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ABSTRACT

As a growing number of websites open up their APIs to ex-
ternal application developers (e.g., Facebook, Yahoo! Wid-
gets, Google Gadgets), these websites are facing an intrigu-
ing scalability problem: while each user-generated applica-
tion is by itself quite small (in terms of size and through-
put requirements), there are many many such applications.
Unfortunately, existing data-management solutions are not
designed to handle this form of scalability in a cost-effective,
manageable and/or flexible manner. For instance, large in-
stallations of commercial database systems such as Oracle,
DB2 and SQL Server are usually very expensive and diffi-
cult to manage. At the other extreme, low-cost hosted data-
management solutions such as Amazon’s SimpleDB do not
support sophisticated data-manipulation primitives such as
joins that are necessary for developing most Web applica-
tions. To address this issue, we explore a new point in the
design space whereby we use commodity hardware and free
software (MySQL) to scale to a large number of applications
while still supporting full SQL functionality, transactional
guarantees, high availability and Service Level Agreements
(SLAs). We do so by exploiting the key property that each
application is “small” and can fit in a single machine (which
can possibly be shared with other applications). Using this
property, we design replication strategies, data migration
techniques and load balancing operations that automate the
tasks that would otherwise contribute to the operational and
management complexity of dealing with a large number of
applications. Our experiments based on the TPC-W bench-
mark suggest that the proposed system can scale to a large
number of small applications.

1. INTRODUCTION

Recently, many Web sites have opened up their services
to allow third-party developers to create applications for so-
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cial groups and communities, e.g., Facebook [20], Google
Gadgets [11], Yahoo Widgets [31]. Such community appli-
cations often have relatively small data sizes and through-
put requirements as compared to large enterprise applica-
tions that typically deal with tera bytes of business data.
Mostly, their database sizes range from tens to thousands of
megabytes and their workload ranges from tens to hundreds
of concurrent user sessions. However, since there can be a
large number (say, tens of thousands) of such applications
in a large social network, building a data platform for this
setting is not an easy task. Specifically, the combined data
size and workload of the set of applications is quite large, of
the order of peta bytes of data and millions of concurrent
user sessions.

Unfortunately, existing data-management solutions are ill
suited to handle a large number of small applications for one
or more of the following reasons:

Cost: Commercial database systems (e.g., DB2 Enterprise [4],
Oracle Real Application Cluster [9], and SQL Server [26])
have leveraged decades of research in the data-management
community and have achieved impressive scalability with re-
spect to database sizes and throughput. However, this scal-
ability comes at a large monetary cost. Large installations
of such software are expensive and require complex manage-
ment, which further adds to the monetary cost. Open-source
alteratives to commercial database systems are less expen-
sive (free!), but do not scale well because they do not have
the sophisticated scalability features that are built into most
commercial systems. In fact, part of the reason that com-
mercial systems charge a premium for large installations is
that the technology for scaling is complex and difficult to
get right.

Lack of sophisticated data management features: There
has been a lot of recent interest in peer-to-peer (P2P) tech-
nologies such as Distributed Hash Tables (DHTSs) [23, 24, 28]
and ordered tables [1, 10, 14]. Such systems are designed to
scale using commodity hardware and software (low cost) to
a large number of nodes, thereby achieving excellent scal-
ability and throughput performance. However, these sys-
tems only support very simple data-manipulation operations
which essentially translate to equality and range lookups on
a single table. Such a simple set of operations is inadequate
for most Web applications. Further, such systems lack so-
phisticated transaction support, which is again crucial for
Web applications. While there have been some notable at-
tempts to incorporate more sophisticated data-manipulation



features such as joins in P2P systems [1, 13], such systems
still lack sophisticated transaction support such as ACID
transactions, which are difficult to achieve at such scale.

There are also other emerging data platforms for Web
applications such as BigTable [§8], PNUTS [12] and Sim-
pleDB [27]. These platforms scale to a large number of
data operations but achieve this scale by trading off consis-
tency and query-processing capabilities. In particular, none
of these systems support ACID transactions across multiple
records and tables, and they all restrict the kinds of queries
applications can issue. In contrast, the set of applications
we are targeting, small but full-functional applications on
the Web, need consistency and rich query-processing capa-
bilities.

