answer to a given query. Instead, query answering in PAYGO in-
volves ranking. Ranking is complicated by the fact that our query
and mappings are approximate to start with, and that we handle
multiple heterogeneous properties (e.g., we need to compare an-
swers from deep web sources, Google Base and unstructured sources).
Before we discuss the components of PAYGO in more detail, we

emphasize two over-arching principles underlying the architecture.

Pay-as-you-go integration: At web-scale, integration is an on-
going process. The process starts with disparate data sources, and
incrementally improves the semantic glue amongst them. Thus,
over time, the data sources are increasingly integrated thereby im-
proving the ability to share data between them. However, at any
point during the ongoing integration, queries should be answered
as best possible using the available and inferred semantic relation-
ships. This approach is unlike a traditional data integration system
that requires more complete knowledge of semantic relationships.
In PAYGO, we emphasize a set of mechanisms that enable us to im-
prove the semantic relationships over time. The mechanisms are a
combination of automated techniques that find and/or suggest rela-
tionships, and of techniques that involve feedback from users about
such guesses. As we describe the components below, we highlight
the opportunities for employing these mechanisms.

Modeling uncertainty at all levels: As is clear from the discus-
sion above, a system based on the PAYGO architecture needs to
model uncertainty at multiple levels: data, semantic mappings and
queries. It is desirable that PAYGO have a principled and uniform
formalism for modeling uncertainty at all these levels, so uncertain
decisions made at one level can propagate appropriately to the other
levels. Developing such a formalism for modeling uncertainty is a

Figure 1: An instantiation of the PAYGO data integration ar-
chitecture.

subject of ongoing work, and involves balancing multiple compet-
ing desiderata: generality and expressive power, ease of use and
understandability, and the ability to process queries and data effi-
ciently. Hence, our current focus is first on clearly understanding
the requirements for such a formalism.

3.1 A PAYGO-based Data Integration System
Based on the architecture described above, we have begun to

build a research prototype PAYGO-based data integration system
at Google for managing web-scale heterogeneity. Here, we briefly
describe the elements of this system and some of our initial research
directions. Figure 1 shows the different components of the system.

Themetadata repository: The metadata repository stores the schemata
and the mappings currently known to the system, and provides a
query interface over this collection for use by the other components
of the system. As described earlier, while we do not have a single
mediated schema for the system, some schemata in the repository
may be treated in a special way. For example, we may choose a

347



particular schema for the car domain to which we would like to
map other schemata when possible. Such schemata will be used to
focus the the schema mapping algorithms.
The repository addresses several challenges. First, it stores schemata

that exhibit a high degree of variance in their internal structure.
For example, annotation schemata have very little structure com-
pared to Google Base schemata, and these differ from web-form
schemata. Second, it supports a variety of query interfaces, such
as (1) find all schemata in which model appears in some attribute
name, and (2) nearest schema queries, i.e., find a schema closest to
a given one. Finally, the repository tracks the lineage of the map-
pings in the system such that when a mapping is changed, other
mappings that depend on it are reconsidered.
Schema clustering andmapping: Relationships between schemata
can be specified in terms of semantic mappings, clustering, or both.
For schema clustering, we represent each schema as a set of

feature vectors and use both the structure and data information
from the data sources for determining the clusters. Each vector
extracts some features from the schema or the data represented by
the schema. We design customized scoring mechanisms to com-
pare the feature vectors and therefore determine the distance be-
tween two schemata. The set of major features we consider and
their comparison mechanisms we adopt include the following: the
schema’s attribute names vector (compared using linguistic simi-
larities), the data values vector (compared using linguistics simi-
larities or data type matching), and finally sets of commonly oc-
curring keyword groups. Based on these features, we establish a
large graph of schemata with edge weights denoting the distance
between schemata. We then create clusters by detecting groups of
schemata that are closely connected in the graph.
For schemamapping, we employ the Corpus-based schemamatch-

ing technique [26] to leverage the large number of schemata we
have to produce mappings. Of course, mappings resulting from this
and other automated schema matching systems are approximate by
nature. In some cases, the mappings may be important enough that
we let a human inspect it and verify it. However, given the scale
of the number of sources, we will not be able to do that in the vast
majority of the cases.
In [11] we describe semantics of approximate schema mappings.

