
Why Did My Query Slow Down?

Nedyalko Borisov† Sandeep Uttamchandani‡ Ramani Routray‡ Aameek Singh‡

†Duke University ‡IBM Almaden Research Center

nedyalko@cs.duke.edu {sandeepu, routrayr, aameek.singh}@us.ibm.com

ABSTRACT
Many enterprise environments have databases running on network-
attached server-storage infrastructure (referred to asStorage Area
Networksor SANs). Both the database and the SAN are complex
systems that need their own separate administrative teams.This
paper puts forth the vision of an innovative management frame-
work to simplify administrative tasks that require an in-depth un-
derstanding of both the database and the SAN. As a concrete in-
stance, we consider the task of diagnosing the slowdown in perfor-
mance of a database query that is executed multiple times (e.g., in
a periodic report-generation setting). This task is very challenging
because the space of possible causes includes problems specific to
the database, problems specific to the SAN, and problems thatarise
due to interactions between the two systems. In addition, the mon-
itoring data available from these systems can be noisy.

We describe the design of DIADS which is an integrated diagno-
sis tool for database and SAN administrators. DIADS generates and
uses a powerful abstraction calledAnnotated Plan Graphs (APGs)
that ties together the execution path of queries in the database and
the SAN. Using an innovative workflow that combines domain-
specific knowledge with machine-learning techniques, DIADS was
applied successfully to diagnose query slowdowns caused bycom-
plex combinations of events across a PostgreSQL database and a
production SAN.

1. INTRODUCTION
Database deployments in enterprise environments are typically

business critical and support high transaction rates. These deploy-
ments run on enterprise-class storage subsystems with terabyte-
scale data mapped to the database either through a file system(re-
ferred to asSystem Managed Storage) or raw volumes (referred
to asDatabase Managed Storage). Traditionally, storage was at-
tached directly to high-end database servers to meet their capacity,
throughput, and bandwidth requirements. However, economic re-
alities of high administration costs for islands of disconnected re-
sources, combined with under-utilization of statically-provisioned
server and storage hardware, have transformed the direct-attached
architectures into a network-attached setup with multipleapplica-
tion servers (including databases) connected to a consolidated and
virtualized storage pool; an architecture known popularlyas aStor-
age Area Network (SAN).

SANs are very complex systems. A typical SAN has a hierarchy
of coreandedgefibre-channel switches withzoningconfiguration

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

that controls the connectivity of server ports with one or more het-
erogeneous storage controllers. The storage controllers manage a
large number of raw disks by aggregating them into logical entities
like pools and volumes. Given this complexity, database adminis-
trators are forced to treat the SAN as a black-box, entrusting SAN
administrators to configure the required CPU, network, and storage
resources for meeting their database’s performance requirements.

Such asilo-basedapproach for database and SAN management
is the state-of-art today. In a typical real-world scenario, database
administrators open problem tickets for the SAN administrator to
analyze and fix issues related to query slowdowns:“Queries to
the RepDB database used for report generation have a 30% slow
down in response time, compared to performance two weeks back.”
Unless there is an obvious failure or degradation in the storage
hardware or the connectivity fabric, the SAN administrator’s re-
sponse to this problem ticket could be:“The I/O rate for RepDB
tablespace volumes has increased 40%, with increased sequential
reads, but the response time is within normal bounds.”This “blame
game” may continue for several weeks before the problem is actu-
ally fixed. In reality, the query slowdown problem could be due
to any number of causes including suboptimal plan selectionby
the database due to incorrect cost models, lock contention for the
database tables, CPU saturation of a database server, congestion in
the controller ports, and others. The lack of consistent end-to-end
information may lead to eitherthrowing iron at the problemand
creating islands of underutilized resources, or employinghighly
paid consultants who understand both databases and SANs to solve
the original problem tickets.

Our vision in this paper is an integrated database and SAN man-
agement framework. This framework combines details of both
database operations as well as SAN configuration and performance
into a novel data structure referred to as anAnnotated Plan Graph
(APG). The framework uses a combination of machine learning al-
gorithms and domain knowledge to help administrators with key
day-to-day tasks such as optimized allocation of SAN resources for
varying database workload characteristics, diagnosis of database
performance slowdowns, and what-if analysis related to workload
or configuration changes. As a concrete instance of our vision, this
paper focuses on integrated diagnosis of query performanceslow-
down in databases running over SANs.

1.1 Challenges in Integrated Diagnosis
Enterprise environments are constantly evolving with changes

in the SAN configuration, the mix of database queries, as wellas
the workload characteristics of other applications sharing the SAN.
In such an environment, the key challenges for diagnosis areas
follows:

• Cascading of events: Analyzing the impact of an event across
multiple layers of a system is a nontrivial problem. The cause
and effect of a problem may not be contained within a single
layer, but manifested across multiple layers (typically referred
to asevent flooding).

• Inaccuracies in monitoring data: Monitoring in production en-



vironments is configured to minimize the impact on the fore-
ground applications. Typically, the monitoring intervalsare
large (5 minutes or higher), which may lead to inaccuracies
(referred to asnoisydata) because the instantaneous effects of
spikes and other bursty behavior can get averaged out.

• High dimensional search space with complex correlations: An
integrated analysis involves a large number of entities includ-
ing database operators, physical SAN devices, logical volumes
and pools in a SAN, and workload. Pure machine learning
techniques that aim to find correlations or regression functions
in the raw monitoring data, which otherwise may have been
effective within a single layer, can be ineffective in the inte-
grated scenario. Existing diagnosis tools for some commercial
databases [9] use a rule-based approach where a root-cause tax-
onomy is created and then complemented with rules to map ob-
served symptoms to possible root causes. While this approach
has the merit of encoding valuable domain knowledge for di-
agnosis purposes, it may become complex to maintain and cus-
tomize.

