
Do-It-Yourself Database-Driven Web Applications
Keith Kowalzcykowski

app2you, Inc.

keith@app2you.com

Kian Win Ong
CSE Dept.

UC San Diego

kianwin@ucsd.edu

Kevin Keliang Zhao
CSE Dept.

UC San Diego

kezhao@cs.ucsd.edu

Alin Deutsch
CSE Dept.

UC San Diego

deutsch@cs.ucsd.edu

Yannis Papakonstantinou
CSE Dept.

UC San Diego

yannis@cs.ucsd.edu

Michalis Petropoulos
CSE Dept.

SUNY Buffalo

mpetropo@cse.buffalo.edu

1. INTRODUCTION
Originating from research of UCSD’s/SDSC’s iRods, app2you
and FORWARD projects [11][15],1,2 app2you.com belongs to the
emerging space of Do-It-Yourself (DIY), custom, hosted,
database-driven web application platforms that empower non-
programmer business process owners to rapidly and cheaply
create and evolve applications customized to their organizations’
data and process needs. The hoped-for outcome of DIY platforms
is paralleled to the emergence of spreadsheets in the 80s and of
graphical presentation tools in the 90s [1]. Before their arrival,
polished presentations had to be prepared by graphics
professionals. PowerPoint enabled us to do them ourselves.
Generally DIY platforms provide an application design facility
(also called application specification mechanism) where the
application owner (process owner) specifies the application by
manipulating visible aspects of it or by setting configuration
options. A simple early example was form builders, where the
owner introduces form elements in a form page and the platform,
in response, creates a corresponding database schema.
A DIY platform must maximize the following two metrics: First,
how wide is its application scope, that is, what computation,
collaboration on a process, and pages (presentation) can be
achieved by applications specified using the platform’s design
facility? Second, how easy is the specification of an application
using the platform’s design facilities? When the ease increases the
technical sophistication required by the owner decreases, and non-
programmer process owners are increasingly enabled. The two
metrics present an inherent tradeoff. At the one extreme, building
applications using Java, Ajax and SQL provides unlimited scope,
but does not provide ease of specification. Platforms such as Ruby
on Rails [17] and WebML [3] make specification easier and
faster, but still not easy enough to enable non-programmer
owners. At the other extreme, creating an application by copying
an application template, as done for example in Ning [13], is very
easy but the scope of the platform is limited to Ning’s finite
number of templates. DIY platforms are between these two
extremes of the scope/ease trade-off (see Section 4 for a

discussion of particular ones).

This 1 paper focuses on database-driven (app2you) web
applications, i.e., applications whose entire state is captured by
the database as opposed to also having out-of-database state that is
accessed by the application by interfacing to corresponding
external systems.2

In a database-driven app2you application users with potentially
different roles and rights interact on a web-based process.
Depending on the state of the process/application, each user has
rights to access certain pages, read certain records in them and
execute certain requests, which often pertain to reported records.

The general app2you framework captures a broad scope of
database-driven applications but achieving its full scope requires
knowledge of SQL. The limited app2you framework is the subset
that can by generated by app2you’s DIY design facility and is the
focus of the paper. The limited framework presents an excellent
scope/ease-of-specification tradeoff point: app2you’s DIY design
facility, which is tuned to the limited framework, enables the easy
specification of applications by “business architects” [20], that is,
application owners that are not programmers but have the
sophistication to reduce their business process into web pages by
specifying, in a WYSIWYG fashion and in response to easy-to-
understand prompts, properties of the pages such as who can
access each page, what is the page’s main function, what happens
in response to an action.3

1 Supported by UCSD’s von Liebig Center for the commercialization of
technology and NSF OCI 0721400.
2 The University of California and the authors retain all rights to the

intellectual property described in this document and further elaborated
in patent filings [11][15]. The reference to “work” at the bottom of the
first column of the first page (Creative Commons license) is meant to
only pertain to the content of the article. Therefore UCSD and the
authors allow commercial use of derivative works of the article that
might be translations into foreign languages, use of the figures in
another paper, or other such. UCSD and the authors do not allow
derivative works such as a software artifact or web service that violates
Intellectual Property of UCSD and the authors, as described in this
work; they also do not allow commercial use of such derivative works.

