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ABSTRACT

Social networks have been receiving increasingly greater at-
tention. As they stand now, users are required to upload
their content to make it available to others. Typically, this
involves releasing ownership and control. As a result, bat-
tles have begun regarding the ownership, exploitation, and
control of content between users and social network owners.
Further, given the rates of growth witnessed recently, ques-
tions about the scalability of the social network services are
being raised. Therefore, the following questions naturally
emerge: Is it possible to architect, design, and implement
decentralized social networking services that ensure scala-
bility and efficiency, while, respecting users’ control of their
content? Can this be achieved while content can be available
to others for viewing and commenting, and permit key so-
cial networking activities like tagging? This paper presents
eXO0, a completely decentralized, scalable system that offers
fundamental social networking services. We describe the ar-
chitecture of eXO and its key components which encompass
(i) techniques for content indexing, (ii) novel algorithms for
ranked retrieval, (iii) appropriate similarity definitions that
consist of a ’content’ and a ’social’ part, (iv) novel algo-
rithms for efficient distributed content retrieval, (v) novel
techniques that efficiently and scalably facilitate tagging and
exploit tags to enrich query results, and (vi) novel scalable
methods which permit the creation of personal networks,
which allow for more “intimate” sharing and associations
between users. We report on our evaluation which showcases
its efficiency and scalability characteristics. eXO source code
will be freely available to all, to use and test.
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1. INTRODUCTION

Social networking services and entrepreneurship have been
growing steadily and rapidly. User-generated content (main-
ly multimedia, such as images, videos, etc) is being produced
at high rates. Interestingly, people show a great desire to
share their content, view content shared by others, tag (com-
ment on) it, search for content of interest and/or other users
with specific profiles, and make ’friends’ (become members
of specialized groups sharing common interests). This is not
all new. Since Napster appeared, a large number of con-
tent sharing applications have been implemented, providing
a variety of options and actions to the user. Nowadays,
users have moved on, creating large scale social network ap-
plications, such as Facebook, MySpace, YouTube, Flickr,
etc. These applications run on centralized sites facilitat-
ing different kinds of social network sharing. The heart of
these applications are users’ interactions: content sharing
and viewing experiences are being enriched, taking into ac-
count the profiles of those contributing the content and of
those who have tagged it.

As they now stand, social network services force users to
upload their content to a specific site in order to make it
available to others. Typically, this involves releasing own-
ership/control of uploaded content. After a few years of
tremendous growth in popularity and use, already some is-
sues have been raised and battles have begun regarding the
ownership and exploitation of content between users and so-
cial network site owners. Further, given the rates of growth
witnessed recently, the scalability of the social network ser-
vices becomes increasingly doubtful. Therefore, the follow-
ing questions naturally emerge: Is it possible to architect,
design, and implement decentralized social networking ser-
vices that ensure scalability and efficiency? In addition, can
users be allowed to retain full control of their content and ef-
ficiently make it available to others for viewing, sharing, and
commenting? And, all this, while permitting other key so-
cial networking activities like tagging, so to enrich the users’
querying experiences?

Our interest in future social network services is to ensure
two key characteristics: highly decentralized social network
functionality and with full user control when sharing. First,
we wish to “go distributed”. Already our community has
produced a great wealth of knowledge for highly decentral-
ized, efficient, and scalable content sharing — see for exam-



ple P2P network architectures (such as those built on top of
DHTSs). We wish to build upon these efforts and answer the
questions whether the scalability of the underlying network
can be leveraged to ensure scalable social network sharing
and accessing and whether this can be done efficiently. Sec-
ond, so far content providers may lose control over their
data. We believe it is important for users to maintain con-
trol over their data: for instance, they should be able to
control who accesses their data, when and how their con-
tent is replicated, if at all, and to which sites, etc.

These goals bear a number of important implications for
system design which, in turn, create new research challenges.
First, to respect autonomy, content must not be stored re-
motely. Further, to facilitate sharing, this content must be
indexed appropriately so that users can search for it and lo-
cate it. This index must be distributed for scalability and
efficiency reasons. Thus, no central organization/site exists,
which is responsible for the content and related metadata,
such as indices. Moreover, great care must be exercised with
respect to how and what will be inserted into this distributed
index, in order to avoid scalability and efficiency barriers,
as has been shown in the realm of P2P search engines [14].
Further, defining appropriate similarity functions must ac-
count for high expense when computing relevant statistical
metadata in distributed settings (despite valiant efforts [2]).

Second, autonomy implies for users the ability to name
content on their own, resulting in a duplicity of names for
the same content. Thus, any particular search query may
be matched to a number of different sources. Our system
must on the one hand efficiently maintain such metadata on
data sources, and on the other, provide efficient algorithms
for retrieving this content.

Third, the semantics of search queries are different. A
query can request one such item, or all of them, or (most
likely) a specific number of items, e.g., running top-k queries
[10]. The ranking of query results must of course take into
account the characteristics of content items and how close
they are to a given query (a la traditional IR environments).
However, in addition, ranking must take into account other
social-network characteristics, such as the profile of the que-
rying user, the profiles of the users who uploaded content
items, and their similarity. Thus, new similarity functions
are needed to facilitate such query-result ranking.

Fourth, running distributed top-k queries is a notoriously
difficult problem. Despite recent advances (for instance [6,
15]), distributed top-k execution can introduce a rather large
cost for the overall system resources (such as number of
messages, network bandwidth, and local per-peer processing
costs) and for the user (large query execution times). As we
shall see, this cost depends on the similarity function. It
is therefore imperative to produce similarity functions that
can both exploit social network information and facilitate
efficient distributed top-k query execution.

