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ABSTRACT

Keyword search against structured databases has become a
popular topic of investigation, since many users find struc-
tured queries too hard to express, and enjoy the freedom
of a “Google-like” query box into which search terms can
be entered. Attempts to address this problem face a funda-
mental dilemma. Database querying is based on the logic
of predicate evaluation, with a precisely defined answer set
for a given query. On the other hand, in an information
retrieval approach, ranked query results have long been ac-
cepted as far superior to results based on boolean query
evaluation. As a consequence, when keyword queries are at-
tempted against databases, relatively ad-hoc ranking mech-
anisms are invented (if ranking is used at all), and there is
little leverage from the large body of IR literature regarding
how to rank query results.

Our proposal is to create a clear separation between rank-
ing and database querying. This divides the problem into
two parts, and allows us to address these separately. The
first task is to represent the database, conceptually, as a
collection of independent “queried units”, or qunits, each of
which represents the desired result for some query against
the database. The second task is to evaluate keyword queries
against a collection of qunits, which can be treated as inde-
pendent documents for query purposes, thereby permitting
the use of standard IR techniques. We provide insights that
encourage the use of this query paradigm, and discuss pre-
liminary investigations into the efficacy of a qunits-based
framework based on a prototype implementation.

1. INTRODUCTION

Keyword search in databases has received great atten-
tion in the recent past, to accommodate queries from users
who do not know the structure of the database or are not
able to write a formal structured query. Projects such as
BANKS [3], Discover [13], ObjectRank [2] and XRank [10]
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Figure 1: The Qunits Search Paradigm : The
database is translated into a collection of indepen-
dent qunits, which can be treated as documents for
standard IR-like document retrieval.

have all focused on providing better algorithms for ranking
elements in a database given a keyword query. These algo-
rithms use various data models for the purposes of scoring
results. For example, BANKS considers candidate results
that form a minimal spanning tree of the keywords. Objec-
tRank, on the other hand, combines tuple-level PageRank
from a pre-computed data graph with keyword matching.
A common theme across such efforts is the great attention
paid to different ranking models for search.

This paradigm is similar to one adopted by the informa-
tion retrieval community who strive to improve document
search. For them, the task is to create an algorithm to
find the best document given a keyword query. Various ap-
proaches, such as TF/IDF and PageRank, have emerged
as popular approaches to solving the search problem, where
the user is presented with a list of snippets from top-ranking
documents.

However, unlike document collections, large schemas do
not have the luxury of a clear definition of what a docu-
ment is, or what a search result comprises. Even if one
assumes that the ranking of the results is correct, it remains
unclear what information should be presented to the user,
i.e. what snippets from a database search result. Records
in a schema-rich database have many possible sub-records,



parent records, and joinable records, each of which is a can-
didate for inclusion in the result, but only a few of which
are potentially useful to the average user.

For example, consider the keyword query george clooney
movies. When issued on a standard document search engine,
the challenge is straightforward: pick the best document
corresponding to the query and return it. However, for a
database, the same task becomes nontrivial. In the case of
a relational database, should we return just singular tuples
that contains all the words from the query? Do we perform
some joins to denormalize the result before presenting it to
the user? If yes, how many tables do we include, and how
much information do we present from them? How do we
determine what the important attributes are? The title of
a movie isn’t unique due to remakes and sequels, and hence
it will not be a key. How do we determine it is more useful
to the user than the primary key, movie_id? Clearly, there
are no obvious answers to these questions.

In other words, a database search system requires not just
a mechanism to find matches and rank them, but also a sys-
tematic method to demarcate the extent of the results. It
may appear that simply including the complete spanning
tree of joins used to perform the match (in the case of rela-
tional systems, such as BANKS), or including the complete
sub-tree rooted at the least common ancestor of matching
nodes (in the case of XML systems, such as XSearch), will
suffice. However these simple techniques are insufficient, of-
ten including both too much unwanted information and too
little desired information.