Lack of Multi-Tenancy Support: Most scalable data-
management systems are designed to scale one or a few
large databases, and they do not provide explicit multi-
tenancy support for multiple applications running on shared
resources. While it is relatively easy to control the Service
Level Agremeements (SLAs) for one or a few databases by
explicitly adding resources, it becomes a complex manage-
ability problem when we try to meet the SLAs for many
thousands of applications using shared resources (using ded-
icated resources is not a cost-effective option because of the
large number of applications).

Our goal in this paper is to design a low-cost, full-featured,
multi-tenancy-capable data-management solution that can
scale to tens of thousands of applications. While this is
a difficult problem in general, we exploit the fact that the
applications are “small” and can comfortably fit (with possi-
bly other applications) in a single machine without violating
SLAs. This property enables us to design a low-cost solution
that meets our design objectives.

The architecture of our system is a set of database clus-
ters. Each database cluster consists of a set of database
machines (typically tens of such machines) that are man-
aged by a fault-tolerant controller. Each database machine
is based on commodity hardware and runs an instance of
an off-the-shelf single-node DBMS. Each DBMS instance
hosts one or more applications, and processes queries is-
sued by the controllers without contacting any other DBMS
instance. This architecture is low-cost because it only uses
a single-node DBMS (we use free MySQL in our prototype)
as the building block. It also supports sophisticated data-
manipulation functionality, including joins and ACID trans-
actions, because queries and updates are processed using a
full-featured DBMS instance.

Given the above architecture, there are two main techni-
cal challenges that arise. The first is that of fault-tolerance:
when a database machine fails, we need to ensure that all
the applications running on that machine can be recovered
without violating the ACID semantics of transactions. One
of the technical contributions of this paper is a flexible and
provably correct way of managing database replicas using
commodity single-node DBMS software, while still ensur-
ing ACID semantics. The second challenge is ensuring that
the SLAs of applications are met, especially when multi-
ple application databases reside on the same machine. An-
other contribution of this paper is formalizing the notion of
database SLAs, mapping these to measurable parameters on
commodity DBMS software, and formulating and solving an

optimization problem that minimizes the required number
of resources.

We have implemented and evaluated a prototype system
based on the above architecture, deployed it on a cluster of
machines, and evaluated the system using multiple TPC-W
database applications. Our preliminary results show that
the proposed techniques are scalable and efficient.

2. SYSTEM ARCHITECTURE

The proposed system provides the illusion of one large
centralized fault-tolerant DBMS that supports the following
API:

1. Create a database along with an associated SLA

2. Connect to a previously created database using JDBC
and perform the set of operations supported by JDBC
interface, including complex SQL queries and ACID
transactions. Such connections can be established by
application servers or other middle-ware.

The main restriction that the system imposes is that the
size and SLA requirements for each database should fit in
a single physical machine. All other aspects of data man-
agement such as fault-tolerance, resource management, and
scaling are automatically handled by the system.

Figure 1 shows the system architecture. The system con-
sists of machines in multiple geographically-distributed co-
los (a colo is a set of machines in one physical location). A
client database is (asynchronously) replicated across more
than one colo to provide disaster recovery. The colos are co-
ordinated by a fault-tolerant system controller, which routes
client database connection requests to an appropriate colo,
based on various factors such as the replication configura-
tion for the database, the load and status of the colo, and
the geographical proximity of the client and the colo.

Each colo contains one or more machine clusters. Each
database is hosted and managed by a single cluster within
the colo. The clusters are coordinated by a fault-tolerant
colo controller, which routes client database connection re-
quests (which were in turn routed by the system controller)
to the appropriate cluster that hosts the database. In ad-
dition, the colo controller manages a pool of free machines
and adds them to clusters as needed, based on the workload
and other resource requirements.

Each cluster contains a small number (tens) of machines,
typically on the same server rack, connected through a high-
speed network. Each machine runs an off-the-shelf single-
node DBMS — MySQL in our implementation — and each
client database is mapped to two or more machines within
the cluster (for fault-tolerance). Further, each machine in
the cluster can host one or more client databases, depend-
ing on the resource requirements and SLAs of the individual
databases. The machines in the cluster are coordinated by a
fault-tolerant cluster controller, which performs three main
tasks. First, the cluster controller manages client database
connections (routed by the colo controller) and ensures that
the multiple replicas of the client database in the cluster are
always in synch. Second, the cluster controller deals with
machine failures and database recovery within a cluster so
that client database connections are not affected by such
failures (note that database connections are made to a clus-
ter controller and not to a specific machine in the cluster).
Finally, the cluster controller deals with database placement
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Figure 1: System Architecture

and migration within a cluster so that the SLAs for the in-
dividual databases are satisfied.