Finally, dealing with and exploiting user tags in a decen-
tralized environment is not simple. On the one hand, it
is important for the system to exploit these tags in order
to identify relevant content [8, 13]. However, on the other,
given that tagging is a very popular activity, this must be
done in a way that does not introduce great overheads and
scalability problems. Reconciling these goals is a key under-
taking for any decentralized social network system.
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Diaspora!, an open-sourced personal web server imple-
menting decentralized social networking services, is a first
commercial crack at this; the $200k in donations received by
the Diaspora authors and their recent (albeit early alpha-
stage) source code release, testify to the plausibility of and
widespread interest in such systems. Diaspora only imple-
ments the most basic of social networking primitives (that
is, friends and friend groups), lacking any support for more
advanced operations, such as (even simple) system-wide con-
tent/user queries — let alone such features as distributed
top-k operations, tag clouds, personal social networks, etc.

With this work we present eXO, a novel decentralized sys-
tem offering fundamental social networking services, consist-
ing of:

e mechanisms for indexing user-generated content and
related metadata definitions;

e appropriate similarity functions that combine social
networking features with traditional query-to-content
relevance;

e discovery and retrieval of related content via a com-
bination of DHT-based indexing and of unstructured,
query-relevant, social networks,

e efficient top-k algorithms for search-for-content and
search-for-user queries;

e efficient algorithms for retrieving content items exploit-
ing the architecture of the overlay network on the one
hand, and the characteristics of content in social net-
work sharing environments on the other;

e scalable social tagging mechanisms and methods which
can exploit social tags to improve the quality of query
results;

e methods for building social networks; and

e an implementation of the system and a performance
evaluation substantiating the claims for scalability and
efficiency.

To our knowledge, this is the first effort addressing com-
prehensively the design and architecture of decentralized so-
cial network services. The rest of this paper is organized as
follows. First we present a brief overview of DHT basics.
Section 2 discusses the data and query models, and section
3 the system architecture and key design decisions. Sec-
tion 4 discusses query processing chores, presenting our ap-
proach for indexing, similarity definitions, ranking of query
results, and optimized algorithms for retrieving content over
the DHT. Section 5 discusses how we facilitate tagging and
how we exploit it for search and retrieval. Section 6 shows
how to build unstructured (personal) social networks that
can be used to improve search results quality. Section 7 dis-
cusses our implementation and experimental results. Sec-
tion 8 discusses related work and finally sections 9 and 10
conclude this work.

2. THE DATA AND QUERY MODEL

eXO0 is built upon a network, consisting of a possibly large
number of nodes. Each node runs a routing protocol for a
structured overlay DHT network (such as Pastry [9], Chord
[21], Tapestry [24], CAN [18], etc.) Shareable content and
nodes acquire IDs from the same ID space, using a pub-
lic hash function, such as SHA-1, matching each of them
to a specific position in the ID space. Structured overlay
networks require nodes to maintain routing tables of size
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logarithmic to the size of the network (i.e., number of partic-
ipating nodes). Further, they ensure that a message will be
delivered to its destination in a logarithmic (again, relative
to the size of the network) number of hops. For instance,
in Pastry[9], the protocols guarantee O(logys N) hops for
the routing process, where N is the number of nodes in the
network and typically b = 4. In Pastry, this routing process
will also end up pointing to the node with the arithmetically
closest ID to the destination ID (the input ID of routing
function).

In eXO a user is associated with a unique network ID
(UID), which is computed using a hash function (e.g. SHA-
1) on a user-specified string, e.g. an e-mail address. Each
user is connected to a specific node of the network; thus,
a UID plays indirectly the role of a node identifier as well.
Last, we use the term content to refer to every type of data
that can be indexed, retrieved, and stored in the system (in
eXO we are mostly interested in images, audio, and video
content and secondarily in text).

Content & User Profiles. For indexing purposes, each con-
tent item is represented by a set of terms (keywords) that
describe it. We call this set of terms the content profile.
Similarly, each user is described by a set of terms defined by
the users themselves, denoted the user profile. Each term
is associated with an ID (term ID — TID). TIDs are also
computed using a hash function on the term string. For ex-
ample, a content profile term could be the file name of some
multimedia file or words taken from the id3 tag of an mp3
file, while a user profile term may include information about
user interests, erpertise in some area, etc. A checksum of the
actual content or user ID is computed to distinguish among
the many different objects with the same profile. Content
items may be replicated from the source to adjacent nodes in
the ID space of the overlay in order to improve content avail-
ability. Content is indexed to appropriate network nodes, so
it can be discovered. Note that when a content item is first
shared, its owner decides on the content’s profile - that is, the
set of terms with which to index it. In any case, the owner
of a content item holds complete power over what tags are
attached to her profile/content items; however, subsequent
tagging by other users (to be discussed shortly) may sway
her selection of index tags and lead to a richer and more ac-
curate indexing. Moreover, user profile terms play a central
role during the ranking of query answers: for example, items
uploaded by users who are either experts in a related area
or whose profile matches a specific input user profile, are
ranked higher than content items uploaded by other users.

Tags. Tags are terms contributed by users to describe a
specific content item or user. Tags are very important in or-
der to help achieve higher query result quality by exploiting
the community’s wisdom. As above, a tag term is associ-
ated with a TID. In eXO tags are stored at the taggee’s side
associated with the tagged content and/or user profile. In
addition, inverted lists for each tag term are maintained at
the tagger’s node, associating each such term with a set of
thus tagged resources. This information can be exploited
appropriately to enhance the searching process as we will
explain later. We refer to social tags as the tags whose tag-
ger is a user other than the owner of the tagged item, as
opposed to self (owners’) tags.
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Friends. Friendship is a major aspect in any social net-
work service environment. A user can make friends and
share more private data with them. To support this func-
tionality two users can become friends by a typical hand-
shake process, in which the first user requests a friendship
with another user and the latter can accept or reject this
request. The system stores friend lists (that is, list of friend
UIDs) on the related nodes, updated every time a friend is
added or deleted. The friend list structure is used to locate
friends in the network, to allow access control of the data
and to improve the lookup ranking process. The latter can
be achieved by ranking the friends’ content higher.