We identify two semantics for approximate mappings. The first,
called by-table semantics, assumes that there is a single mapping
that correctly describes the relationship between a pair of schemata,
but we are uncertain which one it is. In the second, called by-tuple
semantics, the correct mapping may depend on the particular tu-
ple in the source. We also describe the complexity of answering
queries in the presence of approximate mappings, and consider sev-
eral methods for concisely representing approximate mappings.
Query reformulation and answering: Queries in a PAYGO-based
system are posed as keywords. The query answering component
begins by generating a structured query from the given query, rout-
ing it to the relevant sources, and then ranking the answers coming
from the multiple sources. We now describe a preliminary algo-
rithm for answering queries in a PAYGO-based system. In particu-
lar, the algorithm illustrates how the novel components of the archi-
tecture interact with each other. We use the example query “Honda
Civic Review” in our description.
Step 1. Classify keywords: We first divide the keywords in the

query into those corresponding to data values and those correspond-
ing to attribute names (or other schema elements). For example,
“Honda” and “Civic” are values ofmake andmodel, respectively,
and “Review”’ is an attribute name. Of course, many keywords can
play multiple roles. They can be values in multiple domains (e.g.,
the classic “Jaguar” example), or even serve both as data values

and attribute names. To make this classification, we look up the
keywords in two indexes provided by the repository: the structure
index, that indexes schema elements of data sources, and the value
index, that indexes data values.
Step 2. Choose domain: We use the schema clusters to determine

which domains the user query most likely corresponds to. This
step proceeds by a lookup into the domain index, that indexes the
structure terms associated with each cluster (i.e., domain). Note
that one structure term can belong to several different domains. In
our example, we find out that review, make and model all belong
to the vehicle domain (among others). We keep only the domains
that are deemed relevant to the query.
Step 3. Generate structured queries: We generate candidate

structured queries for each relevant domain by trying to match the
keywords in the query to common attribute names in that domain.
This step utilizes our algorithms for answering queries using ap-
proximate schema-mapping. For example, “Honda Civic Review”
is transformed into “make, model, review” for the vehicle domain.
Here, too, there will possibly be many structured queries, so we
record each one with a degree of certainty of the mapping.
Step 4. Rank sources: We select a set of relevant sources and

rank them. We use the structure-index to find the sources that
have terms used in the structured queries resulting from Step 3.
We rank the answers based on factors including (1) how many re-
quired structure terms are involved in the data source (so the data
source containing “make, model, review” is ranked higher than
the one containing only “make, model”), (2) whether the involved
terms match the original query better, and (3) the results of previ-
ous search experiences, namely, what sources users went to when
they posed similar queries.
Step 5. Heterogeneous Result Ranking: Of course, with poten-

tially large numbers of results, the system must rank the results
before returning them to the user. The challenge of ranking in this
context, however, is that the results come from a large number of
diverse sources with varying degrees of structure, not just text doc-
uments as in standard IR or even data from similar data sources
such as in work combining databases with IR [2].
Thus, result ranking in this context involves the traditional IR

ranking challenges compounded by the diversity of the data sources
and the uncertainty in structural information in both the schemata
and query. Specifically, the result ranking mechanism takes into
account the following factors:

• Traditional IR metrics for the quality of the data item itself
based on relevance, past queries [1], and other factors

• The uncertainty in the the query reformulation
• The uncertainty of the schema on which the query was based
(i.e., schema extraction problems)

• The uncertainty of the schema mapping on which the query’s
reformulation was based

3.2 Pay-as-you-go in PAYGO
As discussed earlier, one of the main premises of the PAYGO

architecture is that it is impossible to fully integrate all sources be-
forehand. The pay-as-you-go principle states that the system needs
to be able to incrementally evolve its understanding of the data it
encompasses as it runs. By understanding, we mean knowledge
of the underlying data’s structure, semantics, and relationships be-
tween sources.
We employ several automated methods to bootstrap the under-

standing of our underlying data. Some of these have already been
described earlier, including automated schemamapping and schema
clustering. In addition, we employ techniques for discovering addi-

348



tional relationships between data in different sources (in the spirit
of Semex [12], iMeMex [5], and DBLife [9]), techniques for rec-
onciling references to the same real-world objects (e.g., [13]), and
techniques for information extraction from text.
Ideally, the results of all these automated methods should be ver-

ified by humans, who can quickly correct the errors. However, at
web scale, it is impossible for humans to inspect all of these results.
Hence, it is crucial that we leverage as much as possible feedback
we can get from users or administrators of the system [19].
In many cases, we can leverage implicit feedback from users.

