
Transactional Intent

Shel Finkelstein, Thomas Heinzel, Rainer Brendle, Ike Nassi and Heinz Roggenkemper
SAP Research

3410 Hillview Avenue
Palo Alto, CA 94304

{firstname.lastname}@sap.com

ABSTRACT

Data state in a data management system such as a database is the
result of the transactions performed on that data management
system. Approaches such as single-message transactions and field
calls [Gray1993] come closer than before/after values to
expressing the intent of a transaction, the semantic transformation
that should be performed on the data state even if that state is
different than what was previously read. But intent is an even
higher-level semantic description. This paper illustrates the use of
intent-based transactions and processes in several applications,
and describes the benefits from exploiting transactional intent.
We provide an application framework for intent, and discuss some
advanced aspects of intent, including its relationship to apology-
oriented computing [Helland2007].

Categories and Subject Descriptors
H.2.4 [Systems]: Concurrency, Distributed databases, Query
processing, Transaction processing. H.2.8 [Database
applications]. J.1 [Administrative data processing]: Business,
Financial, Manufacturing. D.2.11 [Software Architectures]:
Data abstraction, Patterns. D.1.3 [Concurrent Programming]:
Distributed programming.

General Terms
Design, Management, Performance.

Keywords
Intent, data management, database, transaction processing,
metadata, business applications, business processes, optimization,
supply chain management, supply network collaboration,
operational business intelligence, apology-oriented computing,
events, callbacks, compensation.

1. INTRODUCTION

A data management system such as a database (DB) contains data,
which at any time has a state. As transactions are performed, that
state changes. Database state is an interesting materialized view
on the database log. Some systems store multiple versions of
some data, in which case all the versions are part of the state.
Transactions transform the DB state, by doing insert, update and
delete operations (or utilities such as loads) on rows (or sets of
rows) in tables.
IMS FastPath [Gray1993] provided single message transactions
which transformed IMS state by reading and updating data, only
holding locks while the transaction was executed. Field call (e.g.,
increment/decrement) approaches to state transition have this
same transformational character, describing an operation (possibly
a program with a series of steps) to be performed, rather than a
new state. The advantage of operation-oriented transactions (for
transactions consisting of a single operation) is that concurrency
control to isolate one transaction from another is only required
while the operation is executed, avoiding long-running pessimistic
locking as well as optimistic concurrency control rollbacks.
(Short-term conflicts can be addressed by retrying operations.)
Having transactions consisting of single stored procedures is a
generalization of this idea.
Operation-oriented approaches describe state transformations,
rather than producing a new state assuming (enforced or hoped
for) assumptions about old state matching expectations. The
intent of a transaction can be a series of operations or a
description mappable to a series of operations. If the mapping
from a transaction’s intent to its state transformation is
deterministic, then a log of the intents for a sequence of
transactions deterministically defines the transformations
performed by the sequence of transactions, based on the
composition of (transformations defined by) the intents of those
transactions.
As a very simple (and frequently cited) example, consider an
inventory transaction whose intent is to change the inventory of a
bin based on a formula (such as increment/decrement). The
semantics of each operation is well-defined, as is the semantics of
a sequence of such operations. Normal execution of a sequence of
transactions in a given state produces the intended semantics.
However, unless the intent of the transactions is recorded, the
general semantics of the operations is lost; they were applied in
the current state correctly, but could not be applied in changed
circumstances. A transformation from old inventory of 10 to new
inventory 0 might have subtracted 10, but it also might have set
inventory to 0, or doubled it and subtracted 20.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well allowing derivative works, provided that
you attribute the original work to the author(s) and CIDR 2011.

5th Biennial Conference on Innovative Data Systems Research (CIDR '11)
January 9-12, 2011, Asilomar, California, USA.

104

However, intent may be more semantically sophisticated than just
an operation (or a series of operations). The business intent might
be to fulfill a sales order from a customer (which happens to be
for 10 units of a product), possibly taking into account other
customer orders and maximizing some overall goal (such as total
profit), a higher level of semantics than the subtraction operation;
this intent should be recorded, in addition to operations and/or
data transitions.
Why record intent if transactions are complete? As we’ll see in
the application examples discussed in Section 2, things can go
wrong and business circumstances change, so compensating
transactions/apologies [Helland2007] may be needed, sometimes
including re-execution of transactions in a new state. Intent can
be stored in the database just like any other data, allowing it to be
searched and accessed (subject to authorization).
Section 3 outlines an application framework for handling intent.
Section 4 presents an operational business intelligence example,
and section 5 discusses some aspects of business process intent.
Section 6 briefly discusses some additional implications and
considerations for intent motivated by the examples, and section 7
mentions some related work.

2. APPLICATIONS USING INTENT

This section describes some examples of the use of intent in
applications.

2.1 Order Entry

When you deal with an on-line merchant and place an order for
the items in your shopping cart (such as books), you often see a
screen acknowledging that your order has been received, giving
you a number identifying the order. You also often receive an
email acknowledging that the order has been received. Before
your order is taken, there may be preliminary checking to see if
your items are in stock, perhaps by having an (not necessarily up-
to-date) inventory estimate in individual order entry nodes (which
have catalogs and local transaction histories, which are
transmitted to fulfillment services for processing).
Although some order entry systems “guarantee” that the item you
ordered is available (e.g., purchases of specific seats), many
systems merely acknowledge that they recognize your intent,
which is to purchase your shopping cart items. There may be
reasons why your purchase cannot be honored, such as too many
simultaneous orders of an item (if inventory is not strictly
managed).
The separation of order entry from order fulfillment probably
seems obvious to people, but teaching clients (humans or
applications) to accept that separation is a significant step,
separating synchronous capture of the purchaser’s intent from an
asynchronous response from the merchant system describing
actions taken to honor that intent. The response may include the
dates items will be shipped and indications that some items may
be delayed. If a purchaser specifies that certain items should be
shipped together, then delays in one item will delay associated
items as well. Only by capturing purchaser’s explicit/implicit
intent (from order, profile, etc.) can the transaction (or set of

transactions) be executed correctly. Even if a subsequent apology
is needed (e.g., because a shipment was delayed or a warehouse
burned), the same intent-based paradigm is applicable.