Queries. Queries in our model refer to content or user pro-
files indexed in the network. A query is a set of keywords
and the query processing engine is meant to return the top-
k most relevant items to the query, using a data structured
called the “Catalogue” (to be discussed shortly). A query
is a set of keywords which are used to obtain a number of
data sources for the most similar to the keywords catalogue
entries, supported through a similarity matching and a top-
k ranking process. To be more formal, let U = {u1, ..., um },
C={c1,..,en}, T ={t1,...,to } be the set of all user profiles,
the set of all content profiles, and the set of all terms, re-
spectively. For example, u; = {t;,...,ta} € U is a single user
profile, and ¢; = {t;,...,ts} € C is a single content profile.
A query may contain a content part and a user part and is
given as Q = Q.+ Qu, where Q. = {t1, ..., tq, } is the content
part and Q. = {t1,...,tq, } is the user profile part. In brief,
queries may contain both or either of a content-related part
and a user-related part, where the content (user) part may
be missing when the querying party is specifically interested
in finding user (respectively, content) profiles.

If we search for users, then a user query is formed. In this
case ., # 0, consisting of the set of terms which are used to
route to the catalogues. Q. is generally ignored in this case.
User queries are used to list the k most similar user catalogue
entries to the querying terms. The returned user catalogue
entries contain user profiles and are also indices of the users’
source nodes, so they can be used to navigate towards the
user nodes in order to browse or tag their content.

On the other hand, content queries are used to find cata-
logue entries of shared content objects. It this case, Q. # 0
is used to route the process to the appropriate catalogue
nodes. If, in addition, Q. # § then Q. is used to boost the
scoring of content contributed by similar users in the cat-
alogues. The content profiles are encapsulated in content
catalogue entries together with the content owner’s source
node; thus, in essence these catalogue entries are overlay
“links” to access the shared content.

3. EXO ARCHITECTURE AND DESIGN

Here we discuss the basic components of the system and
its design rationale.

Autonomy and privacy. The system is designed so that
users can exercise full control over their content and their
node’s resources. In eXO, content shared by a user is kept
only on the user’s node (source node). For content availabil-
ity reasons (e.g. for when the user leaves the network due
to either a failure or a graceful disconnection) and at the
user’s discretion, the system can further maintain a number



CATALOGUE FOR “ACROPOLIS” @ node hash(Acropolis)

uiD CONTENT PROFILE USER PROFILE

A1FE458B... {term1l, ..., Acropolis, ..., {term2 , ‘peter’.
termm} term r}

Figure 1: Example catalogue data

of content replicas. These replicas are stored only on nodes
adjacent to the user node in the ID space, and their mainte-
nance is performed automatically by the substrate network
(e.g Pastry[9]).

The user can mark her content as public or private to
define which users can access it. Public content items are
indexed in the network and can be seen by anyone in the
overlay network, while private content is not indexed and
is thus non-visible to the public. Instead, it is made visible
and can be accessed only by friends. Similarly, there exists
both a public and a private user profile in the network; the
public user profile is also indexed and may be replicated,
while the private part is stored only on the source node.
Note that owners can reject access requests made by other
users, even for public content. The basis for this rejection
can be any criteria the owner chooses to use (e.g., on the id
of the querying user).

Node roles. The software running on each node takes on a
number of tasks. First, it acts as a front end, serving user
requests and dispatching them to the appropriate peer nodes
in the system (request resolver role). Second, it provides a
network storage interface for the content and profile replicas.
Last, nodes may store indexing data structures for remote
shareable content and user profiles in the system, in which
case they are denoted Catalogue Nodes.

Catalogues. Each term ID is assigned to such a node (using
the DHT’s mapping primitive); that node then stores, for
every TID it is responsible for, a data structure coined the
Catalogue, mapping the TID to a set of related UIDs, along
with (a portion of) the user profile, content profiles, and
optionally other data (e.g. friend lists). Thus, every TID in
the network has its own Catalogue data structure, keeping
track of user nodes storing shareable content or user profiles
containing the TID keyword.

A Catalogue has two parts. First, the User part is used to
store the user profile and the UID of each user whose public
profile contains the relevant term; the user catalogue is used
to answer user-centered requests, such as “find the top-k
similar users”. Second, the Content part (see figure 1) holds
the content profile terms and the user profile of the content
owner, mapped to the content owner UID. This data struc-
ture is used to answer content related queries such as “find
the top-k similar content items”. As an enhancement for
similarity matching, we also store the corresponding owner’s
user profile in each content catalogue entry. This allows to
boost our scoring mechanism by using the comparison of the
owners’ profiles with the querying user profile.

Handling Tags. Social tags are stored only on the tagger
and taggee nodes associated with the annotated object. We
chose not to index tags in the network for that would in-
troduce great overhead costs [11]. Indexing tags, on the
other hand, would provide extra scoring capabilities, e.g.
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similarity boosted by tags. To reconcile this trade-off, we
allow the benefits of social tagging for query resolution as
follows: we store locally social tags (avoiding their distribu-
tion and related maintenance overheads) and we use a low
cost mechanism based on query reformulation to enrich our
search results with tag data (to be described shortly).

The public network and Personal Social Networks. The
above rationale leads to a two-pronged approach. The pub-
lic network consists of the DHT and the content and user
profiles which are stored at the DHT nodes and have been
made DHT-indexable and DHT-accessible. On this public
network, users can issue queries specifying user profiles of
interest and thus identifying other interesting users. Ac-
cessing those users’ nodes, a querying user can also identify
and retrieve tags with which the interesting user profiles
have been annotated. Then, a querying user can expand
her query and thus identify more interesting users. Once
identified, the querying user can add them to her friends’
lists, establishing and enriching her personal social network.

Thus, eXO consists of a public, structured network and a
series of private/personal, unstructured networks. Owners
have complete autonomy of what content to share, who to
befriend, what tags to accept, what further functionalities
to perform (e.g., transitively expanding friendship relation-
ships) and exercise it at the per-user level, at the per-content
item level, etc.

4. QUERY PROCESSING

This section describes the indexing and query execution
processes, similarity definitions, the mechanism for ranking
query results, and content retrieval optimizations.