This article is published under a Creative Commons License
Agreement (http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make
derivative works and make commercial use of the work, but you must
attribute the work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA

3 An advantage of supporting both a general and a limited framework is
that even when the non-programmer business process owner cannot
create or fully customize the entire web application (typically because
parts of the application require the functionality of the general
framework) the app2you still enables a much more efficient

Figure 1 Submit Startup Page

Figure 2 Evaluat Startups Page

e

Figure 3 Advisor Comments Page

Let us first imited scope

convey informally the scope of l
applications through a real-world app2you application. More real
world examples are found in the Appendix. We use a simplified
and modified version of the app2you application for
TechCrunch50 (TC50) 2008 [19], a conference where ~1000
startups submitted requests, along with information packages, in
order to present themselves and their products. The app2you
application was used to collect the submissions, review them and
select the top 50 startups. At page Submit Startup (Figure 1)
any user with a registered account can prepare and submit
information regarding her startup, which includes the name, logo,
and list of founders.4 Every user is constrained to at most one
startup submission. The submitted startups are displayed on the
Evaluate Startups page (Figure 2), which is accessible by all
reviewers, each of whom can execute three requests on each one

neral goals of app2you’s Do-It-Yourself design facility are

hly interactive, WYSIWYG nature of the DIY design

ique is page-driven design (Section 3.2), which

collaboration between the business process owner and IT specialists:
The non-programmer owner creates himself the bulk of the application’s
pages and workflow, which corresponds to the limited framework, while
the IT and specialists provide assistance in elaborate graphics,
integration with outside services, code for complex functions , complex
SQL and other such aspects that belong to the general framework.

4 Users must first pass from a typical login and signup page before they
reach the page of Figure 1.

of them: submit a review consisting of Notes for each startup;
solicit comments from one or more advisors, in which case the
startup submission will be displayed on the Advisor Comments
page (Figure 3) to the particular advisors;5 invite the startup
submitter to schedule an interview. The invitation results to the
submitter receiving an email notifying him to visit the Schedule
Appointment page, which reports available interview slots,
submitted by the reviewers on the Post Interview Slots page,
and lets the invited startups choose one of them (as summarized in
Figure 4). The submitted choices are reported on the Grade Demo
page, where the reviewers post their grade for the demo given at

the agreed interview slot as part of the second review round.
Finally, the submitted demo reviews are reported on the
Evaluate Startups page, where reviewers can now make an
informed decision of which 50 startups are the most promising
ones.
The ge
typical in easy-to-use systems: (i) WYSIWYG design, where the
owner immediately experiences the result of each specification
action. (ii) Wizards that suggest to the owner common and
semantically meaningful specification options and automate their
implementation. (iii) Wizards that explain the specification at a
high level where the user does not have to engage in schema
design or database queries. Satisfying such ease-of-use
specification goals has required the introduction of multiple novel
DIY specification techniques, which are briefly listed in this paper
and are further described in [23]. Such techniques have been
designed during a period of one year, as we have been observing
stumbling blocks faced by owners in their efforts to build
applications.

Due to the hig
facility we suggest that the reader watches the 10-minute high
resolution video at http://www.vimeo.com/2075363, password
app2you.