As mentioned above, the system controller, the colo con-
troller and the cluster controller need to be fault-tolerant.
Since the system controller and the colo controller do not
have any connection state because they are only involved in
the initial database connection set up by the application, a
light-weight hot-standby configuration is sufficient to ensure
fault-tolerance. Ensuring the fault-tolerance of the cluster
controller is more complex because it is effectively the con-
nection manager for the clients, and the failure of the cluster
controller machines can lead to the loss of the database con-
nections. The cluster controller is configured to run as a
process pair in two machines to provide fault tolerance with
respect to a machine failure. When the primary cluster-
controller machine fails, the client applications that have a
connection managed by the failed cluster controller need to
re-establish the database connection with the backup cluster
controller that takes over and resumes work. The failure of
the cluster controller during a transaction commit is prop-
erly handled through the process-pair mechanism, as the
backup keeps track of the primary cluster controller’s state
with respect to committing transactions and cleans up the
transactions in transit as part of its take-over processing.

Given the above system architecture, there are two main
types of failures that need to be handled: (1) Machine fail-
ures within a colo. This type of failure typically is in the
form of power failure of a machine and/or disk failure in a
machine; (2) Colo failures. This is mostly due to disaster
situations and hence, not very common. In situation (1),
the proposed system provides strong ACID guarantees by
using synchronous replication within a cluster. In situation
(2), the system provides weaker guarantees by using asyn-
chronous replication in order to ensure low latency and high
scalability.

The main technical focus of this paper is on the design,
implementation and evaluation of the cluster controller, fo-
cusing specifically on the management of machine failures

(Section 3) and the management of database SLAs (Sec-
tion 4) within a cluster.

3. FAILURE MANAGEMENT IN A CLUS-
TER

As mentioned above, our goal is to ensure ACID seman-
tics of database transactions even in the presence of ma-
chine failures within a cluster. At first glance, it may ap-
pear that a simple solution to this problem is to use the
synchronous database replication feature in an off-the-shelf
database system. However, this solution does not meet our
design objectives for one or more of the following reasons.
First, commercial database solutions for synchronous repli-
cation are expensive, mainly because they focus on the case
of replicating one large database, which is complex and dif-
ficult to get right. Second, all free database systems that we
are aware of have severe limitiations on synchronous repli-
cation, again because they focus on the case where a single
physical machine is not sufficient to meet the database SLA.
For instance, MySQL synchronous replication requires the
entire database to fit in the combined main-memory sizes
of the replicas. Finally, none of the synchronous replication
solutions — commercial or free — have hooks to explicitly
manage load balancing in order to meet database SLAs.

To address the above issues, we propose a simple replica-
tion architecture that uses only single-node DBMSs, which
are coordinated by the cluster controller using the standard
2-phase commit (2PC) and read-one write-all replication
protocols [5] (all single-node DBMSs such as MySQL and
other commercial databases support the 2PC API).

3.1 Replication Architecture

The cluster controller maintains a map of databases to
machines, and each database is hosted in two or more ma-
chines in the cluster. The cluster controller also manages all
database connections to the client, and further, maintains a
database connection to each machine in the cluster. When



a client performs a read operation on a database connec-
tion, the controller sends the read operation to one of the
machines in the cluster that host the database, and returns
the result of the read to the client. When a client performs
a write operation on a database connection, the controller
sends the write operation to all the machines in the cluster
that host that database, and returns the result of one of
the write operations to the client. When a client performs
a commit operation on a database transaction (and there
was at least one write operation performed as part of the
transaction), the controller invokes the 2PC commit proto-
col, and commits the transaction if the protocol succeeds,
and aborts the transaction otherwise. Abort operations are
handled similarly.