Indexing and Catalogues. Indexing is performed as fol-
lows. First, the object’s (user or content) profile is fetched.
For each term of the profile, the TID is computed and is
used as input to the overlay routing function. An indexing
message is created containing the UID of the source node,
the object’s profile, plus, for content objects, the owner’s
user profile. The message is routed towards the destination
(which is the overlay node responsible for TID). This des-
tination node plays the role of the catalogue node for this
term. Depending on the type of object (user or content
profile), an appropriate catalogue entry is formed from the
message data and stored in the catalogue. The same steps
are taken in parallel for every term in the object’s profile.
For content objects or users which have very large profiles,
indexing of all the terms would be very network-hungry. For
this reason the indexing process may choose not to use all of
the terms in the profile. Here, we must note that real social
data, as shown in section 5 by our crawling efforts, usually
contain user or content profiles of acceptable size.

Similarity and Local Ranking. Search query messages
are delivered to every catalogue node corresponding to the
query terms’ TIDs. There, a local similarity matching pro-
cess takes place to compare the catalogue entries with the
query terms and then a local ranking of the catalogue entries
is performed. This similarity function has a user and a con-
tent part; the former is matched against terms in content
profiles while the latter against terms in user profiles. This
allows us to search for content with specific properties, users



with specific properties, or a combination of these two (i.e.
content with specific properties shared by users with specific
properties). To compare sets of terms of user profiles and/or
content profiles we use the vector space model. Specifically,
we consider a multidimensional space, where every discrete
term determines just one dimension. Vectors of term weights
are used to map profiles to this multidimensional space, pro-
ducing feature vectors. Vectors are compared by using the
cosine similarity equation, with similar profiles having high
cosine values.

A significant part of this scoring computation is the term
weight formula. Firstly, let U, T, C be the set of all user
profiles, the set of all terms and all content profiles, re-
spectively. u € U is a single user profile, ¢ € C is a sin-
gle content profile and t € T is a single term. Obviously,
T = (Ullzlluz) U(Uljczllcj). In our approach weight wy, of
term t;, 0 < i < |T| is computed by the next general ap-
proach reflecting the relations among content, user profile,
and term:

c u
We; = AWy, =+ Ay Wy,

i

where wy, € [0,1], wi, (w¢,) denotes the relevant weight of
the content (respectively user) profiles for ¢;, and a. and
ay are coefficients which indicate the significance of each
weight, with a. + a, = 1.

We adopt a simplified boolean weight formula to compute
the weights; that is, wi,,wy, € {0,1}, where a value of 1
signifies that the term ¢; exists in the user/content profile.
Let E = [wt, wey...ws,,] = Ec + E, be the vector of the
catalogue entry’s weights for the corresponding content pro-
file cc = t1,t2,...,tm, and user profile ue = t1,t2,...;tm,,
where m denotes the number of unique terms in the cat-
alogue entry (|ue U ce| of this entry), E. is the vector of
content profile weights and FE, is the vector of user profile
weights. Remember that content catalogue entries contain
both a content profile part and a user profile part, while
user catalogue entries contain only a user profile part (i.e.,
for user catalogue entries, it holds that E. = @).

Consider the query vector Q = [w¢, Wi, ..., = acQe +
a,Qy for the corresponding user profile ug = t1,,t2,, .-, ti,
and content profile ¢y = t1.,t2,, ..., ti., where [ is the num-

ber of unique query terms, and Q., Q. are the vectors corre-
sponding to F., E,, respectively. The weights of the query
vector are computed by the same formulas as the catalogue
entries. Using the cosine similarity as scoring function we
get:

Qo E
TQITET )

The Q ® E is the inner product of the two vectors and
|QII|E]|| is the product of their norms. The denominator
is used for normalization purposes, in order to use unitary
vectors.
Using the previous weights and according to the query
model, we discern two cases.
1. Queries on user profiles. In this case only the user
profile part contributes to the score computation, thus
Wy, = wﬁ.,au =1,a. =0, and:

Que B, _ luyNuel o)
QT ~ TQ.IE.

2. Queries on content profiles. In this case we allow the
similarity between the sharing and the querying users’

Sim[Q, E] =

Sim[Q, E] =
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profiles to be taken into account, thus wy;, = %wtc,- +
lwﬁ.,ac =1/2,a, =1/2, and:

2
. QeREc+Qu®Ey  |ug( el + |eqg cel
Sim[Q, E] = =

@, E] TQITE] 2 1QTIE]

A catalogue node receiving a search request, uses the
above formulas to score each catalogue entry, creating a
sorted score table. Note that the above can straightfor-
wardly be enriched with more elaborate social metadata,
such as friends and measures of friendship [19, 20] at least
for “direct” (non-transitive) friends.

Global Ranking. After the similarity processes have ended
in each of the catalogue nodes and a sorted list of catalogue
entries has been created, the appropriate results must be
returned to the querying node. The search mechanism con-
siders a similarity threshold on the obtained results. This
implies a top-k choice of local catalogue entries. As we will
explain and prove in the next section, our scoring process
has each catalogue node compute and return a score that is
a global score for the object represented by the entry for a
query. So it is enough to get only the first k results from
each local sorted list of catalogue entries and send them to
the query origin node in order to get the global top-k list.
This phase is called global ranking. Every catalogue node
returns the top-k catalogue entries from the local sorted list
along with their corresponding score values to the query
source node. The latter then merges all incoming lists and a
new list of catalogue entries is formed, sorted by score, from
which the global top-k result list emerges.

Note that whenever an item is found in more than one
catalogue node lists, its score is not aggregated (summed).
This is so, because each catalogue entry already reflects a
global relevance score. Recalling our similarity definition,
we see that at each catalogue entry, global information is
taken into account to produce the local score; that is, local
scoring accounts for all terms that are contained in the query
and all terms/tags that are contained in the content profile
and the querying user’s and content owner’s profiles. Hence,
the local score is also a global score.

eXO Top-k Query Analysis. The top-k execution pro-
cess outlined above is engineered to be very simple and
lightweight. It requires only a single phase of communi-
cation between the querying node and the catalogue nodes
for the query terms. Key role to this plays the way the sim-
ilarity is defined: on the one hand we want it to take into
account both user-user and query-content similarities, as it
is necessary in a social network. On the other, each local
score of an item to a query is, by construction, also a global
score of that item for this query.