One cause of too much information is the chaining of joins
through unimportant references, which happens frequently
in normalized databases. One reason for too little informa-
tion, particularly in relational systems, is the prevalence of
id attributes due to normalization. If this were the only
issue, it could be addressed by performing a value join every
time an internal “id” element is encountered in the result.
However, the use of simple rules such as this also appears
insufficient.
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Figure 2: A simplified example schema

Consider, as shown in Fig. 2, part of the example schema
for the Internet Movie Database. The schema comprises

primarily of two entities, person and movie. Additional ta-
bles, such as cast, establish relationships, while tables such
as genre are used to normalize common strings.  Given a
keyword query such as george clooney movies, a natural so-
lution is to perform a join of ¢‘name = george clooney’’
from the person table, with the movies table via cast. The
movies table is normalized and contains id pointers to the
locations, genre, and info table. There is nothing in terms
of database structure to distinguish between these three ref-
erences through id. Yet it is probably the case that resolving
the id references to the shooting locations and genre is de-
sired, but not to include the lengthy plot outline (located in
the info table) in the search result.

In addition to the challenge of demarcating an actual re-
sult, the problem of identifying which result to return for
a query still remains. Based on prior work in the area of
search query log analysis [19, 29], and analyses described in
Sections 5.1 and 5.2, we assert that:

e A majority of users’ queries are underspecified

e The mapping between true information need and the
actual query terms is frequently not one-to-one

e The challenge of mapping a query to a specific frag-
ment of the database is nontrivial

In this paper, we introduce the notion of a “qunit”, rep-
resenting a quantified unit of information in response to a
user’s query. The search problem then becomes one of choos-
ing the most appropriate qunit(s) to return, in ranked order
— a problem that is much cleaner to address than the tradi-
tional approach of first finding a match in the database and
then determining how much to return. The fundamentals of
this concept are described in Sec. 2. Sec. 3 describes search
inside a qunits based system, while Sec. 4 discusses meth-
ods presents different techniques for identifying qunits in a
database.

We study the nature of search behavior, and then ex-
perimentally evaluate the quality of search results from our
qunits-based approaches in Sec. 5. We close with a review
of related work in Sec. 6 and some concluding remarks in
Sec.7.

2. QUNIT AS A CONCEPTUAL UNIT

We now define the notions of a qunit and qunit utility:

Qunit: A qunit is the basic, independent semantic unit
of information in a database.

Every user has a “mental map” of how a database is orga-
nized. Qunits are an embodiment of this perceived organi-
zation. The organization may not be the most efficient rep-
resentation, in terms of storage, or other computational con-
siderations. For example, while the user may like to think of
the IMDDb as a collection of actor profiles and movie listings,
the underlying relational database would store normalized
“fact” tables and “entity” tables, for superior performance.
In other words, a qunit can be considered as a view on a
database, which we call the base expression, with an addi-
tional conversion expression that determines the presenta-
tion of the qunit.

Qunits do not need to be constrained by the underly-
ing data representation model. This allows qunits to be



much richer than views. For example, consider the IMDb
database. We would like to create a qunit definition corre-
sponding to the information need “cast”. A cast is defined
as the people associated with a movie, and rather than have
the name of the movie repeated with each tuple, we may
prefer to have a nested presentation with the movie title on
top and one tuple for each cast member. The base data in
IMDDb is relational, and against its schema, we would write
the base expression in SQL with the conversion expression
in XSL-like markup as follows:

SELECT * FROM person, cast, movie
WHERE cast.movie_id = movie.id AND
cast.person_id = person.id AND
movie.title = "$x"
RETURN
<cast movie="$x">
<foreach:tuple>
<person>$person.name</person>
</foreach:tuple>
</cast>

The combination of these two expressions forms our qunit
definition. On applying this definition to a database, we de-
rive qunit instances, one per movie.

Qunit Utility: The wtility of a qunit is the importance

of a qunit to a user query, in the context of the overall in-
tuitive organization of the database. This applies to both
qunit definitions and qunit instances.

The number of possible views in a database is very large.
Hence, the total number of candidate qunit definitions is
an inordinately large number. The utility score of a qunit
is required for selecting a top-ranking set of useful qunits
from the large pool of candidate qunits. From a user’s per-
spective, this process captures the most salient and relevant
concepts that should be returned for a particular query.

It should be noted that qunit utility is a subjective met-
ric. It is dependent on the intent and nature of the user,
and is not necessarily uniform for all users. For our pur-
pose, we approximate this metric with clearly defined, ob-
jective surrogates. This is similar in spirit to measuring
document relevance in information retrieval, where TF /IDF
is a well-defined and widely accepted objective metric used
to approximate document relevance.

Once qunits have been defined, we will model the database
as a flat collection of independent qunits. Qunits may over-
lap, and in fact one qunit may even completely include an-
other. However, these overlaps will not be given any special
attention. Similarly, references (links, joins, etc) are ex-
pected to have been resolved to the extent desired at the
time that qunits were defined. Thus in our movie database,
a qunit such as movie can list its actors, but there is no
explicit link between a movie qunit and an actor qunit. In
subsequent querying, each qunit is treated as an indepen-
dent entity.

Note, however, that context information, not part of the
qunit presented to the user, may often be useful for purposes
of search and ranking. For example, link structures may be
used for network analysis. Our model explicitly allows for
this.

3. QUNIT-BASED SEARCH

Consider the user query, star wars cast, as shown in Fig.1.
Queries are first processed to identify entities using standard
query segmentation techniques[30].

In our case one high-ranking segmentation is “[movie.name]
[cast]” and this has a very high overlap with the qunit defini-
tion that involves a join between “movie.name” and “cast”.
Now, standard IR techniques can be used to evaluate this
query against qunit instances of the identified type; each
considered independently even if they contain elements in
common. The qunit instance describing the cast of the
movie Star Wars is chosen as the appropriate result.

As we can see, the qunits based approach is a far cleaner
approach to model database search. In current models of
keyword search in databases, several heuristics are applied
to leverage the database structure to construct a result on
the fly. These heuristics are often based on the assumption
that the structure within the database reflects the semantics
assumed by the user (though data / link cardinality is not
necessarily an evidence of importance), and that all struc-
ture is actually relevant towards ranking (though internal id
fields are never really meant for search).

The benefit of maintaining a clear separation between
ranking and database content is that structured informa-
tion can be considered as one source of information amongst
many others. This makes our system easier to extend and
enhance with additional IR methods for ranking, such as rel-
evance feedback. Additionally, it allows us to concentrate on
making the database more efficient using indices and query
optimization, without having to worry about extraneous is-
sues such as search and ranking.

It is important to note that this conceptual demarcation
of rankings and results does not imply materialization of
all qunits. In fact, there is no requirement that qunits be
materialized, and we expect that most qunits will not be
materialized in most implementations.

4. QUNIT DERIVATION

In the previous section, we discussed how to execute a
query in a database that already had qunits identified. One
possibility is for the database creator to identify qunits man-
ually at the time of database creation. Since the subject
matter expert is likely to have the best knowledge of the
data in the database, such expert human qunit identifica-
tion is likely to be superior to anything that automated
techniques can provide. Note that identifying qunits merely
involves writing a set of view definitions for commonly ex-
pected query result types and the manual effort involved is
likely to be only a small part of the total cost of database
design. If a forms-based database interface has been de-
signed, the set of possible returned results constitute a good
human-specified set of qunits.

Even though manual expert identification of qunits is the
best, it may not always be feasible. Certainly, legacy sys-
tems have already been created without qunits being cre-
ated. As such, automated techniques for finding qunits in
a database are important. In this section, we discuss the
automated derivation of qunits from a database.

Given a database, there are several possible sources of in-
formation that can be used to infer qunits. Of course, there
is the database schema. Since identifying qunits requires us



to write base expressions defining them, and writing these
expressions requires schema knowledge, the use of schema
knowledge is a starting point. In addition, there are three
independent possible sources of information worth consider-
ing. The first and most obvious is the data contained in the
database itself. A second source of information is the his-
tory of keyword queries posed to the system from previous
instances of search on the database, also known as a query
log. The final source of information about the database is
the source of evidence outside the database, such as pub-
lished results and reports that could be based on informa-
tion from the database in question, or a similar data source.
We consider each of these three sources in turn.

4.1 Using Schema and Data

Inspired by previous efforts[2, 18] that model the database
as a graph, we utilize the concept of queriability of a schema
described in [15] to infer the important schema entities and
attributes in a database. Queriability is defined as the like-
lihood of a schema element to be used in a query, and is
computed using the cardinality of the data that the schema
represents. Qunit base expressions are generated by looking
at the top-k schema entities based on descending queriability
score. Each of the top-k1 schema entities is then expanded
to include the top-k2 neighboring entities as a join, where
k1 and ko are tunable parameters. While this method is
intuitive and self-contained within the database, there are
many instances where using just the data as an arbiter for
qunit derivation is subobtimal. Specifically, in the case of
underspecified queries such as “george clooney”, with the ex-
ample schema in Fig. 2, creating a qunit for “person” would
result in the inclusion of important movie “genre” and the
unimportant movie “location” tables, since every movie has
a genre and location. However, while there are many users
who are interested in “george clooney” as an actor in ro-
mantic comedies, there is very little interest in the locations
he has been filmed at.

4.2 Using Query Logs

We use a query rollup strategy for query logs, inspired by
the observation that keyword queries are inherently under-
specified, and hence the qunit definition for an under-specified
query is an aggregation of the qunit definitions of its special-
izations. For example, if the expected qunit for the query
“george clooney” is a personality profile about the actor
George Clooney, it can be constructed by considering the
popular specialized variations of this query, such as “george
clooney actor”, “george clooney movies”, and so on.

We begin by sampling the database for entities, and look
them up in the search query log. The found query log en-
tries are then collected, along with the number of times they
occur in the query log (query frequency). For each query,
we then map each recognized entity on to the schema, con-
structing simple join plans. We then consider the popular
plan fragments for the qunit definitions.

As an example, consider the schema element “person.name”.

Instances of this element are “george clooney” and “tom

hanks”, which are looked up in the query log, where we
find search queries such as “george clooney actor”, “george
clooney batman” and “tom hanks castaway”. Additionally,
searches for “movie.name” instances, “batman” and “cast-
away”’ and “cast.role” instance “actor” would also lead to
the same 3 queries. Given these three queries, we have

hence built an annotated set of schema links, where “per-
son.name” links to “cast.role” once, and to “movie.name”
twice. This suggests that the rollup of the qunit repre-
senting “person.name” should contain “movie.name” and
“cast.role”, in that order.

4.3 Using External Evidence

There is a wealth of useful information that exists in the
form of external evidence. We now propose a third method
that uses external evidence to create qunits for the database.
External evidence can be in the form of existing “reports”
— published results of queries to the database, or relevant
web pages that present parts of the data. Such evidence
is common in an enterprise setting where such reports and
web pages may be published and exchanged but the queries
to the data are not published. By considering each piece
of evidence as a qunit instance, the goal is to learn qunit
definitions.

In our running example, our movie search engine is aware
of the large amount of relevant organized information on
the Internet. Movie information from sources such as the
Wikipedia ! are well organized and popular. Since the actual
information in Wikipedia will have a great overlap with that
from IMDDb, our goal is thus to learn the organization of this
overlapped data from Wikipedia.

By using methods similar to query rollup, we use records
in the database to identify entities in documents. We then
compute “signatures” for each web page, utilizing the DOM
tree and frequency of each occurrence. An example of a type
signature for the cast page for a movie on Wikipedia would
be ((person.name:1) (movie.name:40)), which would sug-
gest using person.name as a label field, followed by a “fore-
ach” consisting of movie.name, based on the relative cardi-
nality in the signature and the number of the tuples gen-
erated in our qunit base expression. By aggregating the
type signatures over a collection of pages, we can infer the
appropriate qunit definition.

5. EXPERIMENTS AND EVALUATION

In this section, we begin by first discussing a brief pre-
experiment to explore the nature of keyword searches that
real users posed against a structured database. The follow-
ing subsections describe the use of a real-world querylog to
evaluate the efficacy of qunit based methods.

5.1 Understanding Search

The Internet Movie Database or IMDb? is a well-known
repository of movie-related information on the Internet. To
gain a deeper understanding of search behavior, we per-
formed a user study with five users, all familiar with IMDb
and all with a moderate interest in movies. The subjects
had a large variance in knowledge about databases. Two
were graduate students specializing in databases, while the
other three were non-computer science majors. The subjects
were asked to consider a hypothetical movie database that
could answer all movie-related queries. Given this, the users
were asked to come up with five “information needs”, and
the corresponding keyword queries that they would use to
query the database.

! http://wikipedia.org
thtp://imdb.com



As expected, nearly all our subjects look for the summary
page of a movie. But this information need is expressed in
five different ways by the users. Similarly, the cast of a movie
and finding connections between two actors are also common
interests. Once again these are expressed in many different
ways. Conversely, a query that only specifies the title of the
movie may be specified on account of four different informa-
tion needs (first column of the table). Similarly, users may
specify an actor’s name when they mean to look for either
of two different pieces of information — the actor’s filmog-
raphy, or information about co-actors. Clearly, there exists
a many-to-many relationship between information need and
queries.

keyword query
[title] box office]
[actor]

[award] [year]
[actor] [actor]
[genre]

[title] ost

[title] cast
[title] posters
don’t know

[title]
o | [title] [froetext]

almovie [freetext]

o [title] year
ol [title] plot

info. need
movie summary | a,c
cast| e
filmography c.a
coactorship a, ¢ b
posters b

related movies| e

5
o

awards a

movies of period )
charts / lists e d
recommendations b e
soundtracks c
trivia| c

box office d

Table 1: Information Needs vs Keyword Queries.
Five users (a, b, ¢, d, €) were each asked for their movie-
related information needs, and what queries they would
use to search for them.

Another key observation is that 10 of the 25 queries here
are single entity queries, 8 of which are underspecified —
the query could be written better by adding on additional
predicates. This happened even though we reassured users
that we could answer all movie-related queries.

The results of our interviews are displayed in Table 1.
Each row in this table is an information need suggested by
one or more users. Each column is the query structure the
user thought to use to obtain an answer for this information
need. The users themselves stated specific examples; what
we are presenting is the conceptual abstraction. For exam-
ple if the user said they would query for “star wars cast”,
we abstract it to query type [title] cast. Notice that the
unmatched portion of the query(cast) is still relevant to the
schema structure and is hence considered an attribute. Con-
versely, users often issue queries with words that are non-
structural details about the result, such as “movie space
transponders”. We consider these words free-form text in
our query analysis.

Entries in this matrix identify data points from individual
subjects in our experiment. Note that some users came up
with multiple queries to satisfy the same information need,
and hence are entered more than once in the corresponding
TOWS.

5.2 Movie Querylog Benchmark

To construct a typical workload, we use a real world dataset
of web search engine query logs [26] spanning 650K users and
20M queries. All query strings are first aggregated to com-
bine all identities into a single anonymous crowd, and only
queries that resulted in a navigation to the www.imdb.com do-

main are considered, resulting in 98,549 queries, or 46,901
unique queries. We consider this to be our base query log
for the IMDDb dataset. Additionally, we were able to iden-
tify movie-related terms in about 93% of the unique queries
(calculated by sampling).

We then construct a benchmark query log by first classi-
fying the base query log into various types. Tokens in the
query log are first replaced with schema “types” by look-
ing for the largest possible string overlaps with entities in
the database. This leaves us with typed templates, such
as “[name] movies” for “george clooney movies”. We then
randomly pick two queries that match each of the top (by
frequency) 14 templates, giving us 28 queries that we use as
a workload for qualitative assessment.

We observed that our dataset reflects properties consistent
with previous reports on query logs. At least 36% of the dis-
tinct queries to the search engine were “single entity queries”
that were just the name of an actor, or the title of a movie,
while 20% were “entity attribute queries”, such as “termi-
nator cast”. Approximately 2% of the queries contained
more than one entity such as “angelina jolie tombraider”,
while less than 2% of the queries contained a complex query
structure involving aggregate functions such as “highest box
office revenue”.

5.3 Evaluating Result Quality

The result quality of a search system is measured by its
ability to satisfy a user’s information need. This metric
is subjective due to diversity of user intent and cannot be
evaluated against a single hand-crafted gold standard. We
conducted a result relevance study using a real-world search
query log as described in the following subsection, against
the Internet Movie Database. We asked 20 users to com-
pare the results returned by each search algorithm, for 25
different search queries, rating each result between 1 (result
is correct and relevant) and 0 (result is wrong or irrelevant).

For our experiments, we created a survey using 25 of the
28 queries from the movie querylog benchmark. The work-
load generated using the query log is first issued on each
of the competing algorithms and their results are collected.
For our algorithms mentioned in Sec. 4, we implement a pro-
totype in Java, using the imdb.com database (converted us-
ing IMDbPy(http://indbpy.sf.net) to 15 tables, 34M tuples)
and the base query log as our derivation data. To avoid
the influence of a presentation format on our results, all
information was converted by hand into a paragraph in a
simplified natural English language with short phrases. To
remove bias, the phrases were collated from two indepen-
dent sources. 20 users were then sourced using the Amazon
Mechanical Turk (http://mturk.com) service, all being moder-
ate to advanced users of search engines, with moderate to
high interest in movies. Users were then primed with a sam-
ple “information need” and “query” combination : need to
find out more about julio iglesias being the need, and “julio
iglesias” being the search query term. Users were then pre-
sented with a set of possible answers from a search engine,
and were asked to rate the answers presented with one of
the options listed in Table 2.

Users were then asked to repeat this task for the 25 search
queries mentioned above. The table also shows the score we
internally assigned for each option. If the answer is incorrect
or uninformative it obviously should be scored 0. If it is
the correct answer, it obviously should be scored 1. Where



score | rating

provides incorrect information

provides no information above the query
provides correct, but incomplete information
.5|provides correct, but excessive information
1.0|provides correct information

[en]

[en]

o

ot

Table 2: Survey Options

an answer is partially correct(incomplete or excessive), we
should give it a score between 0 and 1 depending on how
correct it is. An average value for this is 0.5.

To provide an objective example of a qunit-based system,
we utilize the structure and layout of the imdb.com website as
an expert-determined qunit set. Each page on the website
is considered a unique qunit instance, identified by a unique
URL format. A list of the qunits is generated by performing
a breadth-first crawl starting at the homepage, of 100,000
pages of the website and clustering the different types of
URLs. Qunit definitions were then created by hand based
on each type of URL, and queried against the test workload.
Users were observed to be in agreement with each other,
with a third of the questions having an 80% or higher of
majority for the winning answer.

We now compare the performance of currently available
approaches against the qunits described in the derivation
section, using a prototype based on ideas from Sec. 3. To
do this, we first ran all the queries on the BANKS[3] on-
line demonstration. A crawl of the imdb.com website was
converted to XML to retrieve the LCA(Lowest Common An-
cestor) and MLCA [20] (Meaningful Lowest Common Ances-
tor). The MLCA operator is unique in that it ensures that
the LCA derived is unique to the combination of queried
nodes that connect to it, improving result relevance. In ad-
dition to these algorithms, we also include a data point for
the theoretical maximum performance in keyword search,
where the user rates every search result from that algorithm
as a perfect match.

Results are presented in Fig. 3 by considering the average
relevance score for each algorithm across the query work-
load. As we can see, we are still quite far away from reaching
the theoretical maximum for result quality. Yet, qunit-based
querying clearly outperforms existing methods.

6. RELATED WORK

We acknowledge various bodies of relevant prior work in
this section.

Previous efforts towards solving keyword search for databases

have concentrated predominantly on ranking. Initial work
such as BANKS [3, 18] and DBXplorer [1] use inverted
indices on databases to return tuple joins in the form of
spanning trees of matched query words and discuss efficient
methods of deriving such trees. In the case of XML, one
strategy is to identify the smallest element that contains
some or all keywords [10], or to identify the smallest ele-
ment that is meaningful [20]. Later work [2] in this area
concentrates further on the ranking aspects of the problem,
using a metric of authority transfer on a data graph to im-
prove result quality. While these methods provide solutions
towards the improvement of ranked results, the composition
of the results themselves is not explored.

Work by Koutrika, Simitsis and Ionnadis on Précis|28]
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Figure 3: Comparing Result Quality against Tra-
ditional Methods “Human” indicates hand-
generated qunits.

receives special mention in this context. Précis responses to
keyword queries are natural language compositions of “infor-
mation directly related to the query selections” along with
“information implicitly related to them in various ways”.
Results are not intended to be complete, and instead con-
centrate on being “comprehensive”; akin to the idea of pro-
viding users with most probable next browse-points in a
browsable database. Their contributions include a rich data
model to express facts for the sake of representation, and
semi-automated methods to infer these structures by way of
annotating a schema graph with weights, providing detailed
analysis on execution time and satisfaction of the user. We
embrace and extend some of the methods involved, as de-
scribed in Sec. 3.

A major challenge for Précis, and other keyword query
systems for databases, is that new database-specific rank-
ing algorithms have to be invented. These are often very
complex, and yet tend not to have the quality of ranking
algorithms in IR, where they have been studied much more
intensively and for much longer. With the qunits proposal,
our primary goal is to satisfy the users immediate infor-
mation need. We address this problem by separating the
problem of qunit identification from the problem of query
evaluation and ranking. Our aim is to answer the user’s
query intent with an atomic unit of information, and not
to guide the user to the relevant sections in the database.
Unlike Precis results, qunits results are independent of data
models. The qunits paradigm first partitions the database
into actual pieces of information called qunits, making it
amenable to standard IR techniques.

Our solution to this problem can be considered a method
to organize information such that it is more amenable to a
user’s information needs. Work has been done in organiz-
ing information along individual perspectives using faceted
search. Each “facet” is a distinct attribute that users can
use to search and browse records. [6, 12] talk about design
considerations for building faceted search systems. [31] ap-
proaches the faceted search problem by picking hierarchies
based on user search patterns. [27] surveys many techniques
of dynamic taxonomies and combines them. However, it
is clear that faceted search is ideal for homogeneous data
with multiple attribute constraints, and not a database with
many different kinds of information in it.

Work has been done in building search mechanisms aware
of the application logic layer above the database. [5] utilize



the architecture patterns in application logic to better index
dynamic web applications. [9] approaches this problem by
exploiting exposed web service interfaces to provide a unified
concept-search interface.

Applications of database-backed query answering are slowly
appearing in mainstream search engines. These services
have been sucessful at implementing template-based search,
where a keyword query is identified and rerouted as a stuc-
tured query to a database, answering questions such as “what
is the population of china”. With qunits, we propose to
take this idea front and center, and make this the central
paradigm for all search.

Managing complex databases have also been studied in
the context of schema summarization [33], using charac-
teristics of the schema. The schema clusters can then be
queried upon [34] with low overhead. However, summariz-
ing a schema does not take into account the nature of the
query workload or the multiple ways to organize data. A
related body of research in view selection [11, 24] attempts
to select a set of views in the database that minimizes query
execution time of a workload given resource costs, but does
not consider the utility of the information provided by each
view.

The broader concept of making databases more accessi-
ble using a presentation data model has been discussed by
Jagadish et al. [14]. Work on exposing the database query
interface using automatically generated forms has been dis-
cussed in [16, 17], while [25] uses autocompletion to provide
the user with database-specific information. However, both
methods do not consider the option of using clues from out-
side the database to improve the query process.

7. CONCLUSION

Keyword queries against structured data is a recognized
hard problem. Many researchers in both the database and
information retrieval communities have attacked this prob-
lem, and made considerable progress. Nonetheless, the in-
compatibility of two paradigms has remained: IR techniques
are not designed to deal with structured inter-linked data,
and database techniques are not designed to produce re-
sults for queries that are under-specified and vague. This
paper has elegantly bridged this gap through the concept of
a qunit.

Additionally, this paradigm allows both techiniques to co-
exist under the same ranking model. Search engines have
started to provide interesting ways [8, 32] to simultane-
ously search over a heterogenous collection of documents
and structured data, with interesting implications for search
relevance and ranking. Qunits provide a clean approach to
solving this problem.

For the keyword query front end, the structured database
is nothing more than a collection of independent qunits; so
standard information retrieval techniques can be applied to
choose the appropriate qunits, rank them, and return them
to the user. For the structured database backend, each qunit
is nothing more than a view definition, with specific instance
tuples in the view being computed on demand; there is no
issue of underspecified or vague queries.

In this paper, we presented multiple techniques to derive
the qunits for a structured database and determine their
utility for various query types; we presented an algorithm to
evaluate keyword queries against such a database of qunits,
based on typifying the query; we experimentally evaluated

these algorithms, and showed that users find qunit-based
query results substantially superior to results from the best
keyword-based database query systems available today.

We believe that the concept of a qunit is powerful, and
that this is merely a first paper introducing this idea. In
future work, we expect to be able to substantially improve
upon the qunit finding and utility assignment algorithms
presented above; we expect to deal with qunit evolution over
time as user interests mutate during the life of a database
system; we expect to extend qunit notions to databases with
substantial mixed text content and to use IR techniques
to query the text content in conjunction with the database
structure.
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