The first techn
provides to the owner a WYSIWYG model of the pages. The
owner specifies properties of the pages that have immediately
visible effects on the page. For this contribution we borrowed
techniques from the WYSIWYG/automatic design of database
schemas by the creation of respective input forms as done in form-
builders even before the web. We also launched wizards for
specifying properties by answering questions, expressed in easy-
to-understand language. app2you in response creates

5 In the actual application there were solicitations to other reviewers.

automatically the pages’ structure (called page sketches, Section
2) and the underlying schemas and queries, therefore relieving the
business process owner from designing the database layer, which
is one level away from the layers that she understands, namely,
the application page layer and the overall workflow. Hiding
database schemas, queries, constraints and other low-level details
is facilitated by an architecture where high level, easy-to-explain
derived properties of the page sketch hide hard-to-understand
complex primitive properties (Section 3.1).

We found out that the inherent difficulty (in comparison to, say, a
spreadsheet) in producing a WYSIWYG model for a collaborative
application is that the pages typically behave differently
depending on which user accesses them and the application state.
Resulting enhancements to page-driven design, described in [23]
resolve this problem.

Everyone
(login required)

Advisor
Comments

Grade Demo

Schedule
Appointment

Invited
Startups

Reviewers

Advisors

Post Interview
Slots

submit

invite

solicit

submit

submit

submit

review
Evaluate
Startups

submit

Submit
Startup

Figure 4 TechCrunch50 Summary

Page-driven d sufficient for

 created a building interface for the semiautomatic

ful joins of various data sets

a

• m the owner

 the report
the

mework that

,

 application is in

r group

, a page context, which captures the

s and one visual

ration of reports. They

ample, the top-level unit of the Evaluate Startups page

ral framework allows iterator queries to be arbitrary SQL

esign by itself still turns out to be in
allowing the owner to reduce a non-trivial multistep process she
has in mind into a working application. In particular, a major
shortcoming of DIY online databases (see Section 4), which is not
resolved by page-driven design alone, is that they require the
owner to decompose a single user action in the process into
coordinated activity in two pages. For example, in page Evaluate
Startups the user submits the solicited advisor’s name and the
application updates the database to keep track of the solicitations.
Consequently page Advisor Comments has a too-complex-for-
non-programmers query that filters startup submissions according
to whether the currently logged-in user appears in a solicitation
related to this startup. The technique that will resolve this problem
is the workflow-driven design extensions ([23]) to the page-driven
paradigm.
Finally, we
creation of reports. This interface:

• suggests semantically meaning

• explains to the owner the (potentially nested) involved dat
sets and their joins by referring to names that appear in the
application; avoids causing confusion with details of how the
pages are normalized in tables

requests minimal information fro

• discovers the best placement of information on
In effect the interface must compensate for the minimality of
owner-provided information with algorithms that detect and
perform complex nested report creation operations.
Section 2 presents the part of the general app2you fra
pertains to database-driven applications and the limitations of the
limited framework. It argues why both the general and the limited
scopes can capture many practical applications. Section 3 briefly

describes a few design facility aspects. Technical details of the
full set of design facility techniques is provided in [23]. Section 4
discusses related work.