The prime example of implicit feedback is to record which of the
answers presented to the user are clicked on. Such measurements,
in aggregate, offer significant feedback to our source selection and
ranking algorithm. Observing which sources are viewed in con-
junction with each other also offers feedback on whether sources
are related or not. Finally, when the user selects a refinement of a
given query, we obtain feedback on our query structuring mecha-
nisms.
In other cases, we may be able to solicit explicit help from the

user by asking her questions regarding the system’s understand-
ing of the underlying data (e.g., “is this mapping correct?”). At
web-scale, however, there are far too many possible questions to
ask the user; thus, the challenge is to determine which questions to
ask. This challenge is compounded by the fact that multiple differ-
ent types of questions, generated by different mechanisms, must be
compared (e.g., schema mapping questions versus entity resolution
questions).
Our approach solving this problem is to employ decision the-

ory [32] to determine which questions to ask the user in a princi-
pled manner. The first step in translating this problem into decision
theoretic terms is to quantify this benefit, or utility, of each question
in terms that apply across multiple types of questions produced by
different mechanisms. The goal of this system is to provide bet-
ter (or, ideally, perfect) answers to user’s queries; thus, we define
a utility function that captures user satisfaction on queries. This
function is a numerical value that quantifies answer quality such as
precision/recall, F1 measure, or average precision [31].
However, since the outcome of a question cannot be known in

advance, the system has to take into account the uncertainty asso-
ciated with each question. For instance, if we are very uncertain of
a given mapping, then our expected gain in utility will be small for
asking this question as it is likely we will gain very little informa-
tion.
Decision theory formalizes this process through the calculation

of the value of perfect information (VPI). Basically, the VPI score
for a given question states what is the expected benefit of know-
ing the correct answer to the question given the uncertainty in the
outcome of the question and the potential benefit of each of the pos-
sible outcomes. We are currently developing a decision theoretic-
based framework that utilizes these formalisms to provide the sys-
tem with a ranked set of questions to ask the user(s).
The final pay-as-you-go-based technique we are incorporating

in our system is immediate feedback through data visualization.
Users are very fickle and, in general, don’t like doing work; we
believe that when users can immediately see the results of their
efforts in structuring data, they are more enticed to invest these
efforts. For example, consider the process of creating a mash-up of
two data sources. In order for the mash-up to display properly, it
is imperative the the columns being joined have data values drawn
from the same domain. Hence, at this step the user must make sure
that references are reconciled across the two sources.

4. RELATEDWORK

There has been a lot of recent interest in web-data integration
systems. The work closest to ours is the Meta-Querier project [7]
that investigates the integration of deep-web sources. Their ap-
proach focuses on automatically creating a unified interface for ac-
cessing multiple deep-web sources in specific domains, i.e., a ver-
tical search site. Our goal is more general – we do not want to
create vertical search sites in specific domains, but rather enhance
web-search by including content in deep web and other structured
data sources across many domains. The schema matching compo-
nent in PAYGO builds on ideas proposed in earlier matching works
such as [10, 22, 23, 26, 34]. Our goal is to provide the matching
component as one of the services in our dataspace platform.
Our metadata repository manages large collections of schemata.

While similar in spirit to model management [4], our repository
stores approximate mappings and schema clusters rather than ex-
act mappings. Our repository is designed to store a much larger
number of schemata (at least in the thousands), but the schemata
in general are much simpler. Further, we do not consider the wide
range of model management operations described in that work.
While there has been much speculation on the extent of the deep

web, our estimate of the number of web forms is the first empirical
study based on a crawl on the WWW. Earlier such estimates were
either based on a manual study [3] or by polling web servers [8].
We describe two alternatives for enhancing web search over deep-
web content. While much of the web-integration works have fo-
cused on virtual integration, to the best of our knowledge, only one
earlier work [29] considered surfacing, though in a limited context,
as a means of crawling deep-web content.