2.2 Calendar

This is a description of a hypothetical calendar system using
intent; perhaps some system with these capabilities exists.
Suppose that I, as manager, want to schedule a Project Review
meeting. It must include the project lead and at least 3 out of 4
staff members, and it must be after an architectural review
meeting. The value of the meeting is higher the earlier in the
week it is scheduled, but it must be scheduled before next Friday.
This is an intent description that captures constraints and informal
objective functions (“earlier in the week is better”) for my
meeting. If the meeting were scheduled for Tuesday at 2pm
without capturing the intent, then it wouldn’t be possible to
automatically reschedule the meeting if the Architectural Review
were delayed. Rescheduling might involve moving a lower
priority meeting for me or one of the other staff members.

2.3 Supply Chain Production Scheduling

SAP Advanced Planning and Optimizer (APO) [Balla2007] does
planning tasks, such as scheduling machine runs (production
orders) to produce finished products. Machines have given
capacities; jobs require materials (which may have to come from
other jobs). Constraints (e.g., latest delivery dates) and objective
functions (weighted combinations of time and costs) are specified,
and APO optimizes scheduling to maximize (heuristically) the
objective function while meeting the constraints.
Requests to APO model intent either to produce product for
inventory stock, or to deliver products for customers. APO
acknowledges these requests. Production jobs to fulfill the
requests may be scheduled incrementally based on requests taking
into account existing resource schedules. Periodically, global
optimization may be performed across all jobs. Because intent is
captured, not just proposed job fulfillment schedules, such
incremental and global scheduling is possible across all jobs,
adjusting schedules when necessary for new high priority jobs,
which may delay previously entered lower priority jobs.
There is also intent (which we call meta-intent in section 6.3) in
the way administrators define master data for the scheduling
algorithm, so that certain customers, products, locations and
organizations have high priorities.

2.4 Supply Chain Business Interactions

SAP’s Availability-to-Purchase (ATP) [Balla2007] is part of
Supply Chain Management. To initiate a purchase, a purchaser
issues a request for merchandise to a supplier, specifying
quantities, delivery dates, quality, etc. The supplier responds with
a term sheet that may specify multiple alternatives for quantities,
dates and prices of items that are available to purchase, as well as
term sheet acceptance deadlines. The purchaser may submit a
purchase order based on the term sheet, and the supplier can

105

create an internal sales order and schedule deliveries after the
purchase order is accepted.
Each of these steps involves an expression of intent between
purchaser and supplier, which enables parties to deal with
exception cases and issue/handle apology events. For example,
while waiting for the actual purchase order after sending a term
sheet, the supplier might choose to reserve quantities only for a
limited time (or not at all), and the supplier might have to
apologize to the purchaser if quantities are not available after the
purchase order is submitted. Later in the process, a supply
delivery may be delayed due to a manufacturing problem, just as
merchandise delivery may be delayed in the order entry example.
Term sheets (describing quotations for items available to
purchase) may become invalid for business reasons, e.g., because
the purchaser is no longer eligible for discounts or because they
time out. Capturing intent supports both better optimization
across the set of intents for all sales order, not just based on
current schedules, as well as compensation actions (which are
forward actions, not rollbacks) if constraints for a particular sales
order no longer can be met due to higher priority sales orders.

2.5 Supply Network Collaboration

Applications such as SAP’s Supply Network Collaboration (SNC)
[Hamady2009] handle collaborative negotiations between
companies. For direct material replenishment, price is negotiated
up-front but terms for delivery times and quantities can frequently
change from both demand-side and supply-side. SNC records
current values and past histories for interactions between
purchasers and suppliers. A supplier may send an offer to a
customer, expressing terms to sell; a purchaser may send an offer
to a supplier, expressing terms to buy. These are independent,
offers. Either party may propose an agreement based on the terms
expressed in the other’s offer; for example, the purchaser may
send an offer to buy on the supplier’s terms. The supplier decides
whether to confirm the sale on the terms that it offered; business
conditions may have changed. If the supplier confirms, then there
is an agreement… unless one of the parties subsequently cancels,
requiring handling of that cancellation by the other party.
The communicating purchaser/supplier state machines for SNC
record and exploit intent for both business parties (supplier and
purchaser). For example, if a supplier does not confirm an
agreement, or reneges on terms, the purchaser can determine what
the intent of the purchase is, and decide whether to pursue new
terms with that supplier or another supplier. Purchaser-side event
handlers (which are rule-based) determine which deviations in
supplier confirmations should automatically be accepted, and
which a human being needs to review.
If the purchaser only knew about the planned delivery (data
derived from negotiations) or about the logical operation
performed (acceptance of supplier’s terms), there would not be
enough information to handle the cancellation event (apology)
properly. Knowing the purchaser’s intent to obtain delivery of
merchandise by a given date enables the purchaser’s system to
deal with the cancellation. Mechanisms and data for doing this
are discussed in the next section.

