
Flash Device Support for Database Management

Philippe Bonnet
IT University of Copenhagen

Rued Langaard Vej 7
Copenhagen, Denmark

phbo@itu.dk

Luc Bouganim
INRIA Paris-Rocquencourt & PRiSM/UVSQ

Domaine de Voluceau
Le Chesnay, France

Luc.Bouganim@inria.fr

ABSTRACT
While disks have offered a stable behavior for decades -
thus guaranteeing the timelessness of many database de-
sign decisions, flash devices keep on mutating. Their be-
havior varies across models and across firmware updates for
the same model. Many researchers have proposed to adapt
database algorithms for existing flash devices; others have
tried to capture the performance characteristics of flash de-
vices. However, today, we neither have a reference DBMS
design nor a performance model for flash devices: database
researchers are running after flash memory technology. In
this paper, we take the reverse approach and we define how
flash devices should support database management. We ad-
vocate that flash devices should provide DBMS with more
control over IO behavior without sacrificing correctness or
robustness. We introduce the notion of bimodal flash de-
vices that expose the full potential of the underlying flash
chips as long as the submitted IOs respect a few well-defined
constraints. We suggest two approaches for implementing
bimodal flash devices: (a) based on the narrow block de-
vice interface, or (b) based on a rich interface that allows
a DBMS to explicitly control IO behavior. We believe that
these approaches are natural evolutions of the current gen-
eration of flash devices, whose complexity and opacity is ill-
suited for database management. We discuss how bimodal
flash devices would benefit many existing techniques pro-
posed by the database research community, and identify a
set of new research issues.

1. INTRODUCTION
For some time now, flash devices have been poised to re-

place disks as secondary storage [12]. Today, many different
types of flash devices are finding their way into the memory
hierarchy of database management systems (DBMS), from
SSD to PCI-based racks (e.g., fusionIO and RamSan) and
energy efficient FAWNs [5]. However, despite significant ef-
forts [2, 9, 8, 17, 21, 29, 31, 20, 32], a reference design for

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.
5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

database management with flash devices has yet to emerge1.
Indeed, flash devices do not exhibit consistent character-

istics. They embed a complex software called Flash Trans-
lation Layer (FTL) in order to hide flash chip constraints
(erase-before-write, limited number of erase-write cycles, se-
quential page-writes within a flash block). A FTL provides
address translation, wear leveling and strives to hide the
impact of updates and random writes based on observed
update frequencies, access patterns, temporal locality, etc.
Their performance characteristics and energy profiles vary
across devices [9, 8]. For instance, random writes are faster
than reads on FusionIO’s ioDrive [7] while random writes
are much slower than the other operations on the Samsung
model [9]. For some devices, performance varies in time
based on the history of IOs, e.g., the performance of the
Intel X25-M varies by an order of magnitude depending on
whether the device is filled with random writes or not. What
is the value of a DBMS design based on a storage subsys-
tem whose behavior is not well understood and keeps on
mutating?
By contrast, successive generations of disks have complied

with two simple axioms: (1) locality in the logical address
space is preserved in the physical address space; (2) sequen-
tial access is much faster than random access. As long as
hard disks remained the sole medium for secondary storage,
the block device interface proved to be a very robust abstrac-
tion that allowed the operating system to hide the complex-
ity of IO management without sacrificing performance. The
block device interface is a simple memory abstraction based
on read and write primitives and a flat logical address space
(i.e., an array of sectors). Since the advent of Unix [30], the
stability of the interface and the stability of disks character-
istics have guaranteed the timelessness of major database
system design decisions, i.e., pages are the unit of IO with
an identical representation of data on-disk and in-memory;
random accesses are avoided (e.g., query processing algo-
rithms) while sequential accesses are favored (e.g., extent-
based allocation, clustering).
We must address the tension that exists between the de-

sign goals of flash devices and DBMS. Flash device design-
ers, especially SSD and PCI-based racks designers, aim at
hiding the constraints of flash chips to compete with hard
disks providers. They also compete with each other, tweak-
ing their FTL to improve overall performance, and masking
their design decision to protect their advantage. Database
systems, on the other hand, control the IOs they issue.