Despite valiant efforts, top-k algorithms in decentralized
environments can be complex and very expensive in two
respects: communication messaging and latency and (disk)
IO latency. For instance, KLEE and TPUT [15, 6] require
at least two communication phases between the querying
node and the nodes holding the index lists and may have to
go very deep into the index lists before yielding the results.
The key difference in our approach is that we store in each
catalogue the whole user and content profiles’ info, and this
provides the flexibility to compute global score values in
every catalogue node. Further, each node only needs to



send the top k entries, yielding a very small bandwidth cost.
More formally, we can prove the following.

CrLamM 1. Consider an object, O, indexed using term set
To. Giwen a query Q with query term set Tg with [Tg N
To| =n > 2, the similarity score (for the catalogue entry in
each of the n nodes responsible for these TIDs) to the query
Q, is exactly the same.

PRrROOF. Sketch: Remember that we store the profile of
the owner along with every content profile and that each cat-
alogue entry is uniquely defined by its owner’s UID (along
with a content checksum for content entries). Also remem-
ber that the content part of the query is matched against
the content part of catalogue entries, while the user part is
matched against the accompanying user part. Thus, each of
these n nodes would be matching T against the same To,
hence for any given catalogue entry, the scoring function
yields the same score across all n nodes. []

CLAIM 2. The global list with the top-k most relevant en-
tries stored in the catalogue nodes can be computed in one
communication phase, by returning to the querying node the
local top-k entries of each visited catalogue node.

PRrROOF. Sketch: Assume that an entry which has not
been returned to the querying node, belongs to the global
top-k. By the definition of our similarity, it follows that
this entry must belong in at least one of the local top-k lists
returned to the querying node. Then each one of the local
top-k lists must have included the specific entry in its reply
to the querying node. From 1 we showed that in local lists
the scores are global. Hence, it trivially follows that this
entry does not belong to the global top k results. [

We employ a boolean weight to compute the cosine sim-
ilarity. This choice was preferred over a more fine-grained
tf-idf weight for two reasons. First, in a social network the
majority of content which is being shared by the users is
multimedia, whose metadata is usually a short set of de-
scriptive terms without big differences in term frequencies
and their body is just binary data. Content profiles created
from these content items are low dimensional. This is in
contrast to text documents which have analyzable bodies
and heavier sets of terms describing their data.

Moreover, to compute a tf-idf weight, global statistics,
such as the size of users and the size of content objects
in the network, should be computed. In fully decentral-
ized environments this is very complex and expensive and
best be avoided. On the other hand, boolean weights as
more coarse-grained, do not need global network informa-
tion. The boolean weight suffers from not taking into ac-
count the term frequencies in profiles. This limits the range
of score values, so can cause many ties in the scoring pro-
cess. But the maintenance gain is very more important and
we will present later alternative techniques to refine search
results.

Content Retrieval Algorithms. After receiving the top-k
results, the content retrieval algorithm uses the UID of each
catalogue entry to route to the content owners nodes and
initiate downloading. As aforementioned, it is unavoidable
that different content will be associated with the same score
with respect to a query. Think of different pictures of the
Acropolis at night, tagged with the terms Acropolis, Athens,
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night. A query with these terms does not really care which of
the different photos it receives and all photos with these self-
tags will have identical scores to the query. eXO exploits this
observation to expedite content retrievals, by implementing
a new DHT primitive coined retrieve-m-from-n.

Specifically, assume a user has requested the top-10 results
and eXO responded with, say, the top-50 results sharing
the top-10 scores. The basic idea of the optimized retrieval
algorithms is to, at the first overlay hop, hand over to the
next forwarding node a list of the top-50 IDs of content items
and their scores. Each node thereafter, looks locally to see
to which of the 50 nodes it can route faster. For instance,
in Pastry each node can inspect its routing table to see if
one of 50 destinations is stored there and hence choose that
destination to obtain the desired object. In essence, this
optimization provides the flexibility to route to the closest
10 objects among the 50 possibilities.

5. SOCIAL TAG CLOUDS IN EXO

Remember that “social tags” (i.e., terms submitted by
other users in order to characterize content or users) are
stored on the same node as the original content. More specif-
ically, the set of social tags on some content item is coined
the content tag cloud. Social tags can also be associated
with a specific user, and not just with content items, yield-
ing a user tag cloud. The tags constituting a tag cloud can
be ranked according to some measure and sorted according
to this rank. At this stage, we view this as an orthogonal
issue and we leave it to future work. However, for simplicity,
within user tag clouds, we sort tags by the number of users
having used the specific tag for the same item.

Tagging Process. Social tagging involves two user nodes:
the user doing the tagging (tagger) and the user owning the
tagged object (taggee). A tagger issues a tagging request
with one or more tags and eXO transfers this message to
the taggee’s node. There, an association of the object and
the set of tags is stored, together with the origin user profile
of each tag. The association is formed as a content or user
tag cloud, indicating the significance of each tag. In addi-
tion, on the tagger’s side, an inverted list for each tag term
is maintained. After a successful tagging operation, the in-
verted list is updated with the profile of the tagged object.
Thus, a bidirectional relation is created between a tagger’s
and taggee’s nodes.

Query Enrichment with Social Tagging. The ultimate
goal is to improve query-result quality. Recall the eXO ap-
proach to indexing content and user profiles: only an owner’s
tags (a small number) are used to index each object. This
is a pragmatic concern in order to avoid overburdening the
catalogue nodes with continuous updates to index data, etc.
However, it also introduces the potential of missing impor-
tant items when responding to queries. Consider, for in-
stance, an item with large multi-dimensional semantic con-
tent, which requires a fairly large number of terms in order
to be adequately characterized, or, an item whose impor-
tant ’dimensions’ change with time. Since only a fraction of
these terms may actually be used to index the item within
the catalogue nodes, a query specified with these terms will
not return the item. For example, an important article in-
volving Obama’s high school friends would typically not be



indexed with the keyword “Obama” and therefore a query
with keywords “Obama”, “youth” will not return the article.