The above architecture gives the cluster controller some
flexibility as to where to route the read operations for a
database transaction. There are three options: (1) All read
operations for a database (regardless of the specific trans-
action they belong to) are routed to the same physical ma-
chine, (2) All read operations for a transaction are routed
to the same physical machine, but read operations from dif-
ferent transactions can be routed to different machines, and
(3) Read operations belonging to the same transaction can
be routed to different physical machines.

Which of the above three options should the controller
choose? It turns out that the answer is not obvious and
depends on various factors. First, in terms of performance,
option (1) is the best and option (3) is the worst because
of cache and resource usage, as explained in more detail in
the experimental section. Second, in terms of flexibility for
load-balancing, option (3) is the best and option (1) is the
worst because the controller can route operations at a finer
granularity in options (2) and (3) to deal with spikes in the
workload. Finally, and perhaps most surprisingly (to us),
it turns out that options (2) and (3) may violate the ACID
semantics of transactions by producing non-serializable re-
sults unless we are careful about how write operations are
processed in the cluster controller! (this problem does not
arise in option (1)).

To elaborate on the last point, note that the cluster con-
troller only needs to obtain the result of a write operation
from one of the machines before it can return the result to
the client. If the cluster controller is aggressive in this re-
turn, i.e., it returns as soon as it obtains the result from
one machine (and asynchronously keeps track of whether
the writes in the other machines failed, in which case sub-
sequent operations of the transaction are aborted), then it
turns out that using options (2) and (3) above can lead to
non-serializable schedules! However, if the cluster controller
is conservative, and waits for all write operations on the
database machines to return successfully before it returns
to the client, then serializability is guaranteed even for op-
tions (2) and (3). Option (1) guarantees serializability un-
der both aggressive and conservative settings for the cluster
controller. Table 3.1 summarizes the above discussion.

We now give some examples and proof sketches in support
of the above claims.

Aggressive cluster controller with Options 2 and 3
is not serializable. The main reason for this issue is the
following: although we can achieve global one-copy serializ-
ability [5] with strict two-phase locking (strict 2PL) and 2PC
for distributed transactions, most modern database systems

Conservative Controller Aggressive Controller

Option 1 Serializable Serializable
Option 2 Serializable Not Serializable
Option 3 Serializable Not Serializable

Table 1: Serializability for different read and write
options

implement many 2PC optimizations. For instance, they usu-
ally release read locks after the PREPARE action and before
the COMMIT action for distributed transactions. In such
situations, serializability may be compromised in the pres-
ence of replicated objects (note that ensuring serializability
across replicated objects is a slightly stronger requirement
than ensuring serializability across independent objects).

The following example illustrates how the use of an ag-
gressive cluster controller can result in non-serializable ex-
ecution. Consider two concurrently executing transactions
Ty and T3 that are processed by an aggresive cluster con-
troller on two database replicas residing on Machines 1 and
2. T executes the following sequence of operations:

r1(z), w1 (y),p1, 1

where 7;(z) and w;(z) denote a read and write operation,
respectively, by transaction ¢ on object z, and p; and c¢;
denote the prepare and commit operations, respectively, of
transaction i. T> executes the following sequence of opera-
tions:

Tz(y)7’w2($)7p2702

Under Options 2 and 3 using an agressive cluster con-
troller, the following execution history is possible on Ma-
chines 1 and 2, which violates global serializability.

r1(z), w1(y), p1, w2(x), p2, c2,c1. Machine 1.

r2(y), w2 (), p2, w1(y), p1, c2, c1. Machine 2.

This schedule corresponds to the case when the write op-
eration wi (y) finishes first on Machine 1, and the transaction
T, enters the PREPARE phase while the write operation is
still executing on Machine 2. Similarly, w2 (z) finishes first
on Machine 2, and the transaction 7> enters the PREPARE
phase while the write operation is still executing on Ma-
chine 1. The above schedule is only locally serializable but
not globally serializable.

Note that the above schedule is not possible under Option
1, because all read operations for the database can only be
executed on one machine. Further, even if we modify the
schedule and have r2(y) execute on Machine 1 instead of
Machine 2, then since p1 does not release the write lock on
y, transaction T» can not be serialized after transaction 711,
while committing before T3. Instead, either 7% is scheduled
before 77 or there will be a distributed deadlock. More
generally, we can prove that Option 1 always results in a
globally serializable execution (below).