1.2 Contributions
Our vision is to leverage the existing monitoring tools for SANs

and databases to develop an integrated database and SAN man-
agement platform. This platform will simplify the subset ofad-
ministrative tasks that require an understanding of both databases
and SANs, e.g., problem diagnosis, resource provisioning,what-if
analysis, and disaster recovery planning. As a concrete instance
of the integrated functionality, the paper describes our prototype
of an integrated diagnosis tool (referred to as DIADS) that spans
the database and the underlying SAN that consists of end-to-end
I/O paths with servers, interconnecting network switches and fab-
ric, and storage controllers. Figure 1 shows an integrated database
and SAN taxonomy with various logical (e.g., sort and scan oper-
ators) and physical components (e.g., server, switch, and storage
subsystem).

To the best of our knowledge, DIADS is the first diagnosis tool
that analyzes both SAN and database events in an integrated fash-
ion. The key contributions of this paper are:

• A novel canonical representation of database query operations
combined with physical and logical entities from the SAN en-
vironment (referred to asAnnotated Plan Graphs). This repre-
sentation captures the information required for end-to-end di-
agnosis, and is created using monitoring data from available
database and SAN tools.

• An innovative diagnosis workflow thatdrills downprogressively
from the level of the query to database plans and to operators,
and then uses configuration dependency analysis andsymptom
signaturesto further drill down to the level of performance met-
rics and events in components. It thenrolls up using impact
analysis to tie potential root causes back to their impact onthe
query slowdown. The diagnosis is accomplished using a com-
bination of machine learning and domain knowledge

• An empirical evaluation of DIADS on a real-world testbed with
a PostgreSQL database running on an enterprise-class storage
controller. We describe (and demonstrate) problem injection
scenarios including combinations of events at the databaseand
SAN layers, along with a drill-down into intermediate internal
results generated by DIADS.

2. RELATED WORK
There has been much prior research for performance diagnosis

in databases [9, 14] as well as enterprise storage systems [16, 19].

However, most of these techniques perform diagnosis in an isolated
manner attempting to identify root cause(s) of a performance prob-
lem in individual database or storage silos. Since the performance
problem may lie in any one or a combination of database (DB) and
SAN layers, an integrated system like DIADS would be a useful
and more efficient approach.

Recent studies that have looked at the interdependence between
database and storage systems highlight the importance of such an
integrated analysis. Reference [18] described how an inaccurate
storage cost model in the database query optimizer can significantly
impact the choice of query execution plans. Reference [17] pro-
posed an end-to-end database and storage planning technique by
characterizing the storage I/O workload of a given databasework-
load using an independent combination of database and storage
analysis. While sharing the same spirit, our work brings a much
tighter coupling of database-level and storage-level information as
well as capturing their interdependence using a novel Annotated
Plan Graph abstraction described in Section 3.

DIADS can be a good complement to fine-grained database diag-
nosis and tuning tools like Oracle’s Automatic Database Diagnostic
Monitor (ADDM) [9]. ADDM is a database profiling and diagnosis
tool that uses expert knowledge about the database to identify prob-
lems as well to recommend possible fixes to the problems. Refer-
ence [5] describes a server-side monitoring and analysis system for
Microsoft SQL Server that is useful during manual diagnosis. Our
work complements this research by providing a non-intrusive and
low-overhead mode of analysis that uses historic performance data
to diagnosechangesin query performance. We discuss this synergy
further in Section 7.

There has also been significant work in diagnosing performance
problems within the systems research community [21, 13]. Broadly,
these techniques can be split into two categories: (a) systems using
machine learning techniques, and (b) systems using domain knowl-
edge. Reference [21, 4] uses statistical techniques to develop mod-
els for a healthy machine, and uses the models to identifysickma-
chines. On the other hand, systems like [22, 13, 15, 6] use domain
knowledge to create asymptomsdatabase that associates perfor-
mance symptoms with underlying root causes. Such databasesare
often created manually and require a high level of expertiseand
resources to maintain.

We believe that for a diagnosis tool to be practically useful, a mix
of machine learning and domain knowledge will be required. Pure
machine learning techniques can be misled due to spurious correla-
tions in data resulting from noisy data collection or event flooding
(where a problem in one component causes another component to
be impacted). In DIADS, we counterbalance this effect using suit-
able domain knowledge like component dependencies, symptoms
databases, and knowledge of query plan and operator relationships.

Next, we describe Annotated Plan Graphs that capture database
and storage component behavior in a single integrated abstraction.

3. ANNOTATED PLAN GRAPHS
Suppose a queryQ that a report-generation application issues

periodically to the database system shows a slowdown in perfor-
mance. The root cause of this slowdown may lie in the database
layer (execution plan becoming suboptimal due to changes indata
properties) or the SAN layer (increased congestion in the storage
pool) or often a combination of the two. Diagnosing such a prob-
lem requires the ability to understand the behavior of not only the
database and storage layers during the execution of the query, but
also the interaction between the two layers.

The Annotated Plan Graph (APG) abstraction provides this pre-
cise ability. At a high level, an APG captures a comprehensive end-



Figure 1: Annotated Plan Graph

to-end mapping of the logical database operators of the query plan
to the physical disk details where the actual data resides, and every-
thing in between. Figure 1 shows an example of an APG instance
for Query 2 from TPC-H. In the database layer, APG includes the
query plan consisting of 25 operators, denotedO1-O25, with 9 leaf
operators. Below the database layer, APG also includes the SAN
configuration and correlations including servers, storagenetwork
fabric, storage pools (P1, P2) and storage volumes (V1, V2) con-
taining the database tables.

We describe the complete process of APG construction in Sec-
tion 3.1. As a quick summary, an APG contains the following kinds
of information. At the database level, an APG includes:

• Query-level data:For each execution of planP , DIADS col-

lects some low-overhead monitoring data per operatorO ∈
P . The relevant data includes:O’s start time, stop time, and
record-counts(estimated and actual number of records inO’s
output in the plan).