1We do not consider in this paper architectures providing
direct access to the flash chips, e.g., embedded flash [4]

1



What database systems designers need is a clear and sta-
ble distinction between efficient and inefficient IO patterns,
so that they can adapt their allocation strategies, data rep-
resentation or query processing algorithms to the character-
istics of the underlying storage devices. They might even be
able to trade increased complexity for improved performance
and stable behavior across devices.
So the problem is the following: How can flash devices

provide DBMS with guarantees over IO behavior? Inter-
estingly, flash chips already provide a clear, stable distinc-
tion between efficient patterns (page reads, sequential page-
writes within a block), and inefficient patterns (in-place up-
dates). Our key insight is that flash devices should expose
this distinction instead of aggressively mitigating the im-
pact of inefficient patterns at the expense of the efficient
ones (e.g., trading reduced read performance to obtain im-
proved random writes). In this paper, we introduce the
notion of bimodal flash device that expose this dichotomy to
the upper layers, thus providing efficient and predictable IO
behavior for database systems. In terms of design, we see
two approaches:

1. Narrow Interface Device: The most immediate ap-
proach is to keep the existing block device interface.
Since flash devices have no knowledge of the manipu-
lated data, we should (a) let the DBMS optimize its
accesses and, (b) avoid uncontrolled FTL optimiza-
tions. This approach is similar, in spirit, to the way
DBMSs interact with virtual memory [30]. Plagiariz-
ing Stonebraker, this consists in replacing a “not quite
right” service provided by the flash device with a com-
parable, application specific, service within the DBMS.
The key questions here are: What abstractions should
the FTL provide? How to handle the increased com-
plexity at the DBMS level?

2. Rich Interface Device An alternative approach would
be to rely on a rich interface to let DBMS and flash
device collaborate on how to optimize performances.
Indeed, there is an emerging consensus that the block
interface is too narrow [28, 22, 23, 25, 26]. Coping
with the block interface forces flash devices to perform
complex tasks (i.e., wear leveling, garbage collection)
independently from the application, possibly against
its best interest. The key questions here are: What
information should be passed from the DBMS to the
flash device so that it can optimize its performance2?
What kind of optimizations can be defined on flash
devices? How should we design DBMSs to leverage a
rich flash device interface?

We see Narrow and Rich bimodal devices as natural evo-
lutions of the current generation of flash devices whose com-
plexity and opacity is ill-suited for database management.
Such an evolution is particularly important for database ma-
chines designers (e.g., Oracle’s Exadata or Neteeza’s Twin-
Fin) that have to specify well-suited flash components for
their systems. More generally, we understand that SSD
manufacturers will only move if the gain is clear for their

2Note that we focus on IO performance; we do not consider
integrating high-level database abstractions within storage
devices, e.g., active disks [24]. Whether a rich interface nat-
urally leads to active disks is a topic for future work.

business. We see here an opportunity for the database com-
munity to influence the evolution of flash devices for the
benefits of commodity database systems.
In this paper, we define the guarantees that a FTL should

provide to a DBMS and derive the notion of bimodal flash
device, we outline the design of Narrow and Rich bimodal
flash devices and we explore how they will impact database
management. Throughout the paper, we illustrate how ideas
expressed in the literature would benefit from these new
classes of devices. We also describe new research challenges.

2. FLASH DEVICES
At their core, flash devices rely on NAND flash chips that

store data in independent arrays of memory cells. Each cell
accommodates 1, 2, or 3 bits of information (SLC, MLC,
TLC). Each array is a flash block, and rows of memory cells
are flash pages3.
The Good. A single flash chip can offer great perfor-

mance (e.g., 40 MB/s Reads, 10 MB/s write) with low en-
ergy consumption [8]. Thus, tens of flash chips wired in
parallel can deliver hundreds of thousands IOs per second.
At the chip level, random operations are as fast as sequen-
tial ones. Recent flash chips can interleave operations and
include multiple independent planes, thus processing oper-
ations concurrently [3]. A flash device is composed of a
collection of flash chips, wired in parallel to a controller.
The controller includes some cache (e.g. 16-32MB), poten-
tially safe with respect to power failure [3]—e.g., cache can
be RAM with capacitors or other NVM (eg. PCM). From
this perspective, the potential of flash device is impressive.
The Bad. Unfortunately, flash chips have severe con-

straints: (C1) Write granularity. Writes must be performed
at a page granularity4. (C2) Erase before write. A costly
erase operation must be performed before overwriting a flash
page. Even worse, erase operations are only performed at
the granularity of a flash block (typically 64 flash pages).
(C3) Sequential writes within a block. Writes must be per-
formed sequentially within a flash block in order to minimize
write errors resulting from the electrical side effects of writ-
ing a series of cells5. (C4) Limited lifetime. SLC, MLC and
TLC flash chips can support respectively up to 106, 105,
5×104 erase operations per flash block. The trend is that
flash chips store more bits per cell (e.g., TLC) with a smaller
process geometry (e.g., 25 nm), larger page size, larger num-
ber of page by blocks and smaller lifetime. None of these
evolutions challenge the nature of C1-C4.
And the FTL. The controller embeds the so-called Flash