Aggressive cluster controller with Option 1 is se-
rializable. Before we sketch a proof, we first review some
notation [5]. A serialization graph is a directed graph (V, E)
where V is the set of transactions and (T;,7;) € E if and



only if transactions T; and T} have conflicting operations o;
and o;, and o; is scheduled to execute before o;. Two oper-
ations are said to conflict if they operate on the same data
item and at least one of them is a write. We use T; — Tj
to represent an edge (73,T;) in the serialization graph. We
use 0o; < o; to denote that operation o; was scheduled to
execute before operation o;.

Note that with a read-one-write-all policy, guaranteeing
global one-copy serializability is equivalent to showing that
the global serialization graph is acyclic [5], which is what we
prove below.

Theorem 1: An aggressive cluster controller with Option 1
produces an acyclic global serialization graph.

Proof sketch: Assume to the contrary that there is a cycle
in the global serialization graph S. Let the cycle be 71 —
Ts....T, — Ti. Since each transaction operates on a set of
objects that belong to a single database, all the transactions
T:...T, operate on the same database. At the primary site
for the database, the schedule contains all the transactions
T1..T, and they form an acyclic serialization graph S’, be-
cause each site ensures local serializability. Therefore, the
cycle in the global SG must have at least one edge T; — T}
from a non-primary site that is not already present at the
primary site. Since all conflicts at non-primary sites are
due to write-write conflicts (under Option 1), we must have
w; < w;. Since the 2PC protocol will not release write
locks until the time of commit, we have ¢; < ¢; on the non-
primary site. Since w; and w; also conflict on the primary
site, if T; — Tj, then we must have ¢; < ¢;, which is not
possible due to the atomicity of commit of 2PC. So we must
have T; — T} on the primary site — a contradiction.

Conservative cluster controller with Options 1, 2,
and 3 is serializable. The proof depends on the fact that
commercial databases use Strict 2PL along with 2PC.

Theorem 2: A conservative cluster controller with Options
1, 2 or 3 produces an acyclic global serialization graph.
Proof sketch: Assume to the contrary that there is a cycle
in the global serialization graph S. Let the cycle be 71 —
T5.... T, — T1. For each edge T; — T} in the cycle, we must
have a corresponding pair of conflicting operations o;, o;
such that o; < 0; on some site s. Since the sites implement
Strict 2PL and 2PC, we must have p; < o; in site s. Since
the controller is conservative, it only issues a p; to a site
if all the read/write operations by T; have completed on
all relevant sites. Hence, all read/write operations of T;
must chronologically precede o; on site s. Since there is a
cycle Ty — T5.... T, — Ti, this implies that all read/write
operations of 77 must chronologically precede a read/write
operation o1 of T} in some site — a contradiction.

3.2 Managing Failures

When a machine fails, the cluster controller continues
to process client database requests using the available ma-
chines. The cluster controller also initiates a background
database replication process to create additional replicas of
databases that were hosted on the failed machine (so that
fault-tolerance is not compromised). The key technical chal-
lenge lies in designing the database replication process so
that it can create new database replicas that are transaction-
ally consistent with the existing databases, using existing

DBMS tools and with minimal downtime to the database.

The database replication process works as follows. We
use an off-the-shelf database copy tool that is available with
virtually all DBMSs (e.g., mysqldump in MySQL) to copy a
database to a new machine. The copy tool typically allows
databases to be copied at the granularity of a database or
a table in a database. During the copy, the tool obtains a
read lock on the database/table, copies over the contents,
and releases the lock at the end of the copy.

Note, however, that we cannot rely solely on the locks
held by the database copy tool and the client transaction to
ensure the transactional consistency of replicas. To see why,
consider the case where machine A contains the only copy
of a database table T, and the copy tool is copying the table
to another machine B. If at this time, there is a client write
operation issued on table T, then the controller will route the
write operation to machine A (which has the only copy of T
at this point), and this operation will try to acquire a write
lock on table T, and will block on the read lock acquired by
the copy tool. When the copy finally completes, the write
operation will succeed on machine A, but the contents of
the table T will not be consistent on machines A and B
(A will have the update and B will not). Thus, in order
to maintain transactional consistency of replicas during the
copy, we need some additional coordination to be performed
by the cluster controller.