3. APPLICATION FRAMEWORK FOR
INTENT

Applications and application frameworks exploit the capabilities
of the data management layer of a system, but are not themselves
part of the data management layer. Delivering transactional intent
for the applications described in section 2 requires an application
framework supporting intent. This framework can be built on top
of existing data management functionality, although optimizing
data management for intent may be valuable, particularly for some
of the more advanced capabilities described in section 4.
This section gives a very informal description of what intent is
and what the requirements are for an application framework that
handles intent. There are many alternative ways that intent can be
expressed formally, and many frameworks that meet these
requirements, and a single business application suite can support
multiple alternative implementations.

3.1 Intent expressions

Definition: Intent is an expression of the goals and constraints
that should be met by a business transaction or business process,
optionally with optimization parameters (e.g., objective function
parameters or priorities). There also can be satisfaction
events/callbacks associated with satisfying the intent and failing
to satisfy the event, both when the intent is initially satisfied/not
satisfied, and when there are changes in how/whether the intent is
satisfied.
Intent for a given problem domain implementation may be
expressed using a domain specific language. The expression of
intent may be imperative (e.g., explicit code to subtract 10 from
Inventory as long as result is zero or more), declarative (“schedule
a meeting having the following participants, occurring after an
architecture review meeting but before Friday”) or some
combination of declarative and imperative. The only requirement
is that intent be “understood” by the application framework intent
optimization engine.

3.2 Intent optimization engines

An application framework for executing intent includes an intent
optimization engine that determines which intents will be
satisfied and how such intents will be satisfied (intent execution
plans). Intent may be regarded as metadata; it doesn’t describe
what has happened (data) or what is going to happen (plan or
projections); instead, it describes what the intent submitter
would like to happen. Any intent execution plan that achieves the
intent’s goal while meeting its constraints satisfies that intent, and
should be acceptable to the intent submitter. But the intent
optimization engine heuristically optimizes (based on objective
functions or priorities) across all intents.
For example, an intent optimization engine for Supply Chain
Production Planning would schedule materials and machine runs
to produce products (production orders). Optimization parameters
such as priorities and objective function parameters are used by
the optimization engine to make scheduling decisions. A
scheduling engine that chooses intents based on highest priorities

106

would expect priorities as its optimization parameters. Other
intent optimization engines might maximize an objective function
total across all intents whose constraints are met, perhaps
subtracting penalties for intents that cannot be satisfied. For
example, Supply Chain Product Planning might maximize total
revenue or profit. More complex optimization strategies are also
possible, such as maximizing profit while ensuring that all high
priority jobs are finished on time. On the other hand, a very
simple optimization engine could use a rule-based approach to
satisfy constraints without using priorities or objective functions.
Some optimization parameters might be administratively
determined, such as the business importance of the user,
organization or the process instance submitting the intent. Other
optimization parameters, such as deadlines, and the penalties for
not meeting an intent’s deadline, might be explicit optimization
parameters, or could be expressed as metadata.
When a new intent is submitted to an intent optimizer engine, one
scheduling approach is to find the best way to satisfy the new
intent without disturbing existing plans. Another approach is to
satisfy new high-value intents (with high priority or large
objective function contributions) with minimal disruption by
rescheduling the plans of one or more intents with lower priority.
Of course, such incremental heuristic approaches may not find the
maximum utility schedule as determined by the objectives
function, so periodic global optimization may be appropriate. In
Supply Chain Production Scheduling, global optimization can be
expensive when there are many (tens of thousands) resources,
products and jobs/intents. Dealing with “apologies” due to
rescheduling is another expense, even when products are
produced sooner than expected. Tradeoffs between incremental
and global optimization depend on the individual organizations
and applications involved. Another common scheduling approach
(which has both advantages and disadvantages) is to partition the
problem into smaller sub-problems which are addressed
independently, e.g., by first assigning a job to a particular factory
and then doing scheduling within that factory.

3.3 Satisfaction events/callbacks

When an intent optimization engine initially determines how an
intent will be satisfied (or that it won’t be satisfied), it generates a
satisfaction event that notifies the intent submitter (and other
interested parties or authorized event subscribers) about its
decision. For example, when a calendar appointment is
scheduled, people invited to the meeting should receive meeting
requests. A simplified approach, which we’ll emphasize, requires
an intent submitter to specify satisfaction callbacks rather than
satisfaction events. Note that there can be separate satisfaction
and non-satisfaction events (or callbacks) associated with a given
intent. If an appointment’s meeting time has to be adjusted
subsequently due to a scheduling conflict such as a more
important meeting, then a new satisfaction event/callback would
be generated. If the appointment has to be cancelled, or delayed
past its deadline, than a non-satisfaction event or callback is
generated. Such events/callbacks are usually not handled within
the transaction generating them, but the framework should
guarantee that they will be executed once and only once (using
well-known retry and idempotence techniques [Gray1993]).

The event associated with rescheduling or cancelling a delivery or
a calendar appointment has been called an apology
[Helland2007]. Such events may be frequent in flexible planning
environments requiring frequent intent re-optimization. When a
purchasing process in Supply Network Collaboration receives a
cancellation apology, it must determine how to cope with that
event.1

 The purchasing process would compensate by marking
the previous agreement as cancelled (and perhaps take other
actions, such as tracking supplier’s reliability), and then the
purchasing process would find another way to meet its intent to
received the merchandise by the given date, perhaps by ordering
from a different supplier.