During content (or user-profile) retrieval, eXO provides
the opportunity to not only download the object, but also
to retrieve the social tags (tag cloud) as we visit the content
owner’s node. Hence, the tag cloud for each retrieved object
may be piggybacked onto the response. This way a new set
of terms (i.e. those in the tag cloud), submitted by other
users and reflecting other opinions, can be discovered by the
querying user. Then, a new search query can be formulated,
being enriched by tag cloud terms, with the user selecting
which tag cloud terms to use based on the terms’ relative
rank. If the tag cloud is too big, a threshold is used, choosing
the most dominant tags of the cloud before piggybacking the
cloud onto the response.

Catalogue Updates. Note that the ranking of tags within
a cloud is performed at the owner’s node, reflecting the
owner’s perception of the importance of each cloud term
for his object. When ranks of these terms exceed some
user-perceived importance threshold, our design permits the
owner to update the “owner tags”; that is, utilize high-
ranked social tags, and index the object using these tags
as well. This mechanism is employed in order to cope with
time dynamics, especially for object’s whose important “di-
mensions” change with time. That is, an owner can decide,
based on the tagging activity on an object, that new terms
can be used to index the object and make it visible and
appropriate from now on.

6. PERSONAL SOCIAL NETWORKS

Up to this point, we have elaborated how the DHT-based
catalogue served as the basis for discovering interesting items
when responding to a query and for retrieving these items.
Social networks, however, are ad hoc in their essence, and
basing all functionality upon the DHT may seem too strin-
gent and artificial.

Building Personal Social Networks. To this extent, eXO
harnesses the extra information supplied by the user tagging
activity to further advance the state of the art.

As mentioned earlier, a bidirectional relation between the
tagger’s and taggee’s nodes is created with every tag; this
also holds for tags on user profiles. These couplings exist in
the form of cross-referenced UIDs stored locally on the tag-
ging/tagged nodes and not as separate network connections
or routing table entries. Further, note that users can search
for users similar to their profiles, or for experts in specific
domains, using relevant terms, and so on; then, through the
tag clouds returned by such queries, the users can further
discover new relevant tags and new related users, resulting in
the emergence of and association with specific social groups
(be it of social friends, professional acquaintances, experts
in domains of interest, etc).

These virtual unstructured networks can then materialize
through “connection requests”: the local node sends a be-
friending request to the remote nodes; if such a request is
accepted by the remote user, the two communicating nodes
keep each other’s UID in separate “acquaintance” lists. eXO
users may then opt to share part of their information with
only members of these social groups, or direct queries to-
wards specific groups that are expected to return more and/

91

or higher quality results.

Querying Personal Social Networks. Putting it all to-
gether, queries in eXO can be of three types: (i) queries
directed to the DHT catalogue nodes only; (ii) queries dis-
seminated through the personal social networks; and (iii)
queries directed in parallel to both of the above mechanisms.

In the first case (see section 4), queries are directed to the
DHT catalogue nodes using which the top-k items for the
query are identified, based on catalogue information (owner
tags). Additionally, querying users can retrieve any tag
clouds associated with the items and reformulate the query
using important social tags. This process can be repeated
until the user is satisfied with the results.

In the second case, queries are directed to the querying
user’s appropriate social network(s). If no appropriate so-
cial network exists, the user can establish it first as out-
lined above and then issue the query. The search query
visits each of the users that are neighbors in the social
net. At each neighbor, the local tagger’s data structure
is searched locally for entries which, like catalogue entries,
contain user/content profiles and UIDs, and they are re-
turned to the querying user. It is likely that these inverted
lists are small, although a similarity processing like the one
we mentioned in the previous subsections, can be applied to
return the most relevant to the query results. Thus, these
results can constitute a complementary list of search results,
which have been obtained by eXO’s similarity query engine,
retrieval algorithms, and tagging metadata. Querying users
can decide how deep into the query-relevant social network
they should delve before they stop.

Finally, in the last case queries are directed in parallel to
both the DHT catalogue nodes and to the relevant unstruc-
tured social network. Thus, a new query can proceed in
parallel to the catalogue nodes and to the nodes making up
the related user-group.

Link prediction. The system, currently, does not perform
link prediction per se. Instead, it is user-centric. Each user
can utilize the public network’s infrastructure to identify
other social links of interest by issuing specific user-profile
queries. Retrieving these profiles and their tags, they can re-
issue more elaborate queries and thus establish/enrich their
PSNs. Having done this, more elaborate algorithms can be
employed to perform link prediction, for example by utilizing
gateway nodes, belonging to more than one PSN, through
which to route befriending requests. Alternatively, as PSN
nodes share elaborate, private profiles of their friends, they
can detect common friends, which are not themselves direct
friends, and advise them to link-up. This is a straightfor-
ward activity facilitated and easily supported by eXO.

7. EXPERIMENTATION

We implemented eXO over FreePastry?. We ran our ex-
periments on an 8-core, 30GB RAM system. Due to space
reasons, we report on only type 1 queries.

Methodology. We used two real datasets from Flickr and
Facebook. The Flickr dataset was formed from the Tagora
Project®, containing associations among users, resources (e.g.