Algorithm 1 shows what the controller does during the
database copy. If the client operation is a read operation, it
is executed on one of the available machines, excluding the
machine being copied to. If the client operation is a write
operation on a table that has already been copied, then it
is executed on all available machines, including the machine
copied to. If the client operation is a write operation on a
table that is currently being copied, then it is rejected (this
handles the issue in the example above). Finally, if the client
operation is a write operation on a table that has not yet
been copied, then it is executed on all available machines,
excluding the machine being copied to.

Algorithm 1 Controller Algorithm During Database Copy

1: INPUT: o, d // Operation o on database d

2: Let M be the set of available machines that host d

3: Let m/(¢ M) be the machine that d is being copied to

4: Let T be the set of tables in d that have been copied to
ml

Let ¢’ be the table currently being copied to m’

if o is a read operation then
Execute 0 on some m € M

else if o0 is a write operation on a table t € T' then

9:  Execute o on allme M U{m'}

10: else if o is a write operation on table ¢’ then

11:  Reject o and abort transaction

12: else

13:  Execute oon all m e M

14: end if

The correctness of Algorithm 1 (i.e., providing a guaran-
tee of one-copy serializability) relies on the fact that a SQL
update statement can only update a single table. The algo-
rithm does reject some operations over tables being copied
over, and this ties into the SLA discussion (next section);
we also quantify this effect in the experimental section.



We now sketch a proof of correctness of the algorithm.

Theorem 8: Algorithm 1 ensures one-copy serializability.
Proof sketch: In the absence of replica creation, one-copy
serializability is guaranteed by read-one-write-all replication
as before. In the presence of replica creation, there are two
aspects that we need to prove: (1) we need to prove that
during the creation of a new replica, existing transactions
are one-copy serializable with respect to the original replicas,
and (2) we need to prove that at the time the new replica in
added to the original set of replicas, none of the correctness
invariants of one-copy serializability are violated.

Proof sketch for (1): From the point of view of the database
containing only the original set of replicas, and transactions
executing on those replicas, the copying of a table to pro-
duce a new replica can be viewed as a read-only transaction
that accesses exactly one object — the table being copied
(note that the copy tool acquires a single read lock on the
entire table, and hence it can be viewed as reading a single
object). Since a read-only transaction that only accesses a
single object cannot introduce any new cycles in the seri-
alization graph, and cannot modify the state of any of the
original replicas, one-copy serializablity is still ensured over
the original set of replicas.

Proof sketch for (2): For each table in the database, a
consistent snapshot is copied over because no writes are in
progress during the time the table is copied over. After the
copying over is completed, the table in the new replica is also
kept up to date with the writes on the table in the original
set of replicas using the read-one-write-all protocol. There-
fore, when the new replica is added to the set of replicas for
the database (after copying over all the tables) each table in
the new replica has the same state as in any of the original
replicas. Furthermore, all future writes will be processed by
the read-one-write-all scheme using the full set of replicas,
which ensures one-copy serializability as before.

4. ENFORCING DATABASE SLAS

The Service Level Agreement (SLA) associated with a
database specifies the availability and performance require-
ments of that database. Given the SLAs for many databases,
the problem is to allocate databases to the minimum num-
ber of machines so that all database SLAs are satisfied. In
this section, we briefly discuss the formal model we have
developed to represent the SLAs of databases and how to
allocate the databases to machines in a way that satisfies
the SLAs.

4.1 Problem Definition

We first define the notion of SLAs for databases. Each
database has an SLA consisting of the following two require-
ments:

1. The minimum throughput (measured as transactions
per second) over a time period T.

2. The maximum fraction of proactively rejected transac-
tions over a time period T. Proactively rejected trans-
actions are those that are rejected due to machine fail-
ures, and do not include transactions that fail due to
reasons that are inherent to the application, such as
deadlocks.

The first metric is a standard database-throughput re-
quirement. Let r[j] represent the resource requirements for a

database replica to meet the throughput SLA of database j.
Resources in this context are specified as multi-dimensional
vectors representing CPU cycles, main memory size, disk
size, and disk bandwidth. Let R[i] be the resources avail-
able in machine 4. Then, the sum of r[j]s for all database
replicas hosted on a machine ¢ should not exceed R][i].