5. CONCLUSIONS
There is a prevailing sense in the database community that we

missed the boat with the WWW. The over-arching message of this
paper is that a second boat is here, with staggering volumes of
structured data, and this boat should be ours. To back this up, we
offered several statistics on the current trends in web content, and
outlined some of the major challenges in searching it.
From the perspective of data management, we are used to think-

ing in terms of a dichotomy between structured data versus unstruc-
tured data, and the Structure Chasm that lies between them [18].
Web-scale heterogeneity, i.e., data in millions of disparate schemata,
presents a unique point between the two ends of the chasm. The
goal of the PAYGO architecture described in this paper is to show
that data management techniques can be applied to these collec-
tions of data, but to do so, we need to change some of the assump-
tions we typically have when dealing with heterogeneous data.
Finally, while we are fortunate at Google to have access to in-

credible amounts of data and queries, an important component of
our plan is to make public certain data sets that will enable the com-
munity at large to make progress on these important challenges.

6. REFERENCES
[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated

ranking of database query results. In cidr, 2003.
[2] S. Amer-Yahia. Report on the DB/IR Panel at SIGMOD

2005. 34(4), December 2005.
[3] M. K. Bergman. The Deep Web: Surfacing Hidden Value,

2001. http://www.brightplanet.com/technology/deepweb.asp.
[4] P. A. Bernstein. Applying model management to classical

meta data problems. In CIDR, 2003.
[5] L. Blunschi, J.-P. Dittrich, O. R. Girard, S. K. Karakashian,

and M. A. V. Salles. A dataspace odyssey: The iMeMex
personal dataspace management system. In CIDR, 2007.

349



[6] Cars.com FAQ.
http://siy.cars.com/siy/qsg/faqGeneralInfo.jsp#howmanyads.

[7] K. Chang, B. He, and Z. Zhang. toward large scale
integration: Building a MetaQuerier over databases on the
web. In CIDR, 2005.

[8] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang.
Structured Databases on the Web: Observations and
Implications. SIGMOD Record, 33(3), 2004.

[9] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan,
and R. Ramakrishnan. DBLife: A community information
management platform for the database research community.
In CIDR, 2007.

[10] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: a machine learning approach. In
Proc. of SIGMOD, 2001.

[11] L. Dong, A. Halevy, and C. Yu. Approximate schema
mappings. Submitted for publication, 2006.

[12] X. Dong and A. Halevy. A Platform for Personal Information
Management and Integration. In CIDR, 2005.

[13] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In Sigmod,
2005.

[14] Flickr. http://www.flickr.com.
[15] M. Franklin, A. Halevy, and D. Maier. From databases to

dataspaces: A new abstraction for information management.
Sigmod Record, 34(4):27–33, 2005.

[16] Google co-op. http://www.google.com/coop.
[17] Google Base. http://base.google.com.
[18] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan,

L. McDowell, and I. Tatarinov. Crossing the structure chasm.
In Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[19] A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In PODS, 2006.

[20] A. Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4), 2001.

[21] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In Proc. of
ICDE, 2003.

[22] B. He and K. C.-C. Chang. Statistical schema integration
across the deep web. In Proc. of SIGMOD, 2003.

[23] H. He, W. Meng, C.T.Yu, and Z.Wu. Wise-integrator: an
automatic integrator of web search interfaces for
e-commerce. In VLDB, 2003.

[24] D. B. Lenat and R. Guha. Building Large Knowledge Bases.
Addison Wesley, Reading Mass., 1990.

[25] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. of PODS, 2002.

[26] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy.
Corpus-based schema matching. In ICDE, pages 57–68,
2005.

[27] J. Madhavan, A. Halevy, S. Cohen, X. Dong, S. R. Jeffery,
D. Ko, and C. Yu. Structured Data Meets the Web: A Few
Observations. IEEE Data Engineering Bulletin, 29(4),
December 2006.

[28] ODP – Open Directory Project. http://dmoz.org.
[29] S. Raghavan and H. Garcia-Molina. Crawling the hidden

web. In VLDB, 2001.
[30] E. Rahm and P. A. Bernstein. A survey of approaches to

automatic schema matching. VLDB Journal, 10(4):334–350,
2001.

[31] C. J. V. Rijsbergen. Information Retrieval.
Butterwoth-Heinmann, 2nd edition edition, 1979.

[32] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition
edition, 2003.

[33] L. von Ahn and L. Dabbish. Labeling Images with a
Computer Game. In ACM CHI, 2004.

[34] W. Wu, C.T.Yu, A. Doan, and W.Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In Sigmod, 2004.

350