• Database-level dataincludes common metrics like the number
of buffer cache hits, full-table scans, random I/Os, and locks
held.

The data collected at the SAN level includes: (i) configuration
of components (both physical and logical), (ii) connectivity among
components, (iii) changes in configuration and connectivity infor-
mation over time, (iv) performance metrics from components, (v)
events generated by the system (e.g., disk failure, RAID rebuild)
and (vi) events generated by user-definedtriggers (e.g., degrada-
tion in volume performance, high workload on storage subsystem).

It is important to note that the APG abstraction is first of a kind
in this area. Several product offerings (e.g., [11, 12]) in the mar-
ket today, while collecting monitoring data from IT systems, only
contain silo-based database or SAN information. These product
offerings cannot trace the flow of requests across multiple subsys-
tems either because such tracing is impossible (e.g., the subsystems
are from multiple vendors) or it is impractical (e.g., the load placed
on the production system is high). Thus, no current tool provides
a convenient abstraction that captures query behavior in a seamless
way across the database and the SAN. Using low-overheard moni-
toring of historic performance data, an APG fulfills this need.

Some of the novel features of APGs are:

• APGs are generated from light-weight monitoring data that is
readily available in most production environments.

• APGs are views on the monitoring data that combine what DBAs
see—e.g., data on query plans—with what SAN administrators
see—data from the numerous SAN components and their inter-
connections. More importantly, APGs show each administrator
what she typically does not get to see. However, APGs are
much more than a juxtaposition of these two pieces of data; as
discussed next.

• APGs capture the dependency paths of their constituent com-
ponents. For example, the dependency path of an operatorO is
the set of physical (e.g., CPU, database cache, disk) and logi-
cal (e.g., volume, workload) system components whose perfor-
mance can impactO’s performance. There areinner andouter
dependency paths. The performance of components inO’s in-
ner dependency path can affectO’s performance directly.O’s
outer dependency path consists of components that affectO’s
performance indirectly by affecting the performance of compo-
nents on the inner dependency path. As an example, the inner
dependency path for the Index Scan operatorO23 in Figure 1
includes the server, HBA, FCSwitches, storage subsystem, Pool
P2, VolumeV2, and Disks5-10. The outer dependency path in-
cludes VolumesV3 andV4 (because of the shared disks) and
other database queries. Section 4 discusses how these depen-
dency paths can beprunedusing correlation analysis.

• Each component in an APG isannotatedwith appropriate mon-
itoring data collected during the plan’s execution. For example,
the annotation of an operatorO consists of the performance
data collected by DIADS for each componentC in O’s depen-
dency path; this data is collected in the[tb, te] time interval
wheretb and te are respectivelyO’s (absolute) start and stop
times for that execution.

3.1 Construction of APGs
Constructing an APG involves a number of steps including gath-

ering configuration and performance of SAN and the database com-



ponents. In this section, we describe how DIADS collects and cor-
relates this data starting with the SAN component of the APG.

3.1.1 SAN Layer Data
Configuration Data: Enterprise SANs are based on a shared stor-
age model with multiple servers (DB servers, file servers, etc.)
accessing the same backend storage. The storage media (disks)
are contained within storage subsystems, also referred to as stor-
age controllers, which provide specialized functionalitylike RAID,
copy services, and storage virtualization. The servers areconnected
to these storage subsystems through a hierarchy of switchesusually
as part of a Fibre Channel (FC) network fabric (Figure 1). Each
server has one or more Host Bus Adapters (HBAs) with one or
more FC ports each. These ports are connected to multiple lay-
ers of SAN switches which are then connected to ports on storage
subsystems.

Within a subsystem, storage is abstracted through logical storage
poolswhich are carved into storagevolumesthat are then made ac-
cessible to desired servers. Data contained within these volumes is
physically placed onto the disks that comprise the logical pool, and
may be striped across these disks depending upon the chosen RAID
configuration. Additionally, two important configuration settings
dictate the accessibility of data to servers: (i)Zoningdictates which
storage subsystem ports can be accessed by any given server,and
(ii) Logical Unit Number (LUN) mapping/maskingconfiguration
defines the storage volumes on the storage subsystem that canbe
accessed by a particular host. Referring to the example in Figure 1,
the database instance is installed on a Redhat Linux Server con-
nected to a Fibre Channel Switch, and uses storage from an IBM
DS6000 Storage controller.O23 operates on data residing in Vol-
umeV 2 which is part of the storage poolP2 (illustrated by a dotted
line in the figure).

To manage these complex interconnected and interdependentcom-
ponents, administrators often use storage management tools like
IBM TPC [12] or EMC Control Center [10]. These tools collect
the entire configuration information from the SAN and store them
in a centralized database. In recent years, both the communica-
tion with SAN devices as well as the schema for the configuration
database are available as open standards, e.g., SNIA SMI-S [20]
for device configuration collection and Aperi [2] for the configura-
tion database. For our implementation of DIADS we use the IBM
TPC database to extract SAN configuration information whichis
then correlated with the database layer information to construct the
APG as shown in Figure 1.

Performance Data: Standards like SMI-S also include performance
data for various logical and physical components (e.g., servers,
HBAs, storage pools, and storage volumes). This performance data
is critical for DIADS analysis. For instance, performance attributes
monitored from a server and its HBA includePercentage CPU Us-
age, Free Memory, Cache Hit Rate, Process Start Time, Process
End Time CPU, Percentage Utilization by process, Memory Con-
sumed by Process, IO Count, IO per second, HBA FC Port Statis-
tics. For storage components, DIADS uses attributes likeBytes
Read, Bytes Written, Sequential Read Hits, Sequential ReadRe-
quests, Sequential Write Requests, Total IOs. An anomalous value
for any of these attributes during a query slowdown is a candidate
for additional evaluation in DIADS. This performance data is used
as annotations in the APG for each respective component.