3.4 Change metadata

To perform compensation, the purchaser process must know
change metadata associated with intents (or more specifically,
with a plan to satisfy intents), and then perform application-
specific methods for compensation, which are always forward-
going set of actions, not rollbacks. Change metadata includes
three elements:

1. Intents and the intent execution plans for meeting
those intents, which may involve business objects and
sub-intents.

2. A dependency graph between business objects, a
directed graph labeled with callbacks2

3. Version history for objects, indicating not only value
changes but also the intents that led to those changes.

 and conditions
in which those callbacks should be invoked. When
there’s an edge between objects A and B, the callbacks
are on object B, while the conditions may involve both
A and B.

Change metadata describes directed cross-relationships among
object versions and intents. As we’ll see, these relationships may
have been created in different transactions, and even by different
business processes running different applications.

3.4.1 Change metadata examples

Example: In the calendar application, meeting M2 may have to
occur after another specific meeting, M1, so meeting M2 depends
on the timing of meeting M1, and there’s an edge between M2
and M2. If M1 is moved to a later time, then the callback on M2
associated with the (M1, M2) dependency edge is invoked.3

1 A purchasing process may also receive notice that a supplier has
reduced its confirmation level, which is a weak form of
cancellation.

 The
intent which created M2 (identified in M2’s version history)

2 The dependency graph can also be viewed as describing
subscriptions to object change events, but we’ll mainly use the
callback approach in this section.

3 A more sophisticated implementation might invoke that callback
only if M1 now occurs after M2; a less sophisticated
implementation might invoke that callback if M1 changes in any
way, not just its timing.

107

might have specified a deadline. If the change in M1 means that
M2 can no longer be scheduled before its deadline, then a non-
satisfaction callback for M2 will be invoked. The person who
scheduled the meeting (or a human or software agent for that
person) will be notified and make take further actions, such as
moving a higher priority meeting so that M2 can occur on time.

Example: A sales order may have been created in an
Availability-to-Purchase application. In Supply Chain Production
Scheduling, the dependency graph may include an edge going
from that sales order to a machine production order that was
created to help fulfill that sales order. This edge indicates that the
production order depends on the sales order. If the sales order is
cancelled, then the machine production order should also be
cancelled, or perhaps redirected to fulfill another sales order,
which results in a different dependency graph edge.
But the sales order also depends on the machine production order,
so in this case there are edges in both directions.4

 If the machine
order cannot be completed because a production line machine
failed, then the intent execution plan for the sales order needs to
be revisited. The execution plan for the sales order may involve
multiple production orders on different machines, each with a sub-
intent created to fulfill the overall intent of fulfilling the sales
order. The sub-intent behind the failed machine production order
could be fulfilled using other production line machines, as long as
scheduling dependencies among jobs (which create outputs used
by other jobs) are met.

3.4.2 Storing /maintaining change metadata

As the production scheduling example above shows, objects
created by one business application may depend on objects
created not just by other transactions and business processes but
even by other business applications. Hence the change metadata
tracked, the means of tracking it, and the methods for handling
callbacks require that the set of applications cooperate in a
common framework. Let’s discuss storing and maintenance of the
three elements of change metadata.

3.4.2.1 Storing/maintaining intent execution plans

Storing intent execution plans is relatively straightforward. When
an intent execution engine creates a plan satisfying the intent, it
stores the intent and the execution plan associated with it. A plan
may be hierarchical, involving satisfying sub-intents (such as
individual product orders used to satisfy a sales order), each of
which has an execution plan. When a plan is updated due to a
satisfaction event/callback, the new plan is stored, perhaps
keeping the old version (and the reason it was updated) for
auditing, historical data mining and predictive analytics.

4 Although there are edges in both directions, a change in one
object won’t lead to an infinite loop because changes damp out.
Infinite loops should be highly unlikely in correct programs
because of application semantics.

3.4.2.2 Storing/maintaining dependency graphs

The dependency graph is more difficult to maintain because it is a
cooperative data structure built across many instances of different
business processes and applications. In a sense, the dependency
graph helps unify different applications. An application may
access/update many objects; the application writer (or maintainer)
must understand which inter-object dependencies matter, as well
as how they should be addressed. This knowledge is specific to
each application domain, but fortunately that knowledge is often
separable by application.
A developer who is writing (or changing) application X should
understand which business objects X depends on, as well as how
other objects in X depend on those objects. Objects in X may
depend on other objects in X (e.g., a production order dependent
on other production orders) or on objects that are created or
modified outside application X (e.g., a production order
dependent on a sales order). Although a developer writing or
modifying X5 may need to know how the objects that X depends
on could change (so that X may react to those changes),6

Writing or maintaining an application requires creating and
maintaining the dependency graph, including the callbacks (and
code for handling the callbacks) associated with it. Although
there could be tools that help with dependency graphs and
application separability helps simplify the problem, the creation
and maintenance of dependency graphs requires application
domain knowledge and some stylistic conventions. For example,
if a production order depends on a particular sales order, then
including the sales order as a parameter for functions creating or
modifying the production order helps the developer describe the
dependency.

 the
developer need not know the internals of the applications that
change the objects X depends on. However, the intent of the
changes made by those other applications may be worth knowing
(and is available in version history, describe in the next
subsection).

3.4.2.3 Storing/maintaining version history

Version history, like intent execution plans, is relatively
straightforward. The version history for business objects is
similar to versioned data in databases, although it has additional
information supplied by the application framework. That
additional information could identify the intent of the transaction
that created each data version, and provenance-like descriptions of
subparts of transactions (like production orders created to fulfill a
sales order), reflecting their sub-intents. If intent is stored for
each transaction, then storing the transaction id for each version

5 Writers of specific components of application X should only
need to know about object dependencies involving objects in
their components.