Translation Layer (FTL) in order to hide the aforementioned
constraints. Typically, the FTL implements out-of-place up-
dates to handle C2 using some reserved flash blocks called log
blocks. Each update leaves, however, an obsolete flash page
(that contains the before image). Over time such obsolete
flash pages accumulate, and must be reclaimed by a garbage
collector. A mapping between the logical address space ex-
posed by the FTL and the physical flash space is necessary
3Flash pages may further be broken up into flash sub-pages
4While the write granularity is the page (4KB-8KB)
for MLC NAND (no sub-pages), the read one can be
smaller [31]. Actually, read granularity depends on the ECC
sector size (512B - 1KB).
5Electric side effects may generate write errors effectively
managed with error correction codes (ECC) at the hardware
level.

2



to handle writes smaller than a flash page (C1), updates
(C2), random writes (C3), and to support wear leveling tech-
niques (C4), which distribute erase operations across flash
blocks and mask bad blocks. This mapping is implemented
based on a mapping table located in the controller cache, on
flash or both [13]. Page mapping, with a mapping entry for
each flash page generates large maps that do not fit in the
controller cache for large capacity devices. Block mapping
reduces drastically the mapping table to one entry per flash
block [15]—the challenge is then to minimize the overhead
for finding a page within a block. Thus, block mapping does
not support random writes and updates efficiently. More re-
cently, many Hybrid mapping techniques [19, 18, 13, 15] have
been proposed that combine block mapping as a baseline and
page mapping for log blocks. Besides mapping, existing FTL
algorithms also differ on their wear leveling algorithms [10],
as well as their log blocks management and garbage collec-
tion methods (block associative [16], fully associative [19],
using detected patterns [18] or temporal locality [15]).

3. TUNNELING DBMS IO
Our overall problem is to resolve the tension that exists

between FTL and DBMS design goals. From the point of
view of a DBMS designer, the trivial solution is to take the
FTL out of the equation and let a DBMS directly access flash
chips. Obviously, the first step that DBMS designers would
take is to introduce modularity to hide the complexity of
dealing with flash chips, in effect re-introducing some form
of FTL. So, the interesting question is not how to bypass
the FTL, but what kind of FTL can DBMS designers rely
on?

3.1 Minimal FTL
To start with, let us define the minimal level of service

that a FTL should provide—because a DBMS cannot. The
idea is that a minimal FTL would give maximal control
and maximal stability to the DBMS. Let us look back at
the constraints imposed by flash chips. First, a DBMS can
trivially issue IOs at the granularity of a flash page (C1).
This would require the FTL to advertise how flash pages
should be aligned at the logical level. Second, a DBMS
could rely on the Trim command6 to tell a flash device to
erase a flash block before it is written (C2). This would
require the FTL to expose an abstraction of flash blocks
at its interface. Third, a DBMS could write flash pages in
sequence within flash blocks (C3). This would require the
FTL to advertise how flash blocks are aligned, and how flash
pages are mapped into flash blocks. Fourth, a DBMS cannot
implement wear-leveling (C4). It must be provided by the
FTL. Indeed, wear-leveling is absolutely necessary to guar-
antee the lifetime of a device. Flash device manufacturers
will never release a product that can wear-out after some
minutes of focused and intensive write/erase cycles.
One can thus imagine building flash devices with an FTL

that implements wear leveling and provides abstractions for
flash pages (a logical page) and flash blocks (a logical block).
Such a FTL would rely on a block level map which is com-
pact enough to be efficiently kept in the flash device safe

6The Trim command has been introduced in the ATA inter-
face standard [28] to communicate to a flash device that a
range of LBAs are no longer used by an application

Figure 1: Minimal FTL does not support updates or
random writes but offers optimal performance for IO
patterns respecting C1, C2 and C3.

cache (e.g., 16MB cache for 1 TB of 256 KB flash blocks)7

With such a FTL, the DBMS would have to handle con-
straints C1-C3 —i.e., the DBMS could not submit IOs for
in-place updates or random writes. On the other hand, the
FTL would guarantee that the IOs that respect these con-
straints would be tunneled to the underlying flash chips as
directly as possible (see Figure 1).
Would flash device manufacturers be interested in pro-

viding such FTLs? Probably not. Could DBMS designer
always circumvent random writes on flash devices? Maybe
in some cases (e.g. if flash devices are only used for im-
mutable data sets), but definitely not for general-purpose
databases.