3.1.2 Database Layer Data and Correlation with
SAN Data

In the database layer, an APG includes the query plan informa-
tion, including data from all the operators in the plan. Thisdata is

Admin identifies instances of a query Q when it ran fine and when it did not

If plans are
different

Module PD: Look for changes in the plan used to execute Q when its
performance was satisfactory Vs. when performance was unsatisfactory

Same plan P involved in
good and bad performance

Plan−change analysis to pinpoint the cause 
of plan changes (ex: index dropping, change in data 
properties, change in configuration parameters, etc.)

Module CO: Correlate P’s slowdown with the running−time data of P’s operators 

Module DA: Generate dependency paths for correlated operators from Module CO. 
Prune the paths by correlating operator running times with component performance

Find causes with high confidence scores

Module SD: Match symptoms from Modules CR, CO, and

DA with symptoms database. 

Module IA: For each high−confidence cause identified, find

Extract more symptoms
as needed by the database

how much of plan P’s slowdown can be explained by it

Module CR: Correlate P’s slowdown
with record−count data of P’s operators

Query

Plans

Operators

Components

Events

Symptoms

Impact

Figure 2: DIADS’s diagnosis workflow

easily available in most DBMSs. (We used PostgreSQL in our im-
plementation of the DIADS prototype.) Each operator is annotated
with the performance data of components in its dependency paths.

The dependencies between operators and SAN components are
obtained in the following manner. It begins with the parsingof the
database configuration file that defines the mapping of the database
tablespaces to the storage volumes in the SAN. There are two pre-
dominant configurations for associating physical storage to a ta-
blespace defined by the database: (a) System Managed Storage
(SMS), where the tablespace is mapped to a file system created
on a SAN volume; (b) Database Managed Storage (DMS), where
the tablespace is created on a raw physical SAN volume with space
allocation and associated book-keeping managed directly by the
database. OperatorsO1 toO25 in Figure 1 are related either directly
or indirectly to operations on tables, which belong to tablespaces.
Thus, given an operatorO, it is possible to mapO to the SAN vol-
umes thatO depends on. Combining this mapping with the SAN
configuration data, we can obtain the inner and outer dependency
paths for all plan operators.

4. DESIGN OF DIADS
When the administrator identifies a queryQ as having experi-

enced a slowdown, DIADS invokes thediagnosis workflowshown
in Figure 2. This workflow “drills down” progressively from the
level of the query to plans and to operators, and then furtherdown
to the level of performance metrics and events in components. Fi-
nally, an impact analysis is done that “rolls up” to tie potential root
causes back to their impact onQ’s slowdown. As we will show in
this section, the workflow applies a combination of statistical ma-
chine learning and domain knowledge to the APGs collected for
Q. This novel combination provides built-in checks and balances
to deal with the challenges listed in Section 1.

4.1 Modules in the Diagnosis Workflow
The administrator first specifies declaratively or marks directly



the runs of the query that weresatisfactoryand those that were
unsatisfactory. For example, runs with running time below 100
seconds may be satisfactory, or all runs from 8 AM to 2 PM were
satisfactory, and those from 2 PM to 3 PM were unsatisfactory.

Module Plan Diffing (PD): The first module in the workflow
looks for significant changes between the plans used in satisfactory
and unsatisfactory runs. If such changes exist—e.g., if DIADS finds
that planP1 was used in satisfactory runs and a different planP2

was used in unsatisfactory runs—then DIADS tries to pinpoint the
cause of the plan changes (which includes, e.g., index addition or
dropping, changes in data properties, or changes in configuration
parameters used during plan selection). Our current implementa-
tion considers each schema or configuration change that occurred
between the runs ofP1 andP2, and checks whether this change
could have caused the plan change. The remaining modules in the
workflow are invoked if DIADS finds a planP that is involved in
both satisfactory and unsatisfactory runs of the query.

Module Correlated Operators (CO): The objective of this mod-
ule is to find the subset of operators, called thecorrelated operator
set (COS), whose change in performance best explains planP ’s
slowdown. COS is identified by analyzing data from satisfactory
and unsatisfactory runs ofP which can be seen as records with at-
tributesL, t(P ), t(O1), t(O2), . . . , t(On) for each run ofP . (Re-
call the annotations maintained for APGs in Section 3.) Here, at-
tribute t(P ) is the total time for one complete run ofP , and at-
tribute t(Oi) is the running time of operatorOi ∈ P for that run.
Attribute L is a label representing whether the corresponding run
of P was satisfactory or not.

DIADS feeds this data toKernel Density Estimation (KDE)which
is a statistical method to estimate the probability densityfunction of
a random variable. KDE applies an estimator to the data to learn the
probability density functionfi(Si) of the random variableSi rep-
resenting the running time of operatorOi whenP ’s performance
is satisfactory. Letu be an observation ofOi’s running time when
P ’s performance was unsatisfactory. Consider the probability esti-
mateprob(Si ≤ u) =

R u

−∞
fi(Si)dsi. Intuitively, asu becomes

higher than the typical range of values ofSi, prob(Si ≤ u) be-
comes closer to 1. Thus, a high value ofprob(Si ≤ u) represents
a significant increase inOi’s running time when plan performance
was unsatisfactory; if so,Oi belongs to COS.prob(Si ≤ u) is
called theanomaly scoreof operatorOi.

Module Dependency Analysis (DA):This module identifies the
subset of system components, called thecorrelated component set
(CCS), such that each component in CCS: (i) is in the dependency
path of at least one operatorO ∈ COS, and (ii) has at least one
performance metric that is significantly correlated withO’s run-
ning time. The fact that a componentC is in the dependency path
of an operatorO ∈ COS (Property (i) above) does not necessarily
mean thatO’s performance has been affected byC ’s performance.
Hence, DIADS checks additionally for Property (ii) which is imple-
mented as correlation analysis using KDE.