The second metric is an availability requirement, mea-
sured as the fraction of the total number of transactions
that are proactively rejected. Let machine_failure_rate be
the number of times a machine hosting database j fails over
time period T, recovery_time(j) be the time needed to copy
over database j during recovery, write-miz(j) be the frac-
tion of update transactions in the workload of database j,
and reallocation_rate(j) be the number of times a replica of
database j is moved from one machine to another during
time period T due to system maintenance and reorganiza-
tion other than recovery. The availability requirement for
the database leads to the following constraint:

(machine_failure_rate(j) + reallocation_rate(j)) * (recov-
ery_time(j) / 'T) * write_miz(j) < fraction of rejected trans-
actions specified for database j

4.2 SLA-Based Placement of Databases

When a new database is created, it is first allocated to a
free machine in the cluster to observe the resource require-
ments needed to maintain its SLA. We currently consider
three types of resources: CPU, memory and disk I/O. After
the observational period, we need to allocate the database to
shared machines in such a way that the SLAs are maintained
for the new database as well as the existing databases. More
formally, let C' denote the set of machines, D denote the set
of databases, and M represent the allocation matrix for the
databases and the machines. When a new database n ar-
rives, we need to compute a new allocation matrix M’ for
the set of databases D’ = DU {n} and a set of machines C’
that is a superset of C' such that the size of C’ is minimized
while still maintaining the SLAs for all databases in D’.

In our implementation, we restrict M and M’ to only dif-
fer in the allocation of replicas of the new database, i.e.,
existing databases are not reallocated. This restricted prob-
lem is equivalent to the multi-dimensional bin-packing prob-
lem [17], which is NP-hard. Consequently, we use a simple
yet effective online algorithm — First-Fit [15] — that solves
the problem approximately. A similar greedy algorithm is
used when a machine fails and its databases need to be repli-
cated to new machines. Developing a non-greedy algorithm
that reallocates existing and new databases is much more
challenging, and is left for future work.

Algorithm 2 shows the First-Fit algorithm adapted for our
purpose. The algorithm allocates machines for the m repli-
cas of the new database. For each replica, it finds the first
available machine that can host the replica without violating
resource constraints. Each replica is allocated to a different
machine. If there are any replicas that cannot be allocated
to existing machines, each of them is hosted on a separate
new machine obtained from the pool of free machines.

5. EXPERIMENTAL EVALUATION

In the experimental evaluation, we focus on a single clus-
ter in the system for two reasons: (1) the technical focus
of this paper is on a single cluster, and (2) the system con-
troller and the colo controller are not scaling bottle-necks



Algorithm 2 Adding a New Database to the System
1: INPUT: M,d,n
2: M is the set of available machines. d is the new database
that needs to be hosted. n is the number of replicas we
want to create for d

3: for Machine m in M do

4:if 30 hosted on m Tl + 7[d] < R[m] then
5: Allocate a replica of d to m

6: n=n-—1

7 if n == 0 then

8: break;

9: end if

10:  end if

11: end for

12: if n > 0 then

13:  Add n new machines to the cluster and allocate one
replica of d to each new machine

14: end if

because they are mainly responsible for connection routing,
and are not in the critical path for query evaluation.

Experimental Setup: Our experimental cluster consists
of 10 machines running the FreeBSD 6 operating sytem.
Each machine has two 2.80GHz Intel(R) Xeon(TM) CPUs,
4GB RAM and runs MySQL 5 configured with a 2GB buffer
pool. All the machines reside on the same server rack.
We used three different TPC-W benchmark workloads —
browsing mix, shopping mix, and ordering mix — in our
evaluation. While we varied the size of each database in
our experiments, the total database size was 300GB with-
out replication and 600GB with replication (i.e., 2 replicas
per database). We also bypassed the application servers and
only focused on the database operations.

Synchronous Replication: Figures 2, 3, and 4 show the
results of the three read options described in Section 3.1 in
comparison with the no replication case. As shown, Option
1 (sending all read operations for a database, regardless of
the transaction, to the same replica) has the best perfor-
mance, and is within 5 to 25% of the no-replication option.
The next best option is Option 2 (sending all read opera-
tions for a transaction to the same replica), and Option 3
(sending read operations within a transaction to different
replicas) has the worst performance. The reason for the dif-
ference in performance is that Option 1 has the best cache
usage across database reads, while Option 3 has the worst
cache usage. Note that Option 3 still has other advantages
compared to the other options, such as better load balanc-
ing. We also evaluated the deadlock characteristics of the
three options, as shown in Figures 5, 6, and 7, but there was
no significant difference in the number of deadlocks for the
different options.