3.2 Bimodal FTLs
To resolve the tension between FTL and DBMS design

goals, we propose a bimodal FTL which achieves optimal
performance as long as the DBMS manages constraints C1-
C3, while providing best effort performance for all other IO
patterns8. Interference between these two modes of opera-
tions should be minimized (see Figure 2).
While flash device designers have focused on efficiently

enforcing the flash chip constraints for updates or random
writes, there has not been much work on characterizing op-
timal performance for a flash device. More precisely, what
is the most optimal mapping that a FTL can achieve? We
have seen that a FTL must at least implement a form of
block mapping to support wear-leveling. A mapping is thus
optimal if (a) the block look-up is performed in the con-
troller cache, and (b) the offset of the page within the block
is derived from the logical address (i.e., consecutive logi-
cal addresses are written sequentially within a block). In
the following, a flash block for which mapping is optimal is
called an optimal block.
A bimodal FTL must provide optimal mapping for those

7Otherwise, the block mapping has to be partially written
on flash (as was the case in early block mapping FTLs [11]).
8A bimodal FTL must implement a form of wear-leveling
and garbage collection. This requires some work, and as a
result, a DBMS can never obtain an IO throughput strictly
equal to the throughput of the underlying flash chips even
when the FTL guarantees optimal mapping.

3



Figure 2: Bimodal FTL that combines near-optimal
performance for IO as long as the DBMS respects
constraints C1-C3, and best effort performance for
other IO patterns where the FTL must enforce these
constraints.

logical blocks for which the DBMS guarantees that writes
are performed sequentially (C3) at the granularity of a flash
page (C1), while any update is preceded by a Trim command
(C2). The other logical blocks—on which all IO patterns are
allowed—are mapped to one or more physical flash blocks,
depending on the algorithms used by the FTL to manage
constraints C1-C3. The design of the FTL optimizations for
non-optimal blocks is not in the scope of this paper. State
of the art techniques can be used [16, 18, 19, 15, 13] as long
as they do not directly interfere with optimal blocks. We
argue the feasibility of this approach in Sections 4 and 5.
Obviously sequential writes will result in an optimal map-

ping. Interestingly, semi-random write, introduced in [21],
i.e., random write IOs done in such a way that they can
be mapped sequentially on different logical blocks, will also
result in an optimal mapping 9. Sequential reads and ran-
dom reads on optimal blocks benefit equally from an optimal
mapping. An interesting side effect is that an optimal block
never needs to be garbage collected as the sequence of writes
in an optimal mapping does not create obsolete space to be
reclaimed. For non-optimal blocks, the goal of the garbage
collector must be to tend towards optimal mapping.

3.3 Impact on DBMS design
Bimodal flash devices provide a stable and optimal basis

for DBMS design. Even if more work is needed to investigate
the actual impact of our approach, we can already make
some preliminary observations
Existing work focused on making database writes sequen-

tial (e.g., Append and Pack [29], ReSSD [20], NIPU [32]) is
today restricted to repairing the bad random write perfor-
mance of low-end SSDs. Such a technique would be required
to leverage the optimal performance of sequential writes in
case of a bimodal FTL. Also, techniques designed for flash
chips (e.g., Lazy adaptive trees [2], or Page-differential Log-
ging [17]), which are not today adequate in the context of
SSDs, could naturally be applied to bimodal FTLs since
9For instance, filling in parallel several flash buckets (for e.g.
hashing a relation) will result in semi-random writes. In our
approach, it is the number of logical blocks that limits the
degree of parallelism in the semi-random writes.

they would generate only optimal blocks. Other techniques
based on hashing or sorting (e.g., online maintenance of very
large random samples [21]) can today only be applied to
those SSDS that support (a limited form of) semi-random
writes. Such techniques as well as hash-join or sort-merge
would clearly benefit from the performance of semi-random
writes on a bimodal FTL as long as bukets are aligned on
block boundaries. Finally, the FlashScan and FlashJoin al-
gorithms proposed in [31], that aggressively make use of ran-
dom read IOs of small granularities are today rather well
supported in current SSDs, even if random reads are slower
than sequential reads on many SSDs. A bimodal FTL could
ensure optimal performance with random reads as perfor-
mant as sequential reads.
While it is impossible to develop a performance model

of existing SSDs (because of their opacity and complexity),
it is possible to envisage both analytic models and simula-
tion models of bimodal flash devices, in order to explore the
DBMS design space.

4. NARROW BIMODAL FLASH DEVICES
Now, let us focus on how we can design bimodal flash

devices. Basically, the question is the following: Is it pos-
sible to implement a bimodal FTL without violating the
constraints of a block device interface, i.e., fixed size IOs,
flat name space of logical addresses, interface reduced to
read/write/trim commands? This question boils down to (a)
How to represent logical blocks and pages with a block de-
vice interface, (b) How can the FTL detect that the DBMS
is submitting IOs that respect constraints C1-C3, and (c)
How to guarantee optimal mapping in this case?