Module Correlated Record-counts (CR):In this module, DI-
ADS checks whether the change in performance of operators in
COS correlates with their record-counts. Significant correlations
mean that data properties have changed between satisfactory and
unsatisfactory runs ofP . Once again, correlation analysis is imple-
mented using KDE to find thecorrelated record-count set CRS⊆
COS.

Module Symptoms Database (SD):COS, CCS, and CRS along
with other observed SAN and database events may only besymp-
tomsof the true root cause ofP ’s slowdown. Module SD seeks to
map the observed symptoms to the actual root cause. DIADS gener-
ates this mapping using asymptoms databasewhose main purpose

is to streamline the use of domain knowledge to (i) create more ac-
curate results by dealing with event propagation, and (ii) generate
semantically meaningful results (e.g., reporting lock contention as
a cause instead of reporting some performance metrics only). DI-
ADS’s implementation of the symptoms database is motivated by an
intuitive and commercially-used format called theCodebook. The
original format assumes a finite set of symptoms such that each
distinct root causeR has a uniquesignaturein this set. However,
DIADS needs to consider complex symptoms such as symptoms
with temporal properties (e.g., contention occurred before failure).

DIADS’s symptoms database is a collection of root cause entries
each of which has the formatCond1 & Cond2 & . . . & Condz , for
somez > 0 which can differ across entries. EachCondi is a condi-
tion of the form∃sympj (denoting presence ofsympj) or ¬∃sympj
(denoting absence ofsympj ). Symptomsympj is represented in
a high-level language used to express complex symptoms overa
base set of symptoms [1]. EachCondi is associated with a weight
wi such the sum of the weights for each individual root cause entry
is 100%. From the symptoms observed currently, DIADS calcu-
lates aconfidence scorefor each root causeR as the sum of the
weights ofR’s conditions that evaluate to true. We further divide
the confidence score into three categories: (i) high (score≥ 80%),
(ii) medium (80% > score≥ 50%), and (iii) low (score< 50%).

Module Impact Analysis (IA): For each high-confidence root
causeR identified by Module SD, animpact scoreis calculated
as the percentage of the query slowdown (time) that can be con-
tributed toR individually. When multiple problems coexist in the
system, impact scores can separate out high-impact causes from
the less significant ones. Also, they serve as a safeguard against
misdiagnoses resulting from spurious correlations due to noise.

DIADS has multiple implementations of this module. One im-
plementation is an “inverse dependency analysis”. First, IA starts
from a root cause (R) and identifies all system components affected
by R, denotedcomp(R). The next step is to find the subset of op-
erators (op(R)) whose performance is affected bycomp(R). The
impact score is calculated as the percentage of extra running time
of op(R) with respect to the extra plan running time; where extra
time is the difference between the average running times across un-
satisfactory and satisfactory runs. Another implementation of IA
leverages the plan cost models used by database query optimizers.

5. EXPERIMENTAL EVALUATION
For the evaluation of DIADS, we considered query slowdowns

caused by problems within the database and SAN layers as wellas
combinations of problems across both layers (a capability which is
unique to DIADS). Our experimental testbed is part of a produc-
tion SAN environment, with the interconnecting fabric and storage
controllers being shared by other applications. The testbed runs
TPC-H queries on a PostgreSQL database server configured to ac-
cess tables using two Ext3 file system volumesV1 andV2 created
on an enterprise-class storage controller. Figure 1 shows the table
layout and the query plan that we will focus on.

Table 1 gives a high-level summary of our experimental scenar-
ios. DIADS successfully diagnosed the root cause in all these cases.
In this paper we will focus only on the first scenario; additional
analysis for all scenarios are covered in [3]. In the first scenario, a
contention is created in volumeV1 (from Figure 1) causing a slow-
down in query performance. The root cause of the contention is
another application workload that is configured in the SAN touse a
volume V’ that gets mapped to the same physical disks asV1. For
an accurate diagnosis result, DIADS needs to pinpoint the combi-
nation of SAN configuration events generated on: (i) creation of
the new volume V’, and (ii) creation of a new zoning and mapping



Problem Description Critical Role of DIADS Modules in Diagnosis
1. SAN misconfiguration leading to contention in volumeV1 Identified symptoms pinpoint the correct volume;

SD maps symptoms to the correct root cause
2. Contention caused by external workloads on volumesV1 andV2; with only the
former affecting query performance

DA prunes out the unrelated symptoms and events
for volume V2

3. SQL DML causes a subtle change in data properties; problempropagates to SAN
causing volume contention

CR identifies the important symptoms; IA rules
out volume contention as a root cause

4. Concurrent DB (change in data properties) and SAN (misconfiguration) problems Both problems identified; IA correctly ranks them
5. DB problem (locking-based) and spurious symptoms of volume contention due to
noise

IA identifies volume contention as low impact

Table 1: Experimental settings of increasing complexity used to evaluateDIADS

Volume, Anomaly Score Anomaly Score
Perf. Metric (no contention in V2) (contention in V2)