6 One coarse way a developer can deal with updates of objects you
depend on is to treat each of them as a deletion followed by an
insert, which simplifies the set of changes the developer must
handle. In practice, that would be an awkward and inefficient
approach, hiding the semantics of the update and potentially
obfuscating its intent.

108

identifies the intent of the transaction, but doesn’t identify higher
level business process intent (discussed in section 5) or lower
level sub-intents, such as creating production orders.
Additional “provenance” that could be stored in version history is
the events/callbacks processed due to dependencies, including the
object that changed, the dependent objects and actions taken by
callbacks (which typically involve one or more transactions and
intents). As with intent execution plans, keeping versions of this
data may be valuable for auditing, historical data mining and
predictive analytics.

3.5 Some application framework
implementation considerations

In this section we informally described an application framework
for intent, including intent expressions, intent optimization engine,
satisfaction events/callbacks and change metadata. Change
metadata is the most complex part of this, particularly dependency
graphs.
We emphasize that the capabilities described in this section are all
at the application layer (application framework plus application
programming), although the application layer leverages data
management capabilities to retrieve and update application data
and metadata. Of course, transactional techniques should be used
to ensure atomicity of data/metadata updates, as well as the
asynchronous events they generate (which are handled outside the
transaction). SAP traditionally has handled many aspects of data
management (buffering, locking, update queues) in an application
layer outside of the database [Finkelstein2008], only touching the
database (beyond reads) when transactions commit, and SAP
implements some aspects of the application framework we
described in that application layer.
Stored procedures can improve performance and encapsulation by
executing code within that data management system. For
example, a scheduler could select intents to satisfy, and then
schedule them using a single transaction running as stored
procedure at an appropriate isolation level. This reduces
pessimistic lock duration significantly, or reduces rollbacks if
optimistic concurrency control is used in the DB.
Putting too much code within the DB might make it a bottleneck,
and would reduce the flexibility of the application layer.
Balancing database and application tier capabilities is an art with
some challenging tradeoffs worth further consideration. We’re
interested in application (and application framework) specification
paradigms that support multiple execution bindings to the
application and database layer, with “best” binding selected by an
optimizer.

4. OPERATIONAL BUSINESS
INTELLIGENCE

In this section, we describe another example, an approach to
operational business intelligence (OBI) using intent that we think
may (appropriately) do a better job of delivering the actual intent
of decision-makers better than some other approaches. We’ll
explain the problem, then talk about OBI with a single database,
and finally look at OBI with multiple databases. That leads us to

business process intent, which is discussed more generally in the
section 5.

4.1 The operational business intelligence
problem

When decision makers or other knowledge workers see reports
generated from databases, they may detect problems in their
businesses which they want to address. Something might be
wrong that needs to be fixed, such as a (repeatedly) broken
production line, or there might be a better way of handling an
issue, such as a customer escalation. Business intelligence
involves getting data from one or more databases so that decision
makers can act on it in a timely way. At one time such reports
were generated weekly or nightly, but decision makers
increasingly want such information immediately, using current (or
nearly current) data. Instead of requiring decision makers to ask
the right questions, active databases may automatically alert
people when unusual events (or unusual complex events,
composed from other events, e.g., a sequence of events) occur.
This allows people (or automated agents) to react quickly to these
unusual events, handling them as soon as possible.
However, even if corrective actions are taken very quickly, the
state of the database that the decision maker observed may have
significant differences from the state of the database when action
is taken. The production line might be under repair by a restart or
other action that’s underway. Another decision maker (human or
automated) might have addressed the production line failure by
diverting some other production line to deliver high priority
products assigned to the failed production. An appropriate
corrective action in the original state might be completely
inappropriate in the current state, whether it’s minutes, seconds or
even fractions of seconds later.
Moreover, the state of the database and the state of the real world
aren’t necessarily in agreement. The observation that the
production line was broken might be erroneous. Other production
lines may have failed, so an appropriate action with only one
production line down might no longer be appropriate. Even if the
database state and the real world are in agreement, good and bad
things might happen subsequently, such as a new production line
starting or power going out in a factory. If the only information
that is captured from the decision maker is the decision they
requested, or worst yet, the data operations (and associated real
world actions) they caused, then it seems impossible to deal with a
situation different from what was expected when the decision was
made.
The operational business intelligence (OBI) problem is
determining how to use business intelligence to make operational
business decisions that are appropriate for both the decision time
and the current database state when the decision is applied. That
is, decisions should continue to be applicable by application code
in appropriate ways when the database state changes.

109

4.2 Intent and operational business
intelligence for one database

Not surprisingly, we believe that intent is an excellent approach
for OBI. If the intent of a decision is captured, not just a set of
actions that effectuate that decision, then the intent optimization
engine can try to meet that intent in any current (or future)
database state.
For example, if a decision maker believes that a production line
manufacturing a product for a sales order has failed, and product
delivery is more important than was previously indicated, then the
decision maker could increase the priority of that production job
or of the sales order that generated that production job. If an
objective function rather than priority is used to schedule machine
production lines, then the decision maker could bump up the value
of servicing this particular customer or this particular sales order.
If the production line has recovered, or if another decision maker
has taken actions to ensure that this production order will
complete, then the original decision maker’s action will have no
effect since their intent was already being met. The intent
optimization engine might even be taking action to handle the
production line failure already, based on the intent originally
expressed for the sales order. Changing the priority of this
production job might cause it to finish more quickly, or might
have no effect.
Some decision makers might not understand detailed priorities
and objective functions, and the impacts these could have on
production line scheduling. It would be better if the user
experience for decision makers were expressed in their own terms,
where they could request (or require) that job constraints be met,
possibly with coarse granularity priorities. Alternatively a rules-
based approach could be used. Decision makers should also be
able to view the intents that can be satisfied and the intents that
cannot be satisfied with visualizations that match their roles and
experiences. For example, if an intent cannot be met, then a
summary visualization of higher priority intents might be visually
presented showing revenue, responsible groups and priorities for
those intents. For optimization algorithms, this can be achieved
with explanation components that explain the constraints, and
ideally also explain the contribution of various elements to the
target function.7

