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ABSTRACT
For some problems, human assistance is needed in addition to au-
tomated (algorithmic) computation. In sharp contrast to existing
data management approaches, where human input is either ad-hoc
or is never used, we describe the design of the first declarative lan-
guage involving human-computable functions, standard relational
operators, as well as algorithmic computation. We consider the
challenges involved in optimizing queries posed in this language, in
particular, the tradeoffs between uncertainty, cost and performance,
as well as combination of human and algorithmic evidence. We be-
lieve that the vision laid out in this paper can act as a roadmap for a
new area of data management research where human computation
is routinely used in data analytics.
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1. INTRODUCTION
Large-scale human computation (or, crowd-sourcing) services,

such as Mechanical Turk [3], oDesk [5] and SamaSource [6], har-
ness human intelligence in order to solve tasks that are relatively
simple for humans–identifying and recognizing concepts in im-
ages, language or speech, ranking, summarization and labeling [10],