Failure Recovery: This set of experiments was performed
using an individual database size of 200MB, and using Op-
tion 1 for querying. Figure 8 shows the number of rejected
transactions per database when we induce a single machine
failure and initiate the database recovery process. The num-
ber of recovery threads (i.e., concurrent database copy pro-
cesses) is shown in the x-axis. As shown, the number of
rejected operations per database is significantly higher for
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Skew Factor 0.4 0.8 1.2 1.6 2.0

Average Size (MB) 531 451 398 361 310

Average Throughput (TPS) 3.75 2.29 1.44 0.59 0.29
# of Machine Used 9 6 5 4 4
Optimal Solution 9 6 4 4 4

Table 2: SLA experimental settings and results

database-level copying as opposed to table-level copying be-
cause of the lower concurrency in the former approach. But
surprisingly, as shown in Figure 9, the throughput of the
two approaches is about the same. One possible explanation
for this behavior is that the table-level migration approach
results in wasted work due to future aborts of transaction
operations. In our experiments, it took about 2 minutes to
create a new replica of a 200MB database.

SLA Based Database Placement: In this set of exper-
iments, we varied the skew in database sizes and database
throughput requirements. Specifically, the database size was
drawn from a zipfian distribution with range 200-1000MB,
and the throughput was drawn from a zipfian distribution
with range 0.1-10 transactions per second. The zipfian skew
factors for both parameters were varied from 0.4-2. Table 2
summarizes the results of the experiments and shows the
minimum number of machines required to host the databases
given our online-allocation method. For comparison, the op-
timal number of machines is also shown (this number was
computed exhaustively offline). As shown, the proposed ap-
proach finds a solution that is close to optimal.

6. RELATED WORK

C-JDBC [6], RAIDb-1 [7], and Sequoia [25] develop archi-
tectures and systems for managing a large number of single-
node commodity database systems on a cluster of machines.
However, these approaches do not consider automatic fail-
ure recovery strategies and SLA management, which are
the main areas of focus of this paper. Ganymed [21], DB-
Farm [22] and other related systems [19] develop solutions
that scale to a large number of databases and database
clients, but unlike the approach taken in this paper, they
achieve this scalability by relaxing ACID semantics with
weaker consistency criteria such as snapshot isolation. Fur-
thermore, these approaches also do not deal with database
SLAs.

There has been some recent work on distributing appli-
cation servers across a cluster so as to effectively manage
throughput and load [16, 29]. A key difference between this
problem and the problem we consider in this paper is that



the application servers do not have persistent state; conse-
quently, the cost of migration and the associated consistency
and SLA issues do not arise in that scenario. A related body
of work focuses on providing quality of service (QoS) guar-
antees in shared hosted platforms [2, 30, 18, 3]. Similar to
our approach, such systems profile applications on dedicated
nodes and use these profiles to guide the placement of appli-
cations onto shared nodes. However, these systems rely on
operating-system-level changes to monitor and enforce ap-
plication isolation and performance guarantees, and do not
deal with consistency issues for stateful applications. In con-
trast, our approach is to use commodity hardware and soft-
ware components (including commodity operating systems
and database systems) to monitor and manage databases at
a coarse level using observation and appropriate reaction.

7. CONCLUSION

We have described the design and implementation of a
data-management platform that can scale to a large number
of small applications, i.e., each application can comfortably
fit in a single machine and meet its desired SLA, but there
are a large number of such applications in the system. A
key design principle in our architecture is the use of low-cost
single-node commodity hardware and software components.
In this context, we have developed and evaluated various
techniques for database deployment, replication, migration
and SLA management that ensure high throughput and high
availability, while still ensuring ACID semantics for database
applications.

As part of future work, we are exploring more sophisti-
cated methods for allocating databases to machines while
still preserving SLAs, which can further reduce the hard-
ware cost of the system. We are also exploring extensions
to the system architecture that can accommodate “some”
applications that are larger than the capacity of a single
machine, while the majority of the applications can still fit
in a single machine.
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