4.3 Intent and operational business
intelligence for multiple databases

Now let’s consider the operational business intelligence problem
when business intelligence data may come from multiple database
sources, either via a data warehouse or via queries to these
databases. For simplicity, we’ll assume that there are two
databases. At first glance, this may seem like the same problem
that we considered in the previous section. If actions can be taken
against both databases using distributed transactions with two-
phase commit, then the problem is essentially the same as in the

7 See, for example, APO Supply Network Planning,
http://help.sap.com/saphelp_ewm70/helpdata/en/87/383e4229f1
f83ae10000000a1550b0/content.htm

previous section. However, there are good reasons, such as
performance and failure handling [Helland2007], for avoiding
two-phase commit unless both databases are in the same
management domain, and perhaps even when they are.
Let’s assume that distributed commit is not acceptable, and the
decision maker wants to take actions that affect both databases.
Since we’ve assumed that two-phase commit isn’t acceptable, we
can’t perform actions against the two databases atomically.
Instead, however, we can perform actions similar to those in long
running transactions and sagas [Gray1983, Garcia-Molina1987],
where transactions are performed against both databases, and both
must succeed for the saga process to complete successfully. A
common example is planning an itinerary for a trip to a city,
requiring both a roundtrip flight and a hotel, which are booked in
different databases. If a traveler books a flight but can’t get a
hotel for those dates, then the flight will be cancelled, and the user
may try to book the trip on different dates (or to a different city).
In an OBI situation, the traveler may see flights and hotels (and
their prices) together in a warehouse, and may decide to book a
particular flight and hotel. Using intent, the traveler could express
date, price and hotel location constraints, as well as an objective
function that trades off price with flight duration and hotel quality.
The intent optimization engine could choose a flight and hotel for
the traveler, and might book the flight, only to discover then the
hotel no longer has rooms available for those dates. It might
choose another hotel room, or might cancel the flight and select
hotel and flight on another date. In some ways, this is similar to
the calendar example from section 2, except that multiple
databases are involved, so an application level business process is
required, not just a single transaction.
If a room at a better hotel becomes available cheaply, then a
satisfaction callback would be executed allowing the traveler to
switch hotels. If staying at that hotel requires changing flight
dates, then the change should only happen if the objective
function (including flight change penalties) improves; the change
in flight and hotel should be made carefully, so that the traveler
doesn’t release existing reservations until the new reservations are
confirmed. Other changes, such as a hotel that closes down or a
travel date change request made by the traveler, could also be
addressed by a travel application based on the traveler’s intent.

5. BUSINESS PROCESS INTENT

Most of the infrastructure and examples that we’ve discussed so
far in this paper have involved use of intent for transactions, and
the title of this paper is “Transactional Intent”. However, intent
can also be used for business processes, as illustrated by the
Supply Chain Business Interactions and the Supply Network
Interactions examples in section 2, as well as by the multiple
database travel itinerary example in the previous section.
In this section, we first describe a practical basic approach to
decomposing business process intent into transactional intents,
and then mention some intriguing aspects of intent (internal,
externalized and predictive intent) for multi-party processes.

110

http://help.sap.com/saphelp_ewm70/helpdata/en/87/383e4229f1f83ae10000000a1550b0/content.htm�
http://help.sap.com/saphelp_ewm70/helpdata/en/87/383e4229f1f83ae10000000a1550b0/content.htm�

5.1 Intent decomposition

Addressing business process intent requires decomposing the
business process and its intent into subparts (such as transactions),
each of which has its own intent. Sometimes the decomposition
into transactions and associated intents may seem clear from the
definition of the process. For example, the travel itinerary
example may be decomposed into multiple transactions in more
than one way (get flight first and hotel second, or get hotel first
and flight second). The transactional intents for the “flight, then
hotel” decomposition would be “Find best flight meeting
constraints” and then “Find best hotel meeting constraints,
including added constraints imposed by the flight”. But even this
simple example raises questions: How were these decompositions
identified? Do other plausible decompositions exist?8

Solving the general intent decomposition problem resembles
solving a general bottom-up goal-directed artificial intelligence
problem. We’re not going to try to address such general
automatic programming problems in this paper. Practical systems
are more likely to have one or more decomposition patterns
identified for each business process, describing the transactions
and their intents, as well as other application framework aspects
(e.g., satisfaction callbacks) described in section 2.

 How were
the transactions and transactional intents in the decomposition
determined? In the example, how were “the added constraints
imposed by the flight” identified?

The transaction and intent decomposition patterns for the Supply
Chain Business Interactions and Supply Network Interactions
business process examples presented in section 2 are more
complex and more flexible, involving not only transactions but
also messages between parties, where each message expresses
intent. However, there typically are standard decomposition
patterns for these business processes; whenever the business
process initiates a transaction, it can associate an intent with that
transaction, while also identifying itself and its own intent.