’http://freepastry.org/FreePastry/
3http://www.tagora-project.eu/data/



photos), and tags. With this we created content profiles
for shared items. We used a slice of around 49,832 content
items corresponding to 1000 users and to 264,379 terms.
Second, we systematically crawled Facebook and formed a
set of user profiles from public user data. Public profiles
contain a sample of users’ friends (at most 8 in our data)
and a collection of users’ interests and tastes, given as hy-
perlinks and phrases. We extracted this information (36,261
user profiles) and placed it in XML files which fed our tests.
Before each experiment starts, every network node was ini-
tialized and allowed to exchange necessary messages to con-
struct its routing table. Then, the indexing phase begun.
The indexing concerned both user and content data. When
the indexing process was completed, the system was ready
to execute the test scenarios. We then composed queries us-
ing real user and content profiles. The first kind of queries
were formed by randomly selecting a set of terms from the
indexed Flickr content items, whereas the second one by
choosing one by one the terms from random user profiles in-
dexed in the network. We varied the number of query terms,
the value of k in each query, and the network size.

Performance Metrics. We measured the average number
of messages (hops) on the network for each search or index
request in relation to the network size. Moreover, the aver-
age number of bytes (bandwidth) for each query result list
was computed. Bytes are counted for all the result list data
returned from the catalogue nodes to the query source node.
Last, we measured the node load, computed as the number
of times each node is visited during query processing. The
load was compared to the document frequency distribution
of each indexed term to appropriately explain the results.
“Document” frequency in our approach refers to the num-
ber of content or user profiles that contain a specific term.
Please note that randomly selecting query terms from the
set of all terms does not result in uniform-random loads,
since different terms have substantially different document
frequencies. Also note that the load balancing issues are
largely orthogonal to this work: any off-the-shelf approach
can be utilized to deal with extremely popular terms, for
example, that could overburden an index node responsible
for this term. Note that such issues are inherent into any
design, be it DHT-based or not, since nodes with popular
content will be hit more frequently than others.

Results. Figure 2(a), depicts the load distribution among
nodes for the Flickr dataset, showing a balance in load, ex-
cept for some relatively mild peaks. The peaks are justified
if we take a look at the Flickr dataset’s “document” fre-
quency distribution graph in figure 2(b). The “document”
frequency, for the Flickr dataset contains a number of terms
which are dominant, explaining the peaks. Please note that,
in any case, any load distribution strategy can be employed
in cases where load balancing issues emerge. Figure 3(a)
presents the load distribution in network nodes for the Face-
book dataset, while 3(b) show the relevant “document” fre-
quency. We observe a fairly balanced distribution of node
hits. Also, the percentage of the total hits that any node
receives, is very low. Thus, we expect no bottlenecks at cat-
alogue nodes, despite the non-uniform distribution of the
terms’ “document” frequency.

The next experiment involves the indexing of 8,000 user
profiles (one per node), and 160,000 queries, for various
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Table 1: Average Bytes Per Query Result

Top-K [ # Query Terms [ Bytes
Flickr Dataset
10 2 2.2k
20 2 4.3k
50 2 10.8k
100 2 21.8k
Facebook Dataset

10 1 3.7k
10 2 7.5k
10 3 11.2k
10 4 15.5k
10 5 19.1k

network sizes. We computed the average number of over-
lay messages to the destination catalogue nodes for various
query sizes. Figure 4 shows results for queries with one to
five different keywords. The results confirm the logarithmic
relation between network size and number of messages for
each search request. As mentioned earlier, a search request
initiates a number of parallel routing requests, one request
for every keyword in the query. So we expect to have multi-
ples of the first curve in our graph depending on the number
of query keywords, which we indeed observe.

Finally, table 1 presents the number of bytes communi-
cated between the source and the catalogue nodes. For this
experiment, we issued 20,000 queries per test and computed
the average payload for those queries which returned exactly
the maximum total number of result lists (a multiple of K).
The results show the average size of communicated data per
query to be very low.

Overall, the results confirm that: (i) scalability is ensured
with respect to a growing network, given (a) the relation
between the number of messages and the network size, (b)
the fairly well-balanced load among the network nodes, and
(c) the small size of bandwidth consumption for all queries;
(ii) the parallel nature of the search-query process ensures
that the user-perceived latency will be low, as the results
are computed in just one communication phase.

8. RELATED WORK

The backbone of existing approaches for top-k query pro-
cessing is the classic paper of Fagin, et al.[10], which has
been extended to distributed environments in works such as
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KLEE[15] and TPUT[6]. However, all these approaches are
quite expensive. KLEE and TPUT contribute an overhead
of at least two phases of communication among the query
source and destination nodes. In comparison, our approach
requires only a single phase of communication.

Social web search has also been studied in [16], where web
searching results are appropriately enhanced by the social
links’ data. Top-k processing in collaborative tagging sites
has been studied in [23] where user networks are created
(e.g. based on the number of same tags they used for tagged
items, or on the overlap of their tagged items) and uses
generalized versions of Fagin’s algorithms to exploit social
tags. An item is deemed relevant to a query issued by a
user u based on how many users in u’s network have tagged
this item with a query term. [5] presents top-k algorithms
for selecting the most relevant tags given a document. eXO
provides mechanisms to support the building and utilization
of such networks.

In [1] a gossip protocol, is employed so to associate users
with similar tagging behavior and to develop enough state
locally for top-k queries to execute swiftly. This is in con-
trast to our eXO design where a DHT is used for this pur-
pose. Note that using a DHT and our top-k approach will
permit faster retrievals and associations with other users,
but lacks the flexibility afforded by gossiping over a com-
pletely unstructured network.
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In [19] top-k processing employs similarity functions tak-
ing into account features such as friends and (friends of
friends), and fine-grained relations of tags to documents and
profiles and tag expansions are defined. In eXO we also pro-
vide similarity definitions that consist of query- and user-
specific parts and can be enhanced by social tags. Although
not allowing for transitive friendships yet, this can be im-
plemented too by visiting direct friends and issuing queries
for their friends etc. However, this will be much costlier in
a decentralized environment than the centralized environ-
ment in [19]. Finally, the top-k algorithm in [19] considers
additional information that is not easily available in decen-
tralized settings, such as all the documents tagged by any
user, all the tags used by any user, etc.