V1, writeIO 0.894 0.894
V1, writeTime 0.823 0.823
V2, writeIO 0.063 0.512

V2, writeTime 0.479 0.879

Table 2: Anomaly scores computed during dependency analysis
for performance metrics from VolumesV1, V2

relationship of the server running the workload that accesses V’.
Modules PD and CR: These two modules correctly identify (re-
spectively) that the plan and the data properties have not changed.
Module CO: Based on KDE, this module identifies the set of cor-
related operators asO2, O3, O4, O6, O7, O8, O17, O18, O20,
O21 andO22 (each operator has an anomaly score greater than the
threshold of 0.8). This set correctly contains both the leafopera-
tors (O8 andO22) connected to volumeV1. The eight intermedi-
ate operators present in this set are ranked highly because of event
propagation: the running times of these operators are affected by
the running times of the “upstream” operators (in this caseO8 and
O22). Finally, operatorO4 is a false positive because it operates on
volumeV2, and is not affected by the contention inV1. (As we will
see shortly, this false positive caused by noise gets filtered out.)
Module DA: This module computes anomaly scores for perfor-
mance metrics in both volumesV1 andV2 since these volumes fall
in the dependency paths of the correlated operators. Table 2’s sec-
ond column shows the anomaly scores for two representative met-
rics each fromV1 andV2. (Table 2’s third column is described later
in this section.) As expected, none ofV2’s metrics are identified as
correlated becauseV2 has no contention; while those ofV1 are.
Module SD: The symptoms identified so far are: (a) high anomaly
scores for operators usingV1, (b) high anomaly scores forV1’s per-
formance metrics, and (c) high anomaly score forO4 (only one out
of 7 leaf operators usingV2). These symptoms are strong evidence
thatV1’s performance is a cause of the query slowdown, andV2’s
performance is not. Thus, even when a symptoms database is not
available, DIADS correctly narrows down the search space an ad-
ministrator has to consider during diagnosis. An impact analysis
will further point out that the false positive symptom due toO4 has
little impact on the query slowdown.

Module SD uses a symptoms database that was developed in-
house to diagnose query slowdowns.V1’s contention due to the
SAN misconfiguration problem was given a high confidence score
because all required symptoms are found. (The symptoms database
had an entry for this root cause because this problem is very com-
mon in production settings.)V1’s contention due to a change in
database workload got a medium confidence score because of a
weak correlation between the performance of some correlated op-
erators and the rest of the database workload. All other rootcause
entries in the symptoms database got low confidence scores.
Module IA: Impact analysis done using the inverse dependency

analysis technique gave an impact score of 99.8% for the high-
confidence root cause found. This score is high because the slow-
down is caused entirely by the contention inV1.

Next, we complicated the problem scenario to test DIADS’s ro-
bustness. Everything was kept the same except that we created
extra I/O load on VolumeV2 in a bursty manner such that this ex-
tra load had little impact on the query beyond the original impact
of V1’s contention. Without intrusive tracing, it would not be pos-
sible to rule out the extra load onV2 as a potential cause of the
slowdown.

Interestingly, DIADS’s integrated approach is still able to give
the right answer. Compared to the previous scenario, there will
now be some extra symptoms due to higher anomaly scores for
V2’s performance metrics (as shown in the third column in Table
2). However, root causes with contention-related symptomsfor V2

will still have low confidence because most of the leaf operators
depending onV2 will have low anomaly scores as before. Also,
impact scores will be low for these causes.

Unlike DIADS, a SAN-only diagnosis tool may spot higher I/O
loads in bothV1 andV2, and attribute both of these as potential
root causes. Even worse, the tool may give more importance to
V2 because most of the data is onV2. A database-only tool can
pinpoint the slowdown in the operators, but it would likely give
several false positives like a suboptimal buffer pool setting or a
suboptimal choice of execution plan.

Some observations from evaluating DIADS on the broad range
of scenarios in Table 1 are:

• Compared to correlation analysis using advanced models (e.g.,
Bayesian networks [7]), KDE can produce accurate results with
few tens of samples, and is more robust to noise in the data.

• DIADS can deal with (i) database-level problems whose symp-
toms propagate to the SAN, and vice versa; (ii) independent
and concurrent database-level and SAN-level problems; and
(iii) spurious and missing symptoms caused by noise.

• DIADS produces good results even when the symptoms database
is incomplete. While we expect that entries in the symptoms
database are reviewed carefully by administrators, DIADS’s own
modules like correlation, dependency, and impact analysiscan
be used to identify important symptoms automatically.

6. SYSTEM OPERATION/USAGE
Figure 5 illustrates an example DIADS deployment as well as the

data flow from the other systems that DIADS communicates with.
This deployment, which we will use in our demonstration, consists
of:

• Data-warehousing queries from the TPC-H benchmark running
on a PostgreSQL database server configured to access data on
an enterprise-class IBM storage controller.

• The IBM TotalStorage Productivity Center (TPC) [12] running



Figure 3: DIADS query selection screen

Database Metrics
 Server Metrics
 Network Metrics
 Storage Metrics


Operator Start Stop Times

Record-counts

Plan Start Stop Times

Locks Held

Space Usage

Blocks Read

Buffer Hits

Index Scans

Index Reads

Index Fetches

Sequential Scans


CPU Usage (%ge)

CPU Usage (Mhz)

Handles

Threads

Processes

Heap Memory Usage(KB)

Physical Memory Usage (%)

Kernel Memory(KB)

Memory Being Swapped(KB)

Reserved Memory

Capacity(KB)


Bytes Transmitted

Bytes Received

Packets Transmitted

Packets Received

LIP Count

NOS Count

Error Frames

Dumped Frames

Link Failures

CRC Errors

Address Errors


Bytes Read

Bytes Written

Contaminating Writes

PhysicalStorageRead Operations

Physical Storage Read Time

PhysicalStorageWriteOperations

Physical Storage Write Time

Sequential Read Requests

Sequential Write Requests

Total IOs


Figure 4: Performance metrics collected byDIADS

Figure 5: DIADS setup

on a separate machine recording configuration details, statis-
tics, and events from the SAN as well as from PostgreSQL
(which was instrumented to report the data to the management
tool). Figure 4 shows the key performance metrics collected
from the database and SAN. The monitoring data is stored as
time-series data in a DB2 database.

• DIADS running on a separate server: Its graphical user interface
(GUI) supports APG-oriented display and browsing of data col-
lected in the DB2 database. Recall that APGs are views on the
monitoring data that combine what DBAs see – e.g., data on
query plans – with what SAN administrators see – data from the
numerous SAN components and their interconnections. APG-
oriented visualization was implemented due to comments from
administrators that to diagnose a reasonable fraction of prob-
lems all they need to see is the APG diagram.