5.2 Multi-party business processes

Processes which involve multiple parties introduce some new
aspects because the two (or more) parties involved may not fully
share their actual intents with each other. A purchaser may
request a term sheet from a supplier, but its intent may be to
pressure other suppliers to lower their bids. We can distinguish
among the following types of intent in a two party interaction
between purchaser and supplier:

• The purchaser’s intent, known only by the purchaser, an
internal intent.

• The supplier’s intent, known only by the supplier, also
an internal intent.

• The intent which the purchaser expresses in messages to
the supplier, an externalized intent.

8 One such decomposition involves selecting multiple good flights
and hotels independently in parallel, finding the best matching
pair, and then reserving that flight and hotel, if possible, trying
again if it’s not.

• The intent which the supplier expresses in messages to
the purchaser, also an externalized intent.

• The intent which the purchaser infers from the
supplier’s past and current behavior, a predictive intent.

• The intent which the supplier infers from the
purchaser’s past and current behavior, also a predictive
intent.

The supplier can act based on its own internal intent, the
purchaser’s externalized intent, and the predictive intent that the
supplier has inferred from the purchaser’s behavior; a similar
statement can be made for the purchaser.
Behind the internal intent expressed in the purchaser and supplier
software, there is also the intent of the human beings (if any)
making decisions during the business process. Predictive intent
analyzes externalized behavior to try to infer intent, but that intent
could depend on the specific human beings making process
decisions. One reason to store version histories including intents
is to help with such predictions, although different people may
have different intents and behaviors.

6. INTENT CONSIDERATIONS AND
IMPLICATIONS

Section 2 described some applications that use (or could use)
intent. Although many of the ideas in this paper have been in use
in systems for many years, and others ideas, such as apologies,
have been proposed before, the conceptual framework described
in section 3 is novel, describing a high-level architecture for
handling intent. Section 4 described use of intent for operational
business intelligence, and section 5 discussed some aspects of
process intent. In this section we present some additional
considerations and implications, which we hope will lead to future
work on transactional and business process intent.

6.1 Auditing, data mining and predictive
analytics

Applications following the framework described in section 3 store
a lot of data and metadata about intent, including data versions,
intents and sub-intents, execution plans for meeting intent,
satisfaction events/callbacks that induce re-planning, dependency
graphs and other intent metadata. This information is valuable
for many reasons; it can be used to explain decisions to users and
partners, as well as for auditing and regulatory requirements.
Moreover, it may be valuable for data mining and predictive
analytics concerning decisions. For example, a supplier who
frequently reneges on deliveries could be regarded as a risky
choice for future critical orders, even if that supplier’s terms are
excellent. Predictions are useful even for single party processes,
e.g., to predict whether a production run is likely to complete
before its deadline during a busy time of the month. More
generally, the higher level semantics expressed in intent may
enable deeper data mining and richer predictions than can be
made based only on data history.

111

6.2 Compensation and change

Utilizing the framework described in section 3, intent supports
compensation when a submitted request can no longer be
completed as originally planned. Intent can be the basis for a
process exception management approach that is usable either
within a single company or in B2B contexts, since it captures
semantics and metadata which value and operation-based
approaches omit. Instead of compensating for a failed plan and
then building a new intent execution plan, these two steps could
be correlated and combined, so that the old plan is modified rather
than deleted and replaced. When it’s workable, this approach
could be relatively efficient. For example, dependency graph
edges that exist in both old and new plans might be retained,
rather than compensated for and then recreated.

6.3 Meta-intent

Intent may be expressed using imperative or declarative
approaches (e.g., with declarative constraints). Intent
optimization engines also may be written using imperative or
declarative models, or a combination of both. Using a declarative
engine makes it easier to specialize incremental or global intent
optimization algorithms to meet specific circumstances. Let’s
consider a supply chain production scheduling example. One
manufacturer may have particular policies and algorithms for
Advanced Planning and Optimizer (APO) that are different than
those for other manufacturers; these policies and algorithms
capture that manufacturer’s meta-intent, that is, his intent in
optimizing the intents of his users.9

Intent scheduling may also be polymorphic for a particular
manufacturer, with different scheduling algorithms used for
different classes of users or products. As usual, declarative
encapsulation makes it easier to introduce, modify or replace such
algorithms.

 (APO was described in
section 2.3.)

6.4 Eventual consistency

Intent can help deliver eventual consistency [Vogels2008] for
replicated data based on ACID 2.0 (associative, commutative,
idempotent, distributed) [Finkelstein2009, Helland2009]. For
example, for scalability, availability and locality, there might be
multiple sites that handle Advanced Planning and Optimizer
(APO) requests and schedule jobs for the same factory, with job
data (unique job names and job intents) replicated asynchronously
among the sites. This approach could also be used for eventual
consistency of multiple order entry sites, or for disconnected
mobile calendars, which are much more likely uses than APO.
Assume that:

a) all job data eventually arrives at all sites, and

9 Configuration and customization of an installation are metadata
operations which implicitly or explicitly capture aspects of the
installation’s intent in processing requests, as opposed to the
intent of a particular request.

b) global scheduling is deterministic, based only on the set
of distinct jobs, not on their order of arrival.

Then the job data at all sites will eventual converge, and the job
schedules at the sites will eventually be consistent. (Timeliness is
an important issue that we won’t address here.) At each site, this
approach to eventual consistency uses the application framework
(with intent satisfaction events and callbacks) described in section
3. It does not require distributed transactions or complex
replication protocols, only conditions a) and b).

6.5 Cooperating businesses and applications

Business process intent is a particularly important tool at the
boundaries between worlds described by different applications
and systems. For example, intent helps synchronize plans across
customers and suppliers in a multi-tier supply chain, where
satisfying an intent request from X to Y may depend on satisfying
an intent request from Y to Z.
Intent could also be used to align the delivery schedules of
multiple distribution centers run on different systems, so that they
can cooperate to serve worldwide product demand.