Related work in P2P searching includes the Minerva and
Galanx [3, 22] DHT platforms. Like eXO Minerva main-
tains indices on the DHT. However, these indices index dif-
ferent information than our catalogues, query processing in-
volves a multiphase top-k algorithm to return the appro-
priate results, no special content retrieval algorithms exist,
and there is no support for social tagging, social query ex-
pansion, building personal networks, and relevant scoring
functions. High costs also occur in Tagster[12]: based on
a vector space model, it adds extra overhead for the com-
putation and maintenance of global statistics, such as the
document frequencies. Global statistics are costly to com-



pute and maintain despite efforts such as [2].

With the exception of [1], none of the above addresses
the issues of decentralized scalable and efficient social net-
working. The gossiping protocols presented in [1] could be
combined with eXO to incorporate the benefits of gossiping-
style discovery and search. This is left for future work.

9. LIMITATIONS AND OPEN ISSUES

This work was a first crack at designing and implement-
ing fully decentralized and widely distributed social net-
working services, bringing the power and burden of con-
tent ownership and sharing to the end users at the edge
of the network. Our system provides efficient decentral-
ized support for the cornerstones of social networks: friend
lists, user/content tagging, and distributed processing of
keyword /profile-aware queries. However, several issues re-
main open for future work.

Privacy and Availability. First and foremost, our work
does not deal with content availability for privately/intimately
shared content. One could devise and advocate some secret-
sharing technique to allow private content to be replicated
across the network so as to boost its availability without
compromising its privacy. Any candidate scheme should be
flexible enough to allow for frequent membership changes,
while imposing a low network overhead; a formidable task
in its own. Replication to “friends” (who already have ac-
cess to private content) would be another attractive route;
this solution would in turn call for a technique to trans-
parently and remotely revoke access rights and replicated
content from “x-friends”. Moreover, even public data repli-
cation is an open issue in its own, if one further desires to
perform it so as to enhance query performance in addition
to data availability.

Meta-services. Second, social network users are accustomed
to a specific “workflow” and meta-services, such as news
feeds and games. The former could easily be implemented
via an elementary publish/subscribe system of sorts; it would
suffice to send notifications of new events to all nodes in the
friend list of a given node. More elaborate schemes may also
be devised (e.g., using dissemination trees or application-
level multicast techniques). Similar solutions could also be
applied to distributed games, albeit the requirements with
regard to the latency of notification propagation will be
much more stringent. All this may stress the network over-
lay, calling for new (possibly hierarchical) structures, such
as those outlined in [17], or even completely novel overlays,
specifically tailored for the needs of decentralized social net-
working.

Gossiping and PSNs. Third applying gossip- or broadcast-
based protocols to the design of our personal social networks
may yield some very interesting results. Directed broadcast
has already been studied in DHTSs[7]; further examination
and application of such solutions in our environment remains
an open issue. Similarly, gossiping algorithms may be em-
ployed to traverse the social graph (viewed as the union
of all PSNs) and identify new social links, as is advocated
in [4]. This is an interesting issue. One must decide on
which metrics and features to use in order to establish fur-
ther social ties between users. For example, identifying com-
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mon neighbors, aggregating similarity weights across several
traversed PSN links, deciding on the appropriate summary
structures to use to represent such features (which are prop-
agated through PSNs) are open, exciting issues.

Anonymity, Autonomy, and Privacy. These are conflict-
ing goals. Specifically, owners may wish to know the iden-
tity of requesting users, before they grant a request to access
local content. Striking a balance between the goals of au-
tonomy and anonymity is an open issue. However, note that
the decentralized nature of eXO does not create as serious of
an anonymity problem as that of centralized systems. In the
worst case, querying users may have to reveal their identities
to the users whose content they wish to retrieve. However,
there is no globally available record and log which records
a users’ accesses, behaviors, and social ties. Viewed differ-
ently, to uncover private data (e.g., the user’s PSNs, the
content items accessed by her, etc.) a large distributed set
of meta-data must be accessed, which renders the task more
difficult. Even more importantly, there is no single, central
organization which maintains this information and can use
it serendipitously or maliciously.

Distributed collaborative filtering. eXO can be leveraged
to perform collaborative filtering. For instance, to recom-
mend (perhaps using continuous background queries) new
items of interest to users, based on what other users/friends
are doing. In this direction an infrastructure that can per-
form the following tasks would be highly desirable:

e Monitor events of interest (such as when a user ex-
presses an interest on an item, or highly tags/evaluates
an item, etc).

e Collect such behavior information efficiently from the
public network and PSNs.

e Detect when new recommendations can be effectively
made to others (minimum support levels for similarity
and number of event occurrences, etc).

e Make recommendations to those appropriate friends,
based on friends profiles.

e Figuring out what is new to some friends and what
they already know about.

Doing all this in a decentralized manner is a challenging
issue.

Last, there are several information retrieval related issues
that our work has not touched. For example, selection of the
best tags to use for indexing or of the most promising tags
in a tag cloud to use for query enrichment, stopword-like fil-
tering of highly popular tags, and distributed novelty-based
computations on the set of events delivered to recipients of
news feeds, are just a few of them.

10. CONCLUSION

We presented eXO, a novel decentralized social network.
eXO consists of (i) mechanisms for indexing content and re-
lated metadata, (ii) appropriate similarity functions with so-
cial networking and traditional query-to-content relevance,
(iii) efficient top-k algorithms for search-for-user and search-
for-content queries, (iv) efficient overlay algorithms for re-
trieving content, exploiting the architecture of the overlay
network on the one hand, and the characteristics of con-
tent in social network sharing environments on the other,
(v) scalable social tagging mechanisms and methods which



exploit social tags to improve the quality of query results,
(vi) methods for building social networks, (vii) discovery
and retrieval of related content via a combination of DHT-
based indexing and of unstructured, query-relevant, social
networks and (viii) an implementation of the system and a
performance evaluation substantiating the claims for scala-
bility and efficiency. With this work we have endeavored to
showcase the appropriateness and feasibility of fully decen-
tralized social networking services. The widespread adop-
tion of Diaspora has testified that the users are interested
in and probably ready for such a move. We therefore put
forth this paradigm as our route of choice.
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