• DIADS’s diagnosis workflow which is invoked on demand: Each
module in the workflow is implemented using a combination of
Matlab scripts (for KDE) and Java. DIADS uses a symptoms
database that was developed in-house to handle query slow-
downs.

• A fault injector1 that can inject a variety of faults at the database
and SAN levels, including SAN misconfiguration, server, disk,
or volume contention, RAID rebuilds, changes in data proper-

1The fault injector module is used for test purposes and verification
of the correctness of the DIADS results. This module is not required
for production deployments.

ties, and table-locking problems.

DIADS diagnosis starts with the administrator identifying a query
that has experienced a slowdown. The diagnosis workflow is then
invoked. By default, the workflow is run in abatchmode where all
modules are executed one after the other, and only the final results
are displayed to the administrator. However, DIADS supports an
interactivemode where results are displayed after the completion
of each module, and the administrator can edit these resultsbefore
they are fed to the next module. In this mode, the administrator can
also re-execute or bypass modules, as well as stop the execution
if the desired result is obtained quickly. In the rest of the section,
we describe the interactive mode and provide explanations on the
presented screenshots.

DIADS first screen (illustrated in Figure 3) provides a view of
the executed queries in the database. For each query execution, a
corresponding row with the information regarding the execution is
presented in the table. Following information is displayed:

• Query: The actual query string, available as a tool-tip or as a
pop-up box when the cell is clicked.

• Plan: Executed plan for the query. A visual representation is
showed as a tool-tip or pop-up box on cell click.

• Start time:The time when the query began execution.

• End time:The time when the query completed execution.

• Duration: The number of minutes that the query needed to
complete execution.

• Unsatisfactory check-box:This check-box is used by the ad-
ministrator to mark the query executions that have unsatisfac-
tory performance. DIADS also supports declarative rules for
specifying which query executions are unsatisfactory, e.g., ev-
ery query execution that has a running time greater than 30 min-
utes is unsatisfactory.

The APG button below the table, navigates the administratorto the
APG visualization screen (Figure 6), where the APG for the high-
lighted query execution is displayed. On the left side of this screen,
the APG structure is presented as a tree. Figure 6 shows the path
from Figure 1, that starts from the Return operator, goes through
the Index Scan on Part table and then all the way to the disks. The



Figure 6: DIADS APG visualization screen

Figure 7: DIADS Interactive workflow execution screen

right side of the APG screen contains a table of time series per-
formance metrics for any component selected from the APG. As
each component of the APG has a different set of performance at-
tributes, the displayed attributes in the table vary. However, there
are two attributes that are displayed for all components: (i) Time:
presenting the time in which the measurement in the correspond-
ing row was taken, and (ii)Unsatisfactory check-box:presenting
the performance categorization of the component. This check-box
is populated based on the unsatisfactory check-box selection of the
query executions in the previous screen. For example, during an
unsatisfactory query execution, all the measurements taken during
the execution are marked as unsatisfactory. However, the adminis-
trator can modify this labeling by selecting this check-boxor not.
As an example, Figure 6 shows the metrics that capture volume
V1’s performance from 12:05pm till 1.30pm.

The Workflow button on the query selection screen invokes the
DIADS workflow execution screen (Figure 7). This screen guides
the administrator step by step through the tool workflow. Each
module in DIADS can be executed by clicking on the corresponding
button on the top of the screen. Only the first execution of themod-
ules should be in order, after that each module can be re-executed
as many times as needed and in any order.

The result panel on the screen shows the result of the last ex-
ecuted module. Figure 7 shows the state of the screen after in-
vocation of the module Correlated Operators. As this screenshot
presents the first invocation of the module, all modules after de-

pendency analysis are disabled (i.e., they cannot be executed next).
When the last module is executed (Impact Analysis), the rootcauses
identified by DIADS for the corresponding query slowdown are
listed in the result panel.

7. THE POTENTIAL OF INTEGRATED
DATABASE AND SAN TOOLS

While integrated diagnosis using DIADS solves an important prac-
tical problem, the proposed system and techniques have the poten-
tial to enable even broader functionality. In this section,we present
few instances of these capabilities.

• What-if analysis: Often database and storage administrators
have to apply changes within their respective configurations.
In typical enterprises, this either proceeds without regard to im-
pact on the other layer or requires extensive collaborationbe-
tween the two teams. In contrast, using techniques developed
in our work, it is easy to conceive an integrated database and
SAN tool that allows administrators to proactively assess the
impact of their planned changes on the other layer. In fact, the
impact analysis component of DIADS seems to be a promising
approach for developing such a feature. While it may not com-
pletely identify all possible problems, it will serve as a valuable
check which can then lead to quicker and more focused discus-
sions between the teams.

• Proactive diagnosis and self-healing: Another useful exten-



sion for DIADS is to provide proactive diagnosis and impor-
tantly, self-healing capability. The current symptoms database
design can be extended to include, along with symptoms, pos-
sible fixes for the root cause of the problem. Once the tool
identifies a root cause, it can then apply the fix to self-heal the
environment. It is important to note that as in real life, thefix
may be required within the database or storage or a combina-
tion of both layers. An integrated approach like ours will be
crucial in identifying the right fix and then applying it in any
one layer.

• Integrated Database and SAN Planning: Along with diagno-
sis, we believe that annotated plan graphs, by capturing infor-
mation from the database and SAN layers into a single con-
struct, can lead to smarter planning and optimization for database
deployments over a SAN. For example, decisions like the choice
of storage required for given database workloads or choice of
DB query plan given the storage infrastructure can be intelli-
gently made using these techniques. An early work by Salem
et al [17] presented a similar approach for such integrated plan-
ning, though it uses a concatenation of independent database
and storage analysis components. In contrast, annotated plan
graphs provide a much tighter integration with informationflow
between the two layers aiding in analysis.

• Machine Learning and Domain Knowledge Interplay: One of
the important aspects of our work is the coupling of machine
learning and domain knowledge techniques towards diagnosis.
Use of domain knowledge through a symptoms database serves
as a guiding tool to the machine learning algorithms prevent-
ing spurious correlations due to noisy data or event propaga-
tion. An interesting course of future work is to enhance this
relationship with machine learning techniques contributing to-
wards identifying potential symptoms which can be checked
by an expert and added to the symptoms database. Considering
that a symptoms database may never be complete, this provides
a self-evolving mechanism towards bettering the quality ofthe
symptoms databases.

• Synergy between DIADS and ADDM [9]: A possible deploy-
ment of DIADS is along with a more fine-grained diagnosis tool
like Oracle ADDM [9, 8] which uses instrumented code to get
operator level timing information. Both use a similar mech-
anism of finding symptoms and then mapping them to a root
cause. However, our use of historic performance data helps in
answering questions likewhy did my query slow down?while
ADDM helps answering questions likewhy is my query slow?.
A combination of the tools provides a stronger analysis engine.

8. CONCLUSIONS
In this paper, we presented our vision for an integrated database

and SAN management framework. This framework is aimed at as-
sisting administrators in management tasks that require anunder-
standing of both database and SAN environments. As an example
of this vision, we described a diagnostic tool, called DIADS, that
supports root cause analysis for problems that span databases and
SANs. This integrated diagnosis is based on a novel information
abstraction called Annotated Plan Graph (APG) that captures the
end-to-end mapping of database operators and their dependencies
on various SAN components, including performance and config-
uration information. Using a novel interplay of machine learning
and domain knowledge (e.g., symptoms databases), DIADS pro-
gressively drills down from the SQL query to execution plans, op-
erators, and eventually to performance and configuration character-
istics of the SAN components. It can then associate impact ofpo-

tential problems to the actual symptoms to identify the rootcause
of the problem. We also described some experimental scenarios of
DIADS diagnosis for root cause problems occurring in database and
SAN layers.

We contend that the integrated management framework and the
APG abstraction presented in this paper enables a key capability in
enterprise data center management. By providing visibility into the
SAN to database administrators and vice versa, it allows forsmarter
resource planning and improved efficiencies in the data center.

9. REFERENCES
[1] Ana Biazetti and Kim Gajda.Achieving complex event

processing with Active Correlation Technology.
www-128.ibm.com/developerworks/
autonomic/library/ac-acac.

[2] Aperi Storage Management Project.
http://www.eclipse.org/aperi.

[3] S. Babu, N. Borisov, S. Uttamchandani, R. Routray, and
A. Singh. Diads: Addressing the “my-problem-or-yours”
syndrome with integrated san and database diagnosis. InTo
Appear in Proceedings of Usenix File and Storage
Technologies (FAST’09).

[4] S. Basu, J. Dunagan, and G. Smith. Why did my pc suddenly
slow down? InProceedings of the 2nd USENIX workshop on
Tackling computer systems problems with machine learning
techniques (SYSML), pages 1–6, 2007.

[5] S. Chaudhuri, A. C. König, and V. R. Narasayya. Sqlcm: A
continuous monitoring framework for relational database
engines. InProceedings of the International Conference on
Data Engineering (ICDE), pages 473–485, 2004.

[6] S. K. Chilukuri and K. Doraisamy. Symptom Database
Builder for Autonomic Computing. InInternational
Conference on Autonomic and Autonomous Systems (ICAS),
July 2006.

[7] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating Instrumentation Data to System
States: A Building Block for Automated Diagnosis and
Control. InProc. of the USENIX Operating Systems Design
and Implementation (OSDI), Dec. 2004.

[8] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and
M. Ziauddin. Automatic sql tuning in oracle 10g. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 1098–1109, 2004.

[9] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and
G. Wood. Automatic performance diagnosis and tuning in
oracle. InProceedings of Conference on Innovative Data
Systems Research (CIDR), pages 84–94, 2005.

[10] EMC Control Center Family.
http://www.emc.com/products/storage_
management/controlcenter.jsp.

[11] Hewlett Packard Systems Insight Manager.
http://h18002.www1.hp.com/products/
servers/management/hpsim/index.html.

[12] IBM TotalStorage Productivity Center.
http://www-306.ibm.com/software/tivoli/
products/totalstorage-data/.

[13] A. Manji. Creating symptom databases to service j2ee
applications in websphere studio, 2004. IBM Library.

[14] A. Mehta, C. Gupta, S. Wang, and U. Dayal. Automatic
workload management for enterprise data warehouses.IEEE
Data Eng. Bull., 31(1):11–19, 2008.



[15] M. Perazolo. The autonomic computing symptoms format,
2005. IBM Library.

[16] K. T. Pollack and S. Uttamchandani. Genesis: A scalable
self-evolving performance management framework for
storage systems. InIEEE International Conference on
Distributed Computing Systems (ICDCS), page 33, 2006.

[17] Y. Qin, K. Salem, and A. K. Goel. Towards adaptive costing
of database access methods. InProc. of Workshop on
Self-Managing Database Systems (SMDB), 2007.

[18] F. Reiss and T. Kanungo. A characterization of the sensitivity
of query optimization to storage access cost parameters. In
SIGMOD Conference, pages 385–396, 2003.

[19] K. Shen, M. Zhong, and C. Li. I/o system performance
debugging using model-driven anomaly characterization. In
Proceedings of the 4th conference on USENIX Conference on
File and Storage Technologies (FAST), pages 23–23, 2005.

[20] Storage Networking Industry Association. SMI
Specification, 2003.http://www.snia.org.

[21] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with
peerpressure. InProceedings of USENIX OSDI Conference,
pages 245–258, 2004.

[22] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.
High speed and robust event correlation.IEEE
Communications Magazine, 34, 1996.