2. FRAMEWORK AND SCOPE
An app2you application is described by its application sketch
which is defined by the general app2you framework. This paper
simplifies the framework presentation by focusing on the part that
pertains to database-driven applications, i.e., we ignore here
interfacing with external services and systems.
The sketch is modified by the owner when the
design mode. The sketch consists of primitive properties
(collectively called primitive sketch) and derived properties,
where the former are more low level (e.g., queries, constraints)
and their settings cannot be derived by the settings of other
properties. For ease of specification the non-programmer owner
typically does not access the primitive sketch aspects directly,
since deconstructing a process into primitive aspects tends to
require CS sophistication. Rather the non-programmer owner
indirectly accesses them via the derived properties, which explain
at a high level common questions and options, using wizards and
other components of the DIY design facility (Section 3).
The primitive sketch consists of page sketches, use
definitions, a database schema and general properties, such as the
application name and path.
Each page sketch has a URL
request parameters (and the types of their values) that are expected
upon requesting this page, and a top-level unit.
A unit generally has fields, a mode, request
template for each mode. Atomic fields generally display data of
corresponding parameters of the context.
Iterator fields are important for the gene
have a query, which is typically parameterized by the context c
and retrieves from the database tuples t1,..., tn that have schema t
and correspond to the records displayed by the iterator. The
iterator has its own unit, which contains the displayed fields of the
retrieved tuples. The unit of an iterator field may recursively
contain its own nested iterators. Automatic context computation
for the iterators’ units in the limited framework is described in
[23].
For ex
(Figure 2) has an iterator field, whose unit contains the atomic
fields Startup Name, Logo, and Business Plan. This iterator
runs a query SELECT * FROM Submit_Startup, where
Submit_Startup is the automatically inferred table that collects
the non-nested fields of the startup submission form (see Figure
1). It also contains the (nested) iterator field Founders, whose
unit, in turn, contains the atomic fields Name and Title. The
query of the iterator Founders is SELECT * FROM Founders
WHERE Founders.Parent=? and the parameter (?) is instantiated
by the Submit_Startup.ID of the query result of the containing
iterator.
The gene
queries over the schema, typically parameterized by values of the
context. In this way SQL experts can utilize SQL’s full power.
The limited framework queries (lqueries) are select-(outer)join
queries with EXISTS predicates, that is, queries of the form
SELECT * FROM OuterJoinExpression WHERE BooleanCondition,
where the condition may be parameterized with values from the
context and may also involve EXISTS(SubQuery) predicates
where the parameterized SubQuery is recursively an lquery.
Applications of the limited framework use only lqueries and
corresponding constraints, which are generated by the DIY

facility. An application however may go outside the limited
framework and into the general framework by selectively utilizing
“manually” written queries and constraints.
In the future, calculated fields will also be associated with queries.

te a new “scalar” value from values of the context.

2. aggregate

3. ations of the two above.
egates capture the needs of

ity focuses on pages

in zero or more requests. Intuitively, a

pdate on

ay be (i) sending an email, described

 1 is a request. Its

ns of respective

DIY design facility is facilitated by

s

Details are

e concrete explanations of sketch properties

•

• s

3.1
 of primitive properties must be

user of the Submit Startup page may

rties

 the incremental addition of derived properties in

property.

In the limited framework such queries will capture the typical
functionality of Excel spreadsheets. In particular, a calculated
field may:
1. Compu

For example, if the context has attributes First Name and
Last Name then the calculated field Name may be calculated
as concat(Last Name, “,”, First Name).
Compute an aggregate value by applying an
function over a nested iterator of the page. For example, the
non-programmer owner may include in Evaluate
Startups a calculated field Number of Founders that
performs the count function over the Founders iterator
fields.
Combin

Lqueries, scalar calculations and aggr
most typical reporting applications and even the needs of
relatively unusual request-controlling constraints, such as “each
startup may receive at most 5 advisor reviews”. Therefore the
limitation leads to small scope loss. At the same time, this
limitation enables ease of specification benefits: First, the design
facility automates the creation of reports for lqueries. Second,
filtering and aggregation uses DIY interfaces that have proven
themselves in other settings (e.g, spreadsheets). Third, the context
is automatically computed as shown in [23].
Note that for DIY simplicity the design facil
with a single iterator at the top level unit of the page. Such pages
are called report pages.
A unit may also conta
request combines an HTML input form with information on the
effects of submitting the form. A request contains zero or more
input fields, a button and other properties, listed in [23].
The most common effect of executing a request is an u
the database. In the general framework such effect is captured by
an SQL statement. In the limited framework the database effect is
automatically inferred by the DIY design facility as discussed in
detail [23]. It is an insertion in the database of the values collected
by the input fields. It is described in the sketch by (i) naming the
database table that takes the insertion and (ii) mapping the input
fields to type-compatible attributes of the table. If the form
contains repeated nested forms, such as the Founders in the
Submit Startup form that contains Name and Title pairs, then
each nested form is mapped to a corresponding database table.
Note that the inserted record also includes system attributes such
as the auto-generated ID, the submitter and creation
timestamp of the record.
Other effects of a request m
by a template (in the style of MS Word mail merge) whose
placeholders can refer to both the input fields of the form and the
system attributes and (ii) causing a navigation to another page,
which can be used to produce confirmation pages and forms
submission processes that span multiple pages.
For example, the data submission form of Figure
effect is inserting the collected data in tables Submit_Startup
and Founders and sending a confirmation email.
The solicit and invite of Figure 2 are the butto
requests, which are called contextual, since they happen within the
context of Startup records. The update is more complex when

the request operates in the context of a report. Details are
discussed in [23].
Note that the
iterator+request field combos where the iterator part of the combo
ranges over requests created in response to the request part of the
combo. For example, the iterator+request field Advisor
Comments in Figure 3 combines the submit request with an
iterator showing the comments collected by the submit request.

3. DO-IT-YOURSELF DESIGN FACILITY
app2you’s design facility allows its non-programmer busines
process owner to easily and rapidly create a working web
application that can be immediately tested and experienced. If the
result is not what the owner had in mind a new round of
specification-testing can be played out within seconds.
We briefly describe page-driven design (Section 3.2).
in [23]. We use the following principles as a scorecard for the
DIY design facility.

• Prefer to provid
using WYSIWYG feedback and verbalization of prompts and
options that refers to pages, requests and other highly visible
properties of the page; rather than being abstract and general.

Prefer to provide a high-level specification from which
primitive properties can be generated, rather than a low-level
specification of primitive properties that requires the owner
to deconstruct high level concepts into low level concepts.

Prefer to summarize and enumerate design options to focu
on common cases, rather than provide an unstructured, high
degree of freedom. “Advanced user”, less prominent
interfaces should cater to the less common cases.

Derived Properties
Often an important combination
explained to a non-programmer owner at a high level, which is
close to the non-programmer’s understanding of the workflow and
the function of the pages. Therefore the derived properties
interface reads the primitive sketch and exports derived properties
and corresponding common options (called derived options) for
their settings. When the owner chooses an option the derived
properties interface translates it back to the primitive sketch. We
describe next a simple example of a derived property,
exemplifying the concept. Derived properties become paramount
in the following sections.
For example, recall that a
submit only one startup. Once she makes her submission, the form
of Figure 1 disappears. At the primitive sketch level, this behavior
is achieved by a non-obvious primitive property: The constraint
associated with the presence of the form checks that the set of
startup submissions of the currently logged-in user is empty.
Understanding the behavior of the Submit form at this level is
fairly complex. Therefore the page wizard offers a derived
property asking the much more obvious question of Figure 5.
The combination of a primitive sketch with a derived prope
interface produces many benefits on scope and ease of
specification:

• It enables
the platform, as common cases that lend themselves to higher
level explanations emerge, without disrupting existing
applications. Indeed, applications created before the
introduction of a new derived aspect in the platform can
benefit from its introduction: The derived properties interface
reads their primitive sketch and exposes a high level derived

•
uestions, often relying on derived properties and

3.2
The

n her application through the

 in the abstract while en

3.2.

It enables a 90/10 rule where the design facility first poses
common q
derived options in order to express them. At the same time,
the wide scope enabled by the primitive sketch is available.

 Page-Driven Design
first step towards providing a high-level specification is to

allow the process owner to desig
WYSIWYG model of pages, as opposed to engaging in low-level
web and database programming. Various properties of pages are
either specified by direct visualization on the pages, or via
answering simple questions about the page. The design facility in
response automatically creates the page's iterator structure,
underlying schemas and queries.
Through the high-level specification, page-driven design relieves
the owner from specifying data structures
route to construct pages. Moreover, explaining the design options
available at the page level promotes easy comprehension,
especially if they are explained directly in terms of the application
layer that are easily perceived by the owner such as what is the
report/form structure of the pages. Lastly, page-driven design
facilitates immediate feedback on whether a design satisfies the
owner's requirements, since the owner can both inspect and
experience the page directly.

1 Page Wizard

Figure 5 Page Wizard for Submit Startup Page

The page wizard is the starting point of page-driven design. It
promp ation,

bundles a
commonly occurring combination of page properties including
presentation format and action rights. Templates are provided to

.)

 has submitted)
e

the
The
more s the wizard for Submit

3.2.

eate new input fields, the owner
onents such as text boxes, image

serted. The input component

ts with simple questions about page-specific inform
such as the page name, URL, and the groups that are authorized to
access the page. For example, access to Submit Startup is
granted to system-defined group Everyone (no login
required) (Figure 5), whereas access to Evaluate Startups is
granted to custom group Reviewers. Allowing a page to be
accessed by a group is also visualized on the workflow diagram
by placing the page in the appropriate swim-lane (row).
The page wizard prompts for the main function of the page by
enumerating a list of templates, where each template

speed up the design of common cases. Such common cases may
include forms that allow each user to submit at most one record,
and tabular reports where each user sees all records but can only
edit/remove the records she submitted, etc. Where the common
case is not fully applicable to the scenario at hand, the owner can
always customize the page by overriding individual properties
independently.
Figure 5 shows the Private Form template used in creating the
Submit Startup page. The template provides the following
defaults for the following derived properties:

• The submit property of the page’s form is set to on, but
max one per user. (Each applicant can only submit one
startup.)

• The display property of the page’s iterator is set to on if
user has submitted the record, off otherwise.
(Each applicant can only see the startup info she has
submitted

• The edit and remove properties of the page’s iterator are
also set to on if user has submitted the record,
off otherwise. (Each applicant can only edit or remove the
startup info she

Wh never the submit aspect is on, the page wizard also prompts
owner to optionally assign a name to the records collected.
record name helps the system phrase questions and options
 specifically. Figure 5 show

Startup. It starts with a system-proposed default of Record
submitted at Submit Startup, which is later set by the
owner to Startup.

2 WYSIWYG Design
After the basic properties of the page have been specified through
the page wizard, the owner can customize the form of the page in
a WYSIW shYG fa ion. To cr
drags-and-drop input comp
upload prompts, dropdown boxes, check boxes etc. into the
request form of the page (Figure 6).
For each input component dragged into the form, a corresponding
field is added to the request, and a corresponding attribute is
added to the schema of the database table where the records
corresponding to the request are in
determines the data type of the field. For example, the Logo field
is created through an image upload component, therefore storage
is allocated for binary data, data can be submitted through an
HTML file input form element, and submitted data are displayed
as images.

Figure 6 WYSIWYG Page Design

The owner may also introduce repeating nested data by creatin
nested tables, it Startu

g
psuch as the Founders on the Subm

page. The introduction of requests within the context of reports

e the emergence of
 a service) and Web 2.0 Ajax-

L

chema

 processes by web applications. At a high level, these

MS Access online” enablers allow users to create multiple

 the same spirit with MS Access, the reports

presents special challenges, discussed in [23].

4. RELATED WORK
The time is opportune for Do-It-Yourself database-driven
applications for two reasons. First, they leverag
hosted applications (software as
based interfaces that allow application page design from the
comfort of one’s browser, while providing the richness of desktop
interfaces. The two aspects combine to remove the hassles of (i)
downloading/installing software in order to create an application
and (ii) deploying/exporting an application on the web. But the
Do-It-Yourself ability presents a larger, qualitatively-different
challenge: How to disrupt conventional database-driven web
application programming by providing brand new models of
specifying database-driven web applications so that non-
programmer business owners can build their own applications.
Multiple systems support the fast creation of custom web
applications by removing the need to program in a complex
Turing-complete programming language, such as Java. WebM
[3] is a prime example of schema-driven application creation
(also see DeClarit [6], Oracle Express [14]). The creator starts by
designing the Entity-Relationship data model for her application.
Then it is easy to specify pages by putting together units that
accomplish typical functionalities of Web applications. For
example, a unit may report the data of an entity and utilize the
relationships of the data model to navigate to related entities. It is
reported [22] that the development and maintenance of WebML
applications led to 30% increased productivity with 46 distinct
applications maintained by 5 part-time, junior developers.
The emerging Do-It-Yourself custom application platforms
primarily target non-programmer process owners. A common
theme is that the owner does not need to create a database s
in the abstract. Rather she builds forms, which automatically lead
to corresponding tables that are typically reported on the same
page. Such systems tend to be online databases [4][5][7][9] for
easy information sharing and collaboration, often delivering great
advantages over online spreadsheets, which are their main
competitor for structured information sharing 6 . However, the
resulting applications have a very limited scope (and business
logic): Users simply post and read structured data in the shared
space.
A next generation of Do-It-Yourself systems promises to go
beyond information sharing and to enable users to capture their
business
enab
lers are either “MS Access online” [4][2] or customizable vertical
templates [18].
The “
Do-It-Yourself online tables (having forms and reports to give
access to them). In
have to be fueled by queries where the user has explicitly
specified joins and selections. Finally, business logic and flow of
data from table to table is offered in the form of scripting
programming languages [12] or graphical languages [4] that allow
the user to describe series of insertions, deletions and updates and
the conditions under which they should happen. The adherence to
tables with separate forms and reports creates problems at both the
scope axis and the easy specification: The web applications we are

elf. For example, in the TC50 application the group

ess she has in her mind into

heir interactions

o: Do-It-Yourself Software, Wall Street

ticle/SB119023041951932741.html#

[2]

s. VLDB 2008.

37-157 (2000).

[5]

6 Yahoo Pipes [21] and IBM’s QEDWiki [8] represent high end versions
of the information sharing space, where data from multiple sources and
RSS feeds can be automatically integrated and presented online.

dealing with day-to-day are not mere collections of tables with a
report and a form for each table. A typical case is that the input
forms of a page typically operate within the context of reported
dynamic data and even within the context that prior pages create,
i.e., there is no artificial divide of “input only” and “report only”,
as is clearly evidenced by pages such as Evaluate Startups
and Advisor Comments. In addition to app2you, AppForge [2]
also solves this problem by allowing input forms in the context of
reports.
Another scope problem of “MS Access Online” is the inability to
capture that access rights to a page may depend on the business
logic its
“Invited Applicants” is derived automatically and controls access
to “Schedule an Appointment”.
The “MS Access online” class is problematic in creating
workflow application since the business process owner needs to
reduce the collaborative proc
normalized tables and into sophisticated queries and updates. For
example, we discussed how hard it is to explain using a query that
the Advisor Comments should only show startup submissions
that have been passed to the currently logged-in user. This raises
the bar of sophistication needed by the builders towards the level
of sophistication that programmers have, therefore seriously
limiting who can create and evolve applications. The anecdotal
evidence behind this thesis is plenty: Instructors of undergraduate
database classes know the difficulty that, even computer science
students, have in designing appropriate schemas and writing non-
trivial queries. Furthermore, despite the best efforts of tools, such
as the tools of the Microsoft Office Access and Microsoft
InfoPath, to make database schema design and query writing
approachable by the masses, the general public has found it hard
to engage in those activities. The above evidence is not surprising
since database schemas and queries are abstract structures that
have no immediately visible connection to the web application
and workflow aspects that the non-sophisticated designer can
immediately associate with, which are the Web pages with which
the users of the application will be interacting.
Applications with fixed workflow and database table structure and
customizable input form structure (i.e., one can change the
attributes of tables as long as the tables and t
remain fixed) have been a great success [18]. We believe that
customization does not need to stop at that point since, by doing
so, the scope of available applications is limited by the available
initial templates.

5. REFERENCES
[1] Jeanette Borz

Journal, 9/24/2007.
http://online.wsj.com/ar
articleTabs%3Darticle.
Chavdar Botev, Nitin Gupta, Jayavel Shanmugasundaram,
Fan Yang: A WYSIWYG Development Platform for Data
Driven Web Application

[3] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling
Language (WebML): a modeling language for designing
Web sites. Computer Networks 33(1-6): 1

[4] Coghead. http://www.coghead.com
DabbleDB. http://www.dabbledb.com

[6] DeKlarit. http://www.deklarit.com
[7] eUnifyDB. http://www.eunifydb.net
[8] IBM QEDWiki.

http://services.alphaworks.ibm.com/qedwiki/

[9] Intuit Quickbase.
 JavaServer Pages Technology

 http://www.quickbase.com
[10]

u, K.K Zhao: Do-It-Yourself

pplications.

[12]
[13]

ology/products/database/applica

[15]
base. Utility patent submitted by

[16]
-284.

[18]
om
enue To Reach

http://java.sun.com/products/jsp/index.jsp
[11] K.W. Ong, Y. Papakonstantino

Forms-Driven & Workflow Database-Driven A
Provisional patent submitted by University of California at
San Diego, December 2008.

 LongJump. http://longjump.com
 Ning. http://www.ning.com

[14] Oracle Application Express.
http://www.oracle.com/techn
tion_express/index.html

 Y. Papakonstantinou, I. Katsis, K. Ong: Creating Hosted
Web Application and data
University of California at San Diego, April 2007

 Lucian Popa, Alin Deutsch, Arnaud Sahuguet, Val Tannen:
A Chase Too Far? SIGMOD Conference 2000: 273

[17] Ruby on Rails. http://www.rubyonrails.org/
 Salesforce.com. http://www.salesforce.com

[19] TechCrunch50 (TC50). http://techcrunch50.c
[20] Colin Teubner and Ken Vollmer: BPMS Rev

$6.3 Billion By 2011. Forrester Research, 2007.
http://db.ucsd.edu/app2you/2009-www/2007-forrester-
bpms.pdf

[21] Yahoo! Pipes. http://pipes.yahoo.com/pipes/
[22] Piero Fraternali, Stefano Ceri, Massimo Tisi: Developing

eBusiness solutions with a Model Driven Approach. IMP
2006.

[23] K. Kowalczykowski, K. W. Ong, K. K. Zhao, A. Deutsch, Y.
Papakonstantinou, M. Petropoulos : Do-It-Yourself
Database-Driven Web Applications (Extended Version)
http://db.ucsd.edu/pubsFileFolder/319.pdf

Appendix
More than fifteen forms-driven applications have been built and
used in 2008 on app2you.com. For example, a recruiter has
collected job openings from its customers. A wide group of users,
defined and controlled by the recruiter, sees selected fields of the
job openings’ records and is invited to recommend individuals,
who are notified about the positions, provide their level of interest
and proceed to exchange information with the customer and the
recruiter if interested.
In another example, the United Cerebral Palsy non-profit
organization maintains an online loan library of toys, keeping
track of who currently holds a toy and who has requested it.
In multiple variations of classroom management applications
students submit their projects, often after a phase where they have
teamed up in project teams. The TAs and instructor provide
feedback and grade. Variations include setting up appointments
for project presentations and rehearsals, voting for the best project
etc.

	INTRODUCTION
	FRAMEWORK AND SCOPE
	DO-IT-YOURSELF DESIGN FACILITY
	Derived Properties
	Page-Driven Design
	Page Wizard
	WYSIWYG Design

	RELATED WORK
	REFERENCES
	Appendix