4.1 Bimodal Design
We propose an obvious implicit and immutable scheme

for associating logical addresses to logical blocks and pages.
The flash device must expose two constants10: Logical Block
Size or LBS and Logical Page Size or LPS. LBS (resp.
LPS) correspond to the size, in bytes of a flash block (resp.
a flash page)11. For a logical address A, the logical block
number LBN and logical page number LPN are obtained
using the following trivial formulas: LBN = A/LBS and
LPN = (A − LBN × LBS)/LPS, where / is the integer
division.
While page size IOs are submitted sequentially within a

logical block (starting from page 0), flash pages are written
in the order the IOs are submitted. This way, the layout of
flash pages within a flash block is optimal, and each read
(either sequential or random) can be trivially mapped to an
offset within a flash block. This is detected by maintaining
in the safe cache, for each flash block, the physical position of
the last write within the block. A bit indicates whether the
mapping is optimal or not (initially, free blocks are optimal).
We thus maintain in the controller cache a mapping with 4
bytes per block (22 bits for physical block id + 6-8 bits for
current position within block (64-256 pages per blocks) + 1
bit flag for the optimal mapping).
An optimal block might become non-optimal if the sub-

mitted IOs are no longer sequential (e.g., updates, unaligned
10Such constants can be retrieved by the DBMS using specific
command like GetDriveGeometry

11Parallelism within the flash device might lead to define
LBS (resp. LPS) as a multiple of the flash block size (resp.
the flash page size.

4



Figure 3: The states of a logical block and corre-
sponding actions (transitions).

IOs across page and block boundaries, random IOs). Con-
versely, classical garbage collector algorithms [19, 15], trig-
gered in case of updates or random writes, will tend to con-
vert non-optimal blocks into optimal ones. Again, many
existing techniques can be used to mitigate the effects of
random writes or updates on non-optimal blocks [16, 18, 19,
15, 13]. Figure 3 schematize the behavior of a single logical
block in a bimodal FTL.
The obvious question now is whether any of the currently

available flash devices implement such a FTL.

4.2 Are Existing Flash Devices Bimodal?
We can almost answer this question by looking at the data

sheets of existing devices. First, no device explicitly provides
a notion of logical block – blocks are abstracted away at the
narrow interface. In practice, devices might silently imple-
ment the design we propose above. So, this is inconclusive.
Second, only few devices actually provide a safe cache (e.g.,
Memoright does, Intel X25 does not). A DBMS relying on
a flash device without safe cache must choose between per-
formance (using the cache) and durability (write through
the cache). Indeed, in our experience, disabling the cache
typically results in an order of magnitude degradation of
write performance (as neither mapping nor data is cached).
Strictly speaking, a device might be bimodal even if it does
not provide a safe cache. This is again inconclusive. Third,
only the X25 devices from Intel support the TRIM com-
mand. This is more significant. Indeed, a flash device that
does not support TRIM, does not allow the upper layers to
respect constraint (C2), erase before write. Without TRIM,
even a circular log structure as a database log will induce
updates. As a result, only the X25 could be bimodal.
We devised a simple experiment to test whether the X25

is bimodal. The experiment consists in partitioning the log-
ical address space in three (P1, P2, P3). Starting from a
trimmed device, the experiment consists of two steps: (a)
perform sequential writes (i.e., C1,C2 and C3 are enforced)
on P2 and random writes on P1 and P3, and (b) Trim P2
(we make sure that trim is actually performed). Those two
steps are repeated three times and we measure the response
time for all sequential writes on P2. Note that we have ob-
served long pauses after random writes on P1 and p3, to
ensure that the device does not perform any background
reorganization during sequential writes on P2.
If the device is bimodal, then the response time of se-

quential writes should remain constant for the three runs of
sequential writes. Indeed, if the device is bimodal, then the

Figure 4: Response time (log scale) for each individ-
ual IOs (16KB) on partition P2 for runs 1, 2 and 3.
The solid horizontal line represents the mean value.