6.6 Performance and usability

Used badly, intent may engender poor user experience and heavy
system load. For example, if global optimization of a large APO
system is performed every time a new purchase order is created,
the performance load and rescheduling instabilities could be
unreasonable. Like other optimization schemes, intent
optimization needs to be properly calibrated; doing incremental
optimization or partitioned optimization (over a related subset of
orders) might be a better approach than continual global
optimization. Global optimization could still be performed, but
only infrequently, and its potentially disruptive results might be
adopted only when they substantially superior to existing
schedules.10

Other user experience issues include entering intent and writing
applications using intent. We discussed ways that decision
makers might enter intents in their own terms, perhaps using a
“visual intent” interface. Programming applications using intent
has many non-trivial aspects (such as dependency graphs) where
tools, libraries and programming conventions would help. But we
believe that systematic use of intent can make application
programming easier, requiring less expert knowledge across
different application domains.

7. RELATED WORK

The most closely related work that we know of is Helland’s
apology-oriented computing [Helland2007], which we’ve already
discussed. This paper generalizes ideas in apology-oriented
computing and proposes a framework for the generalization.

10 This destabilization problem may be a reason that calendar
systems don’t follow the approach suggested in section 2.2.

112

Field calls and commutative locks/escrow locks were mentioned
in the introduction of this paper and are discussed in [Gray 1993],
but intent is at a very different semantic level.
Semantic data types are discussed in papers including
[Schwarz1984, Weihl1988]; intent uses semantics, but in a
different way and at a different level.
There have been many papers on long running transactions; a
number of early works are cited in [Gray1993], including Garcia
Molina and Salem’s work on sagas with compensating
transactions [Garcia-Molina1987]. Our paper uses both ideas,
long running transaction and compensation, but creates a novel
framework using them.
Operational transform [Ellis1989] has been discussed recently
because of its use in Google Wave. As with intent, the goal is to
determine what transaction to perform in a changed state.
Operational transform achieves this either because operations
(such as appends to a thread) commute, or by inferring the
operation from a state transformation. Intent does not require
operation inference; it explicitly represents requested semantics,
and it does this for a transaction, not just a single operation.
A number of papers (e.g., [Agrawal2009, Sadikov2010]) have
examined the problem of meeting the intents of users performing
web search, but although the word “intent” is used, these papers
are addressing a very different problem than we are. Our
predictive intent has an indirect connection to web search intent
because both involve mining and prediction.

This document contains research concepts from SAP®, and is not
intended to be binding upon SAP for any particular course of
business, product strategy, and/or development. SAP assumes no
responsibility for errors or omissions in this document. SAP does
not warrant the accuracy or completeness of the information, text,
graphics, links, or other items contained within this material.

8. REFERENCES

[Agrawal2009] Agrawal , R., Gollapudi, S., Halverson A. and
Ieong, S. 2009. Diversifying Search Results, Proceedings of the

Second ACM International Conference on Web Search and Data
Mining.
[Balla2007] Balla, J. and Layer, F. 2007. Production Planning
with SAP APO-PP/DS, Galileo Press, Boston, MA and Bonn
Germany.
[Ellis1989] Ellis, C.A. and Gibbs, S.J. 1989. Concurrency
Control in Groupware Systems. ACM SIGMOD Record 18 (2),
p.399–407.
[Finkelstein2008] Finkelstein, S., Brendle, R., Hirsch, R.,
Jacobs, D., and Marquand, U. 2008. The SAP Transaction Model:
Know Your Applications, presented (but not published) at ACM
SIGMOD 2008 Product Day, Vancouver Canada.
[Finkelstein2009] Finkelstein, S., Brendle, R., and Jacobs, D.,
2009. Principles for Inconsistency, Proc. CIDR, 2009.
[Garcia-Molina1987] Garcia-Molina, H. and Salem, K. 1987.
Sagas, Proc. SIGMOD Conference 1987, p. 249-259.
[Gray1993] Gray, J. and Reuter, A. 1993. Transaction
Processing: Concepts and Techniques, Morgan Kaufmann, San
Mateo, CA.
[Hamady2009] Hamady, M. and Leitz, A. 2009. Supplier
Collaboration with SAP SNC, Galileo Press, Boston, MA and
Bonn Germany.
[Helland2007] Helland, P. 2007. Life Beyond Distributed
Transactions, An Apostate’s Opinion, Proc. CIDR 2007.
[Helland2009] Helland, P. and Campbell, D. 2009. Building on
Quicksand, Proc. CIDR, 2009.
[Sadilov2010] Sadikov, E. , Madhavan, J., Wang , L., Halevy, A.
2010. Clustering Query Refinements by User Intent, Proc. of the
19th International Conference on World Wide Web.
[Schwarz1984] Schwarz, P.M. and Spector, A.Z. 1984.
Synchronizing Shared Abstract Types, ACM Transactions on
Computer Systems (TOCS), v.2 n.3, p.223-250.
[Vogels2008] Vogels, W. 2008. Eventually Consistent, ACM
Queue, 6(6), p. 14.
[Weihl1988] Weihl,W. 1988. Commutativity-Based Concurrency
Control for Abstract Data Types, IEEE Transactions on
Computers, v.37 n.12, p.1488-1505.

113

https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/4035234d-19a8-2b10-508a-f08f61bf5473�
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/4035234d-19a8-2b10-508a-f08f61bf5473�

