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ABSTRACT

Many enterprise environments have databases running amoret
attached server-storage infrastructure (referred tStasage Area
Networksor SANS. Both the database and the SAN are complex
systems that need their own separate administrative tediis
paper puts forth the vision of an innovative management éram
work to simplify administrative tasks that require an irptieun-
derstanding of both the database and the SAN. As a concrete in
stance, we consider the task of diagnosing the slowdownrfope
mance of a database query that is executed multiple timgs fe.

a periodic report-generation setting). This task is vergliemging
because the space of possible causes includes problenificsfoec
the database, problems specific to the SAN, and problemattisat
due to interactions between the two systems. In additi@rtbn-
itoring data available from these systems can be noisy.

We describe the design ofiBbs which is an integrated diagno-
sis tool for database and SAN administratorsals generates and
uses a powerful abstraction call@snotated Plan Graphs (APGs)
that ties together the execution path of queries in the dathand
the SAN. Using an innovative workflow that combines domain-
specific knowledge with machine-learning techniquesyi¥ was
applied successfully to diagnose query slowdowns causeo oy
plex combinations of events across a PostgreSQL databasa an
production SAN.

1. INTRODUCTION

Database deployments in enterprise environments areatjypic
business critical and support high transaction rates. ddegloy-
ments run on enterprise-class storage subsystems withytera
scale data mapped to the database either through a file system
ferred to asSystem Managed Storgger raw volumes (referred
to asDatabase Managed StorageTraditionally, storage was at-
tached directly to high-end database servers to meet thpadaity,
throughput, and bandwidth requirements. However, ecooogii
alities of high administration costs for islands of discected re-
sources, combined with under-utilization of staticallpyasioned
server and storage hardware, have transformed the dittecthad
architectures into a network-attached setup with multagelica-
tion servers (including databases) connected to a cordeticand
virtualized storage pool; an architecture known populagyStor-
age Area Network (SAN)

SANSs are very complex systems. A typical SAN has a hierarchy
of core andedgefibre-channel switches withoningconfiguration
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that controls the connectivity of server ports with one orenloet-
erogeneous storage controllers. The storage controllarsaage a
large number of raw disks by aggregating them into logictities
like pools and volumes. Given this complexity, databaseiaidm
trators are forced to treat the SAN as a black-box, entrgsSiAN
administrators to configure the required CPU, network, dothge
resources for meeting their database’s performance emeints.

Such asilo-basedapproach for database and SAN management
is the state-of-art today. In a typical real-world scenadatabase
administrators open problem tickets for the SAN admintsiréo
analyze and fix issues related to query slowdowf3ueries to
the RepDB database used for report generation have a 30% slow
down in response time, compared to performance two weeks bac
Unless there is an obvious failure or degradation in theagtr
hardware or the connectivity fabric, the SAN administratae-
sponse to this problem ticket could b&he I/O rate for RepDB
tablespace volumes has increased 40%, with increased sggjue
reads, but the response time is within normal bound@#i's “blame
game” may continue for several weeks before the problemtis ac
ally fixed. In reality, the query slowdown problem could beadu
to any number of causes including suboptimal plan seledtipn
the database due to incorrect cost models, lock contentiothé
database tables, CPU saturation of a database serverstionga
the controller ports, and others. The lack of consistentterehnd
information may lead to eithehrowing iron at the problenand
creating islands of underutilized resources, or employiighly
paid consultants who understand both databases and SAbls¢o s
the original problem tickets.

Our vision in this paper is an integrated database and SAN man
agement framework. This framework combines details of both
database operations as well as SAN configuration and peafozen
into a novel data structure referred to asfemotated Plan Graph
(APG) The framework uses a combination of machine learning al-
gorithms and domain knowledge to help administrators wék k
day-to-day tasks such as optimized allocation of SAN ressifor
varying database workload characteristics, diagnosisatditthse
performance slowdowns, and what-if analysis related tckivad
or configuration changes. As a concrete instance of ourw,shos
paper focuses on integrated diagnosis of query performsioge
down in databases running over SANSs.

1.1 Challenges in Integrated Diagnosis

Enterprise environments are constantly evolving with ¢feen
in the SAN configuration, the mix of database queries, as all
the workload characteristics of other applications statite SAN.
In such an environment, the key challenges for diagnosisaare
follows:

e Cascading of eventsAnalyzing the impact of an event across
multiple layers of a system is a nontrivial problem. The @aus
and effect of a problem may not be contained within a single
layer, but manifested across multiple layers (typicalfigred
to asevent floodinp

e Inaccuracies in monitoring dataMonitoring in production en-



vironments is configured to minimize the impact on the fore-
ground applications. Typically, the monitoring intervalse
large (5 minutes or higher), which may lead to inaccuracies
(referred to asioisydata) because the instantaneous effects of
spikes and other bursty behavior can get averaged out.

High dimensional search space with complex correlatiohis
integrated analysis involves a large humber of entitiefuihc
ing database operators, physical SAN devices, logicalmehi
and pools in a SAN, and workload. Pure machine learning
techniques that aim to find correlations or regression fonst

in the raw monitoring data, which otherwise may have been
effective within a single layer, can be ineffective in théein
grated scenario. Existing diagnosis tools for some comialerc
databases [9] use a rule-based approach where a root-eause t

onomy is created and then complemented with rules to map ob-

served symptoms to possible root causes. While this approac
has the merit of encoding valuable domain knowledge for di-

However, most of these techniques perform diagnosis in@ated
manner attempting to identify root cause(s) of a perfornagmob-
lem in individual database or storage silos. Since the padoce
problem may lie in any one or a combination of database (DB) an
SAN layers, an integrated system likeADs would be a useful
and more efficient approach.

Recent studies that have looked at the interdependence®etw
database and storage systems highlight the importancecbfasu
integrated analysis. Reference [18] described how an urate
storage cost model in the database query optimizer carfisimily
impact the choice of query execution plans. Reference [t p
posed an end-to-end database and storage planning teehmyqu
characterizing the storage 1/0 workload of a given datalas-
load using an independent combination of database andgstora
analysis. While sharing the same spirit, our work brings aimu
tighter coupling of database-level and storage-levelrinftion as
well as capturing their interdependence using a novel Aatedt

agnosis purposes, it may become complex to maintain and cus-P!an Graph abstraction described in Section 3.

tomize.

1.2 Contributions

Our vision is to leverage the existing monitoring tools féxN\g&

DiADs can be a good complement to fine-grained database diag-
nosis and tuning tools like Oracle’s Automatic Databasebistic
Monitor (ADDM) [9]. ADDM is a database profiling and diagnssi
tool that uses expert knowledge about the database tofgpnb-

and databases to develop an integrated database and SAN marlems as well to recommend possible fixes to the problems. rRefe

agement platform. This platform will simplify the subset ad-
ministrative tasks that require an understanding of botalses
and SANs, e.g., problem diagnosis, resource provisiomitat-if
analysis, and disaster recovery planning. As a concretarine
of the integrated functionality, the paper describes owtqiype
of an integrated diagnosis tool (referred to amDs) that spans
the database and the underlying SAN that consists of emafdo-
1/0 paths with servers, interconnecting network switched fab-
ric, and storage controllers. Figure 1 shows an integrasedidhse
and SAN taxonomy with various logical (e.g., sort and scaerop
ators) and physical components (e.g., server, switch, tordge
subsystem).

To the best of our knowledge, IBDS is the first diagnosis tool
that analyzes both SAN and database events in an integasbe f
ion. The key contributions of this paper are:

e A novel canonical representation of database query opesti
combined with physical and logical entities from the SAN en-
vironment (referred to adnnotated Plan Graphs This repre-
sentation captures the information required for end-td-éi
agnosis, and is created using monitoring data from availabl
database and SAN tools.

An innovative diagnosis workflow thatrills downprogressively
from the level of the query to database plans and to opetators
and then uses configuration dependency analysisamgtom
signaturego further drill down to the level of performance met-
rics and events in components. It thells up using impact
analysis to tie potential root causes back to their impadhen
query slowdown. The diagnosis is accomplished using a com-
bination of machine learning and domain knowledge

An empirical evaluation of IADS on a real-world testbed with

a PostgreSQL database running on an enterprise-clasgatora
controller. We describe (and demonstrate) problem inpecti
scenarios including combinations of events at the datahade
SAN layers, along with a drill-down into intermediate imet
results generated byIBDS.

RELATED WORK

There has been much prior research for performance diagnosi
in databases [9, 14] as well as enterprise storage systéns 9l

2.

ence [5] describes a server-side monitoring and analystesyfor
Microsoft SQL Server that is useful during manual diagno§iar
work complements this research by providing a non-intrisind
low-overhead mode of analysis that uses historic perfonaaata

to diagnosehangesn query performance. We discuss this synergy
further in Section 7.

There has also been significant work in diagnosing perfooman
problems within the systems research community [21, 13)aBly,
these techniques can be split into two categories: (a)sygstsing
machine learning techniques, and (b) systems using domainlk
edge. Reference [21, 4] uses statistical techniques tdafewsod-
els for a healthy machine, and uses the models to idesitfyma-
chines. On the other hand, systems like [22, 13, 15, 6] useadom
knowledge to create aymptomslatabase that associates perfor-
mance symptoms with underlying root causes. Such databsses
often created manually and require a high level of expemise
resources to maintain.

We believe that for a diagnosis tool to be practically usefuhix
of machine learning and domain knowledge will be requireakeP
machine learning techniques can be misled due to spuricuslao
tions in data resulting from noisy data collection or eveabfling
(where a problem in one component causes another companent t
be impacted). In DaDS, we counterbalance this effect using suit-
able domain knowledge like component dependencies, syngto
databases, and knowledge of query plan and operator methijos.

Next, we describe Annotated Plan Graphs that capture dsgaba
and storage component behavior in a single integratedaaibistn.

3. ANNOTATED PLAN GRAPHS

Suppose a query) that a report-generation application issues
periodically to the database system shows a slowdown iroperf
mance. The root cause of this slowdown may lie in the database
layer (execution plan becoming suboptimal due to changestia
properties) or the SAN layer (increased congestion in tbeage
pool) or often a combination of the two. Diagnosing such &pro
lem requires the ability to understand the behavior of ndy time
database and storage layers during the execution of the,duer
also the interaction between the two layers.

The Annotated Plan Graph (APG) abstraction provides thés pr
cise ability. Ata high level, an APG captures a comprehensivd-
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Figure 1: Annotated Plan Graph

to-end mapping of the logical database operators of theycqulan
to the physical disk details where the actual data resichebeaery-
thing in between. Figure 1 shows an example of an APG instance
for Query 2 from TPC-H. In the database layer, APG includes th
query plan consisting of 25 operators, denatddO-5, with 9 leaf
operators. Below the database layer, APG also includesAiié S
configuration and correlations including servers, storagevork
fabric, storage poolsH;, P-) and storage volumed/q, V2) con-
taining the database tables.

We describe the complete process of APG construction in Sec-
tion 3.1. As a quick summary, an APG contains the followini
of information. At the database level, an APG includes:

e Query-level data:For each execution of plaf?, DIADS col-

lects some low-overhead monitoring data per oper&lore
P. The relevant data include€)'s start time, stop time, and
record-countg(estimated and actual number of record<Jis
output in the plan).

e Database-level datancludes common metrics like the number
of buffer cache hits, full-table scans, random 1/Os, andks$oc
held.

The data collected at the SAN level includes: (i) configunmati
of components (both physical and logical), (ii) connetyidmong
components, (iii) changes in configuration and connegtivifor-
mation over time, (iv) performance metrics from compongt3
events generated by the system (e.g., disk failure, RAIDildp
and (vi) events generated by user-defitieggers (e.g., degrada-
tion in volume performance, high workload on storage sutesyk

It is important to note that the APG abstraction is first of acki
in this area. Several product offerings (e.g., [11, 12])lia tmar-
ket today, while collecting monitoring data from IT systerosly
contain silo-based database or SAN information. Theseyatod
offerings cannot trace the flow of requests across multiphesgs-
tems either because such tracing is impossible (e.g., ieystems
are from multiple vendors) or itis impractical (e.g., thadoplaced
on the production system is high). Thus, no current tool jgles
a convenient abstraction that captures query behavioréamkess
way across the database and the SAN. Using low-overheard mon
toring of historic performance data, an APG fulfills this dee

Some of the novel features of APGs are:

e APGs are generated from light-weight monitoring data tkat i
readily available in most production environments.

APGs are views on the monitoring data that combine what DBAs
see—e.g., data on query plans—with what SAN administrators
see—data from the numerous SAN components and their inter-
connections. More importantly, APGs show each administrat
what she typically does not get to see. However, APGs are
much more than a juxtaposition of these two pieces of data; as
discussed next.

APGs capture the dependency paths of their constituent com-
ponents. For example, the dependency path of an ope&paior

the set of physical (e.g., CPU, database cache, disk) amd log
cal (e.g., volume, workload) system components whose perfo
mance can impaced’s performance. There aianer andouter
dependency paths. The performance of componentssrin-

ner dependency path can affégs performance directlyO’s

outer dependency path consists of components that affisct
performance indirectly by affecting the performance of pom
nents on the inner dependency path. As an example, the inner
dependency path for the Index Scan oper&lgs in Figure 1
includes the server, HBA, FCSwitches, storage subsysteoi, P
P, VolumeVz, and Diskss-10. The outer dependency path in-
cludes Volumes/s andV, (because of the shared disks) and
other database queries. Section 4 discusses how these depen
dency paths can bgrunedusing correlation analysis.

e Each component in an APGasnotatedvith appropriate mon-
itoring data collected during the plan’s execution. Forapgke,
the annotation of an operat@ consists of the performance
data collected by DxDs for each component’ in O’s depen-
dency path; this data is collected in thg, t.] time interval
wheret, andt. are respectivelD’s (absolute) start and stop
times for that execution.

3.1 Construction of APGs

Constructing an APG involves a number of steps including-gat
ering configuration and performance of SAN and the databaise ¢



ponents. In this section, we describe howaDs collects and cor-
relates this data starting with the SAN component of the APG.

3.1.1 SAN Layer Data

Configuration Data: Enterprise SANs are based on a shared stor-
age model with multiple servers (DB servers, file servers,)et
accessing the same backend storage. The storage medisg) (disk
are contained within storage subsystems, also referred stoa-
age controllers, which provide specialized functiondliitg RAID,
copy services, and storage virtualization. The servers@maected
to these storage subsystems through a hierarchy of switituedly
as part of a Fibre Channel (FC) network fabric (Figure 1). lEac
server has one or more Host Bus Adapters (HBAS) with one or
more FC ports each. These ports are connected to multipte lay
ers of SAN switches which are then connected to ports ongtora
subsystems.

Within a subsystem, storage is abstracted through logicedge

poolswhich are carved into storag®lumeghat are then made ac- with record-count data of P's operators

cessible to desired servers. Data contained within thelsenes is
physically placed onto the disks that comprise the logical pand
may be striped across these disks depending upon the chédbn R
configuration. Additionally, two important configuratioettings
dictate the accessibility of data to serversZ@ningdictates which
storage subsystem ports can be accessed by any given sawer,
(ii) Logical Unit Number (LUN) mapping/maskingpnfiguration
defines the storage volumes on the storage subsystem thaecan
accessed by a particular host. Referring to the examplegarEil,
the database instance is installed on a Redhat Linux Seover c
nected to a Fibre Channel Switch, and uses storage from an IBM
DS6000 Storage controllef)23 operates on data residing in Vol-
umeV 2 which is part of the storage po#2 (illustrated by a dotted
line in the figure).

To manage these complex interconnected and interdepecol@nt
ponents, administrators often use storage managemerst likel
IBM TPC [12] or EMC Control Center [10]. These tools collect
the entire configuration information from the SAN and stdrerh
in a centralized database. In recent years, both the conmauni
tion with SAN devices as well as the schema for the configomati
database are available as open standards, e.g., SNIA SRD]S [
for device configuration collection and Aperi [2] for the diura-
tion database. For our implementation ofaDs we use the IBM
TPC database to extract SAN configuration information whgch
then correlated with the database layer information to ransthe
APG as shown in Figure 1.

Performance Data Standards like SMI-S also include performance
data for various logical and physical components (e.g.vessr
HBAs, storage pools, and storage volumes). This perforemdata

is critical for DIADS analysis. For instance, performance attributes
monitored from a server and its HBA incluéercentage CPU Us-
age, Free Memory, Cache Hit Rate, Process Start Time, Psoces
End Time CPU, Percentage Utilization by process, Memory-Con
sumed by Process, 10 Count, IO per second, HBA FC Port Statis-
tics. For storage components,IADs uses attributes likdBytes
Read, Bytes Written, Sequential Read Hits, Sequential Read
quests, Sequential Write Requests, Total I®sanomalous value
for any of these attributes during a query slowdown is a aiatei

for additional evaluation in DxDS. This performance data is used
as annotations in the APG for each respective component.

3.1.2 Database Layer Data and Correlation with

SAN Data

In the database layer, an APG includes the query plan informa
tion, including data from all the operators in the plan. Tdéda is

Module CR: Correlate P's slowdown

Admin identifies instances of a query Q when it ran fine and when it did not Qu?ry
Maodule PD: Look for changes in the plan used to execute Q when its
performance was satisfactory V/s. when performance was unsatisfactory

1

Plans
P
Plan-change analysis to pinpoint the cause |
of plan changes (ex: index dropping, change in datq ;
properties, change in configuration parameters, etc.)

If plans are
different

Same plan P involved i
good and had performange

LI
Module CO: Correlate P's sIowFown with the running-time data of P's operators Opgrf‘itors

Module DA: Generate dependency paths for correlated operators from Module CO. Corr:pdnents
Prune the paths by correlating operator running times with component performance P

Extract more symptoms "
Q as needed by the database Eye?ts
L, Module SD: Match symptoms from Modules CR, CO, and 1
. ) - ) Symptoms
DA with symptoms databaseFind causes with high confidence scores o
Module A: For each high-confidence cause identified, find ny]
how much of plan P's slowdown can be explained by it Impact

Figure 2: DIADS’s diagnosis workflow

easily available in most DBMSs. (We used PostgreSQL in odr im
plementation of the DADS prototype.) Each operator is annotated
with the performance data of components in its dependentyspa

The dependencies between operators and SAN components are
obtained in the following manner. It begins with the parsifighe
database configuration file that defines the mapping of trebdae
tablespaces to the storage volumes in the SAN. There arergvo p
dominant configurations for associating physical storage ta-
blespace defined by the database: (a) System Managed Storage
(SMS), where the tablespace is mapped to a file system created
on a SAN volume; (b) Database Managed Storage (DMS), where
the tablespace is created on a raw physical SAN volume withesp
allocation and associated book-keeping managed diregtlihé
database. Operatof¥ to O25 in Figure 1 are related either directly
or indirectly to operations on tables, which belong to tapees.
Thus, given an operat@, it is possible to maj to the SAN vol-
umes thatO depends on. Combining this mapping with the SAN
configuration data, we can obtain the inner and outer depeyde
paths for all plan operators.

4. DESIGN OF DIADS

When the administrator identifies a quefyas having experi-
enced a slowdown, DS invokes thediagnosis workflovshown
in Figure 2. This workflow “drills down” progressively fronhé
level of the query to plans and to operators, and then fudbem
to the level of performance metrics and events in componédtits
nally, an impact analysis is done that “rolls up” to tie pdtairoot
causes back to their impact @gis slowdown. As we will show in
this section, the workflow applies a combination of statatma-
chine learning and domain knowledge to the APGs collected fo
Q. This novel combination provides built-in checks and beémn
to deal with the challenges listed in Section 1.

4.1 Modules in the Diagnosis Workflow
The administrator first specifies declaratively or mark&ciily



the runs of the query that wemmtisfactoryand those that were
unsatisfactory For example, runs with running time below 100
seconds may be satisfactory, or all runs from 8 AM to 2 PM were
satisfactory, and those from 2 PM to 3 PM were unsatisfactory

Module Plan Diffing (PD): The first module in the workflow
looks for significant changes between the plans used irfactisy
and unsatisfactory runs. If such changes exist—e.g.l.ADB finds
that planP; was used in satisfactory runs and a different pfan
was used in unsatisfactory runs—themDs tries to pinpoint the
cause of the plan changes (which includes, e.g., indexiaddir
dropping, changes in data properties, or changes in coafigar
parameters used during plan selection). Our current implega:
tion considers each schema or configuration change thatreccu
between the runs of; and P, and checks whether this change
could have caused the plan change. The remaining modulés in t
workflow are invoked if DADS finds a planP that is involved in
both satisfactory and unsatisfactory runs of the query.

Module Correlated Operators (CO): The objective of this mod-
ule is to find the subset of operators, called therelated operator
set (COS)whose change in performance best explains &
slowdown. COS is identified by analyzing data from satisfact
and unsatisfactory runs d? which can be seen as records with at-
tributesL, t(P), t(01),t(02),...,t(Ox) for each run ofP. (Re-
call the annotations maintained for APGs in Section 3.) Hate
tribute ¢(P) is the total time for one complete run &f, and at-
tribute ¢(0;) is the running time of operatap; € P for that run.
Attribute L is alabel representing whether the corresponding run
of P was satisfactory or not.

DiaDs feeds this data tiernel Density Estimation (KDEyhich
is a statistical method to estimate the probability derfsitytion of
arandom variable. KDE applies an estimator to the data ta kbe
probability density functiory; (.S;) of the random variablé; rep-
resenting the running time of operaté%; when P’s performance
is satisfactory. Let, be an observation ad;’s running time when
P’s performance was unsatisfactory. Consider the prokglabti-
mateprob(S; < u) = [*_ fi(Si)dsi. Intuitively, asu becomes
higher than the typical range of values 8f, prob(S; < u) be-
comes closer to 1. Thus, a high valuepobb(S; < u) represents
a significant increase i@;’s running time when plan performance
was unsatisfactory; if saQ; belongs to COSprob(S; < ) is
called theanomaly scoref operatorO,;.

Module Dependency Analysis (DA)This module identifies the
subset of system components, called ¢beelated component set
(CCS) such that each component in CCS: (i) is in the dependency
path of at least one operat@r € COS, and (ii) has at least one
performance metric that is significantly correlated witfs run-
ning time. The fact that a componefitis in the dependency path
of an operatolO € COS (Property (i) above) does not necessarily
mean thatD’s performance has been affected@is performance.
Hence, DADS checks additionally for Property (i) which is imple-
mented as correlation analysis using KDE.

Module Correlated Record-counts (CR):In this module, D-
ADS checks whether the change in performance of operators in
COS correlates with their record-counts. Significant datiens
mean that data properties have changed between satigfactdr
unsatisfactory runs aP. Once again, correlation analysis is imple-
mented using KDE to find theorrelated record-count set CRS
COos.

Module Symptoms Database (SD)COS, CCS, and CRS along
with other observed SAN and database events may onbybe-
tomsof the true root cause dP’s slowdown. Module SD seeks to
map the observed symptoms to the actual root caused Hgener-
ates this mapping usingsymptoms databasehose main purpose

is to streamline the use of domain knowledge to (i) createeracr
curate results by dealing with event propagation, and énegate
semantically meaningful results (e.g., reporting lockteotion as
a cause instead of reporting some performance metrics.obly)
ADS's implementation of the symptoms database is motivatedhby a
intuitive and commercially-used format called t6edebook The
original format assumes a finite set of symptoms such thét eac
distinct root causer has a unigueignaturein this set. However,
DIADS needs to consider complex symptoms such as symptoms
with temporal properties (e.g., contention occurred kefailure).

DIADS’s symptoms database is a collection of root cause entries
each of which has the form&tond & Cona: & ... & Cond,, for
somez > 0 which can differ across entries. EaClond is a condi-
tion of the form3symp (denoting presence sfymg) or -3symp
(denoting absence afymp). Symptomsymp is represented in
a high-level language used to express complex symptomsaover
base set of symptoms [1]. Ea€lond is associated with a weight
w; such the sum of the weights for each individual root causeent
is 100%. From the symptoms observed currentlyals calcu-
lates aconfidence scoréor each root causé as the sum of the
weights of R’s conditions that evaluate to true. We further divide
the confidence score into three categories: (i) high (scog®%),
(i) medium ®0% > score> 50%), and (iii) low (score< 50%).

Module Impact Analysis (IA): For each high-confidence root
causeR identified by Module SD, aimmpact scoreis calculated
as the percentage of the query slowdown (time) that can be con
tributed to R individually. When multiple problems coexist in the
system, impact scores can separate out high-impact carmsas f
the less significant ones. Also, they serve as a safeguardsaga
misdiagnoses resulting from spurious correlations duetsen

DIADS has multiple implementations of this module. One im-
plementation is an “inverse dependency analysis”. Fifsstarts
from a root causeR) and identifies all system components affected
by R, denotedcomp(R). The next step is to find the subset of op-
erators 6p(R)) whose performance is affected bymp(R). The
impact score is calculated as the percentage of extra rgriimre
of op(R) with respect to the extra plan running time; where extra
time is the difference between the average running timessaam-
satisfactory and satisfactory runs. Another implemeatatf 1A
leverages the plan cost models used by database query pgtami

5. EXPERIMENTAL EVALUATION

For the evaluation of DnDS, we considered query slowdowns
caused by problems within the database and SAN layers agwell
combinations of problems across both layers (a capabilitickvis
unique to DADS). Our experimental testbed is part of a produc-
tion SAN environment, with the interconnecting fabric atorage
controllers being shared by other applications. The tektoes
TPC-H queries on a PostgreSQL database server configured to a
cess tables using two Ext3 file system voluni@sand V» created
on an enterprise-class storage controller. Figure 1 shbessable
layout and the query plan that we will focus on.

Table 1 gives a high-level summary of our experimental secena
ios. DIADS successfully diagnosed the root cause in all these cases.
In this paper we will focus only on the first scenario; additib
analysis for all scenarios are covered in [3]. In the firshsecm®, a
contention is created in volunig (from Figure 1) causing a slow-
down in query performance. The root cause of the contengon i
another application workload that is configured in the SANge a
volume V'’ that gets mapped to the same physical diskg,ad-or
an accurate diagnosis resultjADs needs to pinpoint the combi-
nation of SAN configuration events generated on: (i) creatb
the new volume V’, and (i) creation of a hew zoning and mapgpin



Problem Description

Critical Role of DIADS Modules in Diagnosis

1. SAN misconfiguration leading to contention in voluiie

Identified symptoms pinpoint the correct volume;
SD maps symptoms to the correct root cause

former affecting query performance

2. Contention caused by external workloads on voluvieand V4; with only the

DA prunes out the unrelated symptoms and events
for volume V2

causing volume contention

3. SQL DML causes a subtle change in data properties; propltepagates to SAN

CR identifies the important symptoms; IA rules
out volume contention as a root cause

4. Concurrent DB (change in data properties) and SAN (mifsgoration) problems

Both problems identified; IA correctly ranks the

=

5. DB problem (locking-based) and spurious symptoms ofmaontention due tq

IA identifies volume contention as low impact

Table 2: Anomaly scores computed during dependency analysi
for performance metrics from Volumes Vi, V5

relationship of the server running the workload that aceeas.
Modules PD and CR: These two modules correctly identify (re-
spectively) that the plan and the data properties have raotged.
Module CO: Based on KDE, this module identifies the set of cor-
related operators a®2, Os, O4, Og, O7, Os, O17, O1s, O20,

noise
Table 1: Experimental settings of increasing complexity usd to evaluateDIADS
pvglum’- ( Anontwal)t/_ SC‘.’“;Z) (A”?m?w S.CO\r/‘;) analysis technique gave an impact score of 99.8% for the- high
ert. _e ne no contention in contention in confidence root cause found. This score is high becausedie sl
V\ilwvzzg_erzge 8'223 8'223 down is caused entirely by the contentionilin
Vo Wielo 0.063 0512 Next, we complicated the problem scenario to tesi®»’s ro-
V2 wiiteTime 5479 5879 bustness. Everything was kept the same except that we dreate

extra /O load on Volumé/’; in a bursty manner such that this ex-
tra load had little impact on the query beyond the origingbat
of V1’s contention. Without intrusive tracing, it would not bespo
sible to rule out the extra load oV as a potential cause of the
slowdown.

Interestingly, DADS's integrated approach is still able to give
the right answer. Compared to the previous scenario, thdite w
now be some extra symptoms due to higher anomaly scores for
V»'s performance metrics (as shown in the third column in Table

021 andO22 (each operator has an anomaly score greater than the2). However, root causes with contention-related symptiam®>

threshold of 0.8). This set correctly contains both the madra-
tors (Os andO22) connected to volum&;. The eight intermedi-
ate operators present in this set are ranked highly becdisent
propagation: the running times of these operators are teffely
the running times of the “upstream” operators (in this c@seand
0O32). Finally, operatoO;, is a false positive because it operates on
volumeVz, and is not affected by the contentionlin. (As we will
see shortly, this false positive caused by noise gets filtent.)
Module DA: This module computes anomaly scores for perfor-
mance metrics in both volumé3 andV> since these volumes fall
in the dependency paths of the correlated operators. Tabke-
ond column shows the anomaly scores for two representatate m
rics each froni; andVa. (Table 2’s third column is described later
in this section.) As expected, nonedf's metrics are identified as
correlated becausé has no contention; while those ©f are.
Module SD: The symptoms identified so far are: (a) high anomaly
scores for operators usifg, (b) high anomaly scores fof; 's per-
formance metrics, and (c) high anomaly score@ar(only one out

of 7 leaf operators usin@jz). These symptoms are strong evidence
thatV1’s performance is a cause of the query slowdown, Bid

performance is not. Thus, even when a symptoms database is no e

available, DADs correctly narrows down the search space an ad-
ministrator has to consider during diagnosis. An impactyeis
will further point out that the false positive symptom dueg has
little impact on the query slowdown.

will still have low confidence because most of the leaf opert
depending orlz will have low anomaly scores as before. Also,
impact scores will be low for these causes.

Unlike DIADS, a SAN-only diagnosis tool may spot higher 1/10
loads in bothV; and V;, and attribute both of these as potential
root causes. Even worse, the tool may give more importance to
V2 because most of the data is ®h. A database-only tool can
pinpoint the slowdown in the operators, but it would likelivey
several false positives like a suboptimal buffer pool settor a
suboptimal choice of execution plan.

Some observations from evaluatingADs on the broad range
of scenarios in Table 1 are:

e Compared to correlation analysis using advanced modeJs (e.
Bayesian networks [7]), KDE can produce accurate resutts wi
few tens of samples, and is more robust to noise in the data.

e DIADS can deal with (i) database-level problems whose symp-
toms propagate to the SAN, and vice versa; (ii) independent
and concurrent database-level and SAN-level problems; and
(iif) spurious and missing symptoms caused by noise.

DiaDs produces good results even when the symptoms database
is incomplete. While we expect that entries in the symptoms
database are reviewed carefully by administratorg,d3’s own
modules like correlation, dependency, and impact anabysis

be used to identify important symptoms automatically.

Module SD uses a symptoms database that was developed in-

house to diagnose query slowdownB;’'s contention due to the
SAN misconfiguration problem was given a high confidenceescor
because all required symptoms are found. (The symptombatda
had an entry for this root cause because this problem is @y c
mon in production settings.};'s contention due to a change in

6. SYSTEM OPERATION/USAGE

Figure 5 illustrates an examplelAbs deployment as well as the
data flow from the other systems thatADs communicates with.
This deployment, which we will use in our demonstration, sists

database workload got a medium confidence score because of a *

weak correlation between the performance of some coretlape
erators and the rest of the database workload. All othercaose
entries in the symptoms database got low confidence scores.

e Data-warehousing queries from the TPC-H benchmark running
on a PostgreSQL database server configured to access data on
an enterprise-class IBM storage controller.

Module IA: Impact analysis done using the inverse dependency e The IBM TotalStorage Productivity Center (TPC) [12] rungin
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Figure 3: DIADS query selection screen
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Figure 5: DIADS setup

on a separate machine recording configuration detaildsstat
tics, and events from the SAN as well as from PostgreSQL
(which was instrumented to report the data to the management
tool). Figure 4 shows the key performance metrics collected
from the database and SAN. The monitoring data is stored as
time-series data in a DB2 database.

e DIADS running on a separate server: Its graphical user interface
(GUI) supports APG-oriented display and browsing of data co
lected in the DB2 database. Recall that APGs are views on the
monitoring data that combine what DBAs see — e.g., data on
query plans —with what SAN administrators see — data from the
numerous SAN components and their interconnections. APG-
oriented visualization was implemented due to comments fro
administrators that to diagnose a reasonable fraction ab-pr
lems all they need to see is the APG diagram.

e DiADS's diagnosis workflow which is invoked on demand: Each
module in the workflow is implemented using a combination of
Matlab scripts (for KDE) and Java. IBDS uses a symptoms

database that was developed in-house to handle query slow-

downs.
e Afaultinjector* that can inject a variety of faults at the database

and SAN levels, including SAN misconfiguration, serverkdis
or volume contention, RAID rebuilds, changes in data proper

The fault injector module is used for test purposes and eatifin
of the correctness of thelBDS results. This module is not required
for production deployments.

ties, and table-locking problems.

DIADS diagnosis starts with the administrator identifying a quer
that has experienced a slowdown. The diagnosis workfloweis th
invoked. By default, the workflow is run intzatchmode where all
modules are executed one after the other, and only the figaltse
are displayed to the administrator. HowevenaDs supports an
interactivemode where results are displayed after the completion
of each module, and the administrator can edit these rasedtse
they are fed to the next module. In this mode, the adminiticn
also re-execute or bypass modules, as well as stop the ecut
if the desired result is obtained quickly. In the rest of teket®on,
we describe the interactive mode and provide explanationthe
presented screenshots.

DIADSs first screen (illustrated in Figure 3) provides a view of
the executed queries in the database. For each query exacati
corresponding row with the information regarding the exiruis
presented in the table. Following information is displayed

e Query: The actual query string, available as a tool-tip or as a
pop-up box when the cell is clicked.

Plan: Executed plan for the query. A visual representation is
showed as a tool-tip or pop-up box on cell click.

Start time: The time when the query began execution.
End time:The time when the query completed execution.

Duration: The number of minutes that the query needed to
complete execution.

Unsatisfactory check-boxThis check-box is used by the ad-
ministrator to mark the query executions that have unsatisf
tory performance. DADS also supports declarative rules for
specifying which query executions are unsatisfactory.,, @g
ery query execution that has a running time greater than 80 mi
utes is unsatisfactory.

The APG button below the table, navigates the administtattire
APG visualization screen (Figure 6), where the APG for thghhi
lighted query execution is displayed. On the left side of #ireen,
the APG structure is presented as a tree. Figure 6 shows the pa
from Figure 1, that starts from the Return operator, goesuttin

the Index Scan on Part table and then all the way to the didks. T
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Figure 6: DIADS APG visualization screen
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Figure 7: DIADS Interactive workflow execution screen

right side of the APG screen contains a table of time series pe
formance metrics for any component selected from the APG. As
each component of the APG has a different set of performance a
tributes, the displayed attributes in the table vary. Hawvethere

are two attributes that are displayed for all componenfsTi(he:
presenting the time in which the measurement in the correspo
ing row was taken, and (iilynsatisfactory check-boxpresenting
the performance categorization of the component. Thislchex

is populated based on the unsatisfactory check-box setecfithe
query executions in the previous screen. For example, guam
unsatisfactory query execution, all the measurementstdikeng

the execution are marked as unsatisfactory. However, timérest
trator can modify this labeling by selecting this check-mxnot.

As an example, Figure 6 shows the metrics that capture volume
V1's performance from 12:05pm till 1.30pm.

The Workflow button on the query selection screen invokes the
DiAaDs workflow execution screen (Figure 7). This screen guides
the administrator step by step through the tool workflow. HEac
module in DADS can be executed by clicking on the corresponding
button on the top of the screen. Only the first execution ofitioel-
ules should be in order, after that each module can be rasseac
as many times as needed and in any order.

The result panel on the screen shows the result of the last ex-
ecuted module. Figure 7 shows the state of the screen after in
vocation of the module Correlated Operators. As this saleen
presents the first invocation of the module, all modulesrafte

pendency analysis are disabled (i.e., they cannot be ec:oaixt).
When the last module is executed (Impact Analysis), thecaoses
identified by DADs for the corresponding query slowdown are
listed in the result panel.

7. THE POTENTIAL OF INTEGRATED
DATABASE AND SAN TOOLS

While integrated diagnosis using Abs solves an important prac-
tical problem, the proposed system and techniques haveoteap
tial to enable even broader functionality. In this section,present
few instances of these capabilities.

e What-if analysis. Often database and storage administrators
have to apply changes within their respective configuration
In typical enterprises, this either proceeds without rdgarim-
pact on the other layer or requires extensive collaboratien
tween the two teams. In contrast, using techniques dewélope
in our work, it is easy to conceive an integrated database and
SAN tool that allows administrators to proactively assédss t
impact of their planned changes on the other layer. In fhet, t
impact analysis component ofi/Bbs seems to be a promising
approach for developing such a feature. While it may not com-
pletely identify all possible problems, it will serve as duable
check which can then lead to quicker and more focused discus-
sions between the teams.

e Proactive diagnosis and self-healing: Another useful exten-



sion for DIADS is to provide proactive diagnosis and impor- tential problems to the actual symptoms to identify the aise
tantly, self-healing capability. The current symptomsathaise of the problem. We also described some experimental scenafi
design can be extended to include, along with symptoms, pos- DiIADS diagnosis for root cause problems occurring in database and
sible fixes for the root cause of the problem. Once the tool SAN layers.
identifies a root cause, it can then apply the fix to self-hieal t We contend that the integrated management framework and the
environment. It is important to note that as in real life, fhe APG abstraction presented in this paper enables a key dapabi
may be required within the database or storage or a combina- enterprise data center management. By providing visjtiitito the
tion of both layers. An integrated approach like ours will be SAN to database administrators and vice versa, it allowsrfarter
crucial in identifying the right fix and then applying it in yn resource planning and improved efficiencies in the dataecent
one layer.
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