Figure 5: The graph shows the mean, min, max and
standard deviation of response time for the sequen-
tial writes on P2 for each run. The Intel X25-E is
not bimodal because the cost of sequential writes is
not constant across runs.

large partition P2 should be mostly composed of optimal
blocks for which all constraints have been enforced (there
might be non optimal blocks at the boundaries of the parti-
tion due to the fact that logical block size and alignment is
not documented).
Figure 4 shows detailed response time of each individual

16KB IO (log scale), while Figure 5 shows aggregated val-
ues (mean, min, max and standard deviation)12. We observe
that response time and stability degrade with each run. The
mean response time increases by a factor greater than 5 be-
tween Run 1 and Run 3. While the minimum response time
remains approximately constant at 0.1 msec, the maximum
increases from 2.1 msec in the first run to 301 msec in the
third run. This experiment clearly demonstrates that the
X25 is not bimodal. We can even say that a X25 equipped
with a bimodal FTL should be able to achieve at most 0.1
msec mean response time for sequential writes on P2. Note
that this experiment is a negative test. Defining a batteries
of experiment to validate that a device indeed is bimodal is
future work.

12The experiment was run on a 4-core Intel i5 processor run-
ning the flashIO utility we defined for the uFlip benchmark
(see http://code.google.com/p/flashio/). The flash device
used for the experiment is an X25-E 80GB.

5



5. RICH BIMODAL FLASH DEVICES
While a significant improvement with respect to today’s

devices, the narrow approach is not perfect: (i) Wear-leveling
and garbage collection are performed without any knowl-
edge of the stored data, (ii) The utilization of the controller
cache is not optimized; (iii) A lot of complexity related to
flash chips is managed at the DBMS level. Rich bimodal
flash devices may address these shortcomings.
Extension of the block device interface have already been

proposed in the context of flash devices [28, 23, 22] to man-
age complexity, control trade-offs and optimize embedded
resources. While, Shu et al. [28] introduce the Data Man-
agement Set in the ATA protocol— connecting host and
peripherals— that allows an application to communicate in-
formation about its I/O access behaviors to the underlying
flash device, Rasjimwale et al [23] propose to use expressive
interface such as object-based storage, and Prabhakaran et
al. [22] focus on providing atomic writes. In the following,
we describe how rich interfaces could be used to optimize
the minimal FTL mode–most optimizations have already
been presented in the literature–, and we quickly discuss
non-optimal blocks. We deliberately avoid discussions of
implementation or syntax issues, which are left for future
works.

5.1 Optimal Blocks
From optimal blocks to optimal chunk: Since the

block device interface does not provide any means to explic-
itly declare a set of optimal blocks (called hereafter chunk),
these have to be detected by the FTL. More importantly,
this detection leads to the management of a large number
of small blocks, having an impact on the volume of meta-
data (mapping, statistics, and detection data) that must be
stored into the safe cache. Explicit declaration of larger
chunks may thus bring significant savings in terms of safe
cache. For instance, a single 100 MB optimal chunk, ex-
plicitly declared to the flash device, e.g., for the log file of a
DBMS, may bring a two order of magnitude reduction of the
metadata wrt the implicit detection of 400 optimal blocks.
While this optimization has no direct impact on the perfor-
mance of optimal blocks (the mapping is already optimal),
it allows for improved caching (see below).
Providing metadata: In a block device, wear leveling

and garbage collection proceed blindly, without knowledge
of the access patterns on the managed data. Choosing highly
erased blocks to store data with low erase frequency and
conversely will avoid useless blocks movements to balance
erase counts. A similar strategy, based on detection, has
been proposed in [10] in the context of a block device in-
terface. Note that minimizing blocks movements increase
performance and lifetime of the device.
Caching data: DBMS and FTL could collaborate to

avoid producing non-optimal blocks for append data struc-
tures (e.g., log records, tables in append mode). The FTL
can avoid update operations (and thus degrading an optimal
block to non-optimal) if for each append structure, the last
uncomplete written flash page can be kept inside the safe
cache and only written to flash when it is completed.
Transmitting and caching payload: A rich flash de-

vice no longer has to be restricted to a flat, regular address
space based on logical block addresses. We can consider
write IOs which only transmit useful data, called hereafter
the payload, i.e., fragments of pages as opposed to pages

(note that we do not consider here that the flash device
manages a representation of the database page layout). The
main advantage of using payload instead of pages is that
write operations can be buffered efficiently. (e.g., n inserted
tuples in a database table will lead to buffer the aggregate
size of the tuples plus some offsets-to recompose the pages-,
compared with n IO sectors with a narrow interface!). In-
deed, the safe cache is not polluted with data that already
exists in the flash memory. Note that even if the safe cache
is full, it may be more interesting to temporarily flush the
payload part of the cache in a dedicated flash area (as a
swap file) rather than flushing on their destination, in order
to keep the destination blocks optimal. Write payload shares
some ideas with the Page-Differential Logging approach [17].
Reading payload: Payload optimization is also very in-

teresting for read operation since it avoids transmitting use-
less data from the chip to the controller and then to the
host (typically, reading a 4KB page costs around 150 µs
from which 125 µs are transmission costs through the serial
interface from the chip to the controller). FlashScan [31]
already mentioned in section 3.3 could benefit further from
read payload, reading only subpages (i.e., corresponding to
the ECC granularity).
Nameless writes: Nameless writes were introduced in [6]:

the DBMS does not provide any destination address but let
the FTL decides on the placement of the data and returns
a handle for future reference. Nameless writes thus gener-
ates optimal blocks but are somehow easier to manage at
the DBMS level, typically for temporary data.
Reorganization for free: A further improvement would

consist in letting the FTL expose some aspects of the wear-
leveling process to the DBMS to support additional opti-
mizations. The wear leveling process sometimes has to move
static data to balance the erase count across the whole de-
vice. In this case, the FTL reads a whole block that it
rewrites on another physical location, thus bringing an op-
portunity to reorganize the block for free. The FTL could
involve the DBMS in this process using a call-back mecha-
nism in the way that external pagers interact with the op-
erating systems [1]. Indeed, to allow using optimal blocks,
DBMSs will probably resort to log-based approaches [2, 17]
which might greatly benefit from such cleaning (almost) for
free.

5.2 Non-optimal Blocks
While this paper focus on optimal blocks, there is in fact

a greater potential for minimizing the important overheads
generated by the management of non-optimal block: map-
ping cost (metadata management), garbage collection costs
(with statistics like R/W frequency, expected pattern, etc.)
and wear leveling costs (update frequency). For instance:
Hot-random-chunks and cold-random-chunks: The

FTL can use different techniques for mapping different chunks
whenever the DBMS associates access patterns to given chunks.
The FTL can manage hot random chunks (i.e., frequent
writes, scattered on the whole chunk) with a page mapping
cached in the safe cache, while mapping can be performed
at a larger granularity and on flash for cold random chunks.
These strategies share the basic principles proposed in [13,
14], but are based on information delivered by the DBMS
(and not detected by the FTL). Investigating further how a
rich interface can benefit non-optimal block management is
a topic for future work.

6



6. CONCLUSION
We argued that flash devices should provide guarantees to

a DBMS so that it can devise stable and efficient IO man-
agement mechanisms. Based on the characteristics of flash
chips, we defined a bimodal FTL that distinguishes between
a mode where sequential writes, sequential reads and ran-
dom reads are optimal while updates and random writes are
forbidden, and a mode where updates and random writes are
supported at the cost of sub-optimal IO performance. Inter-
estingly, the guarantees of a minimal mode have been taken
for granted in many articles from the database research lit-
erature. Our point with this paper is that these guarantees
are not a law of nature, we must guide the evolution of flash
devices so that they are enforced.
We described the design space for bimodal flash devices

in the context of a block device interface, and in the context
of a richer interface. Which one is most appropriate for a
DBMS is an open issue. An important point is that provid-
ing optimal mapping guarantees does not hinder competi-
tion between flash device manufacturers. On the contrary,
they can compete to (a) bring down the cost of optimal IO
patterns (e.g., using parallelism), and (b) bring down the
cost of non-optimal patterns without jeopardizing DBMS
design. Future work includes designing and building a bi-
modal FTL in collaboration with a flash device manufac-
turer.
We can also derive a future work roadmap for database

designers: (1) Define a performance model for bimodal flash
devices in order to explore the DBMS design space. The
reference here is the work of John Wilkes et al. on hard disks
models [27]; (2) Explore the DBMS design space on top of
narrow bimodal flash devices. The first challenge here is
to compare and integrate the many ideas already proposed
in the literature to establish a baseline. The interesting
problem is then to optimize this baseline design; and (3)
Explore the design space for the collaboration of DBMS and
rich bimodal flash devices.
Finally, future work includes studying how operating sys-

tems as well as many data-intensive applications would ben-
efit from flash devices with optimal mapping guarantees
(e.g., warehouse scale distributed systems, game engines,
IO-conscious algorithms).

7. ACKNOWLEDGMENTS
The authors wish to acknowledge Matias Bjørling for his

precious help on experiments, Philippe Pucheral for his com-
ments on earlier versions of this paper and Mehul Shah for
inspiring discussions at SIGMOD 2010.

8. REFERENCES
[1] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B.

Golub, R. F. Rashid, A. Tevanian, and M. Young.
Mach: A New Kernel Foundation For UNIX
Development. In USENIX Summer, 1986.

[2] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao,
and S. Singh. Lazy-Adaptive Tree: An Optimized
Index Structure for Flash Devices. PVLDB, 2(1), 2009.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for
SSD performance. In USENIX ATC, 2008.

[4] T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L.
Folgoc, B. Nguyen, P. Pucheral, I. Ray, I. Ray, and

S. Yin. Secure Personal Data Servers: a Vision Paper.
PVLDB, 3(1), 2010.

[5] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: a
Fast Array of Wimpy Nodes. In ACM SOSP, 2009.

[6] A. C. Arpaci-dusseau, R. H. Arpaci-dusseau, and
V. Prabhakaran. Removing The Costs Of Indirection
in Flash-based SSDs with Nameless Writes. In
USENIX HotStorage, 2010.

[7] M. Bjørling, L. L. Folgoc, A. Mseddi, P. Bonnet,
L. Bouganim, and B. Jónsson. Performing sound flash
device measurements: some lessons from uFLIP. In
SIGMOD Conference, 2010.

[8] M. Bjørling, P. Bonnet, L. Bouganim, and B. Jónsson.
Understanding the Energy Consumption of Flash
Devices with uFLIP. IEEE Data Eng. Bull., to
appear, 2010.

[9] L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP:
Understanding Flash IO Patterns. In CIDR, 2009.

[10] L.-P. Chang and C.-D. Du. Design and
implementation of an efficient wear-leveling algorithm
for solid-state-disk microcontrollers. ACM Trans. Des.
Autom. Electron. Syst., 15(1), 2009.

[11] E. Gal and S. Toledo. Algorithms and data structures
for flash memories. ACM Comput. Surv., 37(2), 2005.

[12] J. Gray. Tape is dead, disk is tape, flash is disk.
http://research.microsoft.com/en-us/um/people/
gray/talks/Flash_is_Good.ppt.

[13] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash
translation layer employing demand-based selective
caching of page-level address mappings. In ASPLOS,
2009.

[14] J. Hu, H. Jiang, L. Tian, and L. Xu. PUD-LRU: An
Erase-Efficient Write Buffer Management Algorithm
for Flash Memory SSD. MASCOTS, 2010.

[15] D. Jung, J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee.
Superblock FTL: A superblock-based flash translation
layer with a hybrid address translation scheme. ACM
Trans. Embed. Comput. Syst., 9(4):1–41, 2010.

[16] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A
space-efficient flash translation layer for
CompactFlash systems. Consumer Electronics, IEEE
Transactions on, 48(2), may. 2002.

[17] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song.
Page-differential logging: an efficient and
DBMS-independent approach for storing data into
flash memory In SIGMOD Conference, 2010.

[18] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
locality-aware sector translation for NAND flash
memory-based storage systems. SIGOPS Oper. Syst.
Rev., 42(6), 2008.

[19] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based flash
translation layer using fully-associative sector
translation. ACM Trans. Embed. Comput. Syst., 6(3),
2007.

[20] Y. Lee, J. Kim and S. Maeng. ReSSD: a software layer
for resuscitating SSDs from poor small random write
performance. In SAC, 2010.

7



[21] S. Nath and P. B. Gibbons. Online maintenance of
very large random samples on flash storage. VLDB J.,
19(1), 2010.

[22] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou.
Transactional Flash. In OSDI, 2008.

[23] A. Rajimwale, V. Prabhakaran, and J. D. Davis.
Block management in solid-state devices. In USENIX
ATC, 2009.

[24] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle.
Active disks for large-scale data processing. Computer,
34(6), 2001.

[25] S. W. Schlosser and G. R. Ganger. MEMS-based
Storage Devices and Standard Disk Interfaces: A
Square Peg in a Round Hole? In USENIX FAST,
2004.

[26] S. W. Schlosser, J. Schindler, A. Ailamaki, and G. R.
Ganger. Exposing and Exploiting Internal Parallelism
in MEMS-based Storage. CMU Technical Report
CMU-CS-03-125, 2003.

[27] E. A. M. Shriver, A. Merchant, and J. Wilkes. An
Analytic Behavior Model for Disk Drives With
Readahead Caches and Request Reordering. In
SIGMETRICS, 1998.

[28] F. Shu and N. Obr. Data set management commands
proposal for ATA8- ACS2. http://www.t13.org/,
2007.

[29] R. Stoica, M. Athanassoulis, R. Johnson, and
A. Ailamaki. Evaluating and repairing write
performance on flash devices. In DaMoN, 2009.

[30] M. Stonebraker. Operating system support for
database management. Commun. ACM, 24(7), 1981.

[31] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query processing techniques
for solid state drives. In SIGMOD Conference, 2009.

[32] Y. Wang, K. Goda and M. Kitsuregawa. Evaluating
Non-In-Place Update Techniques for Flash-Based
Transaction Processing Systems. In DEXA, 2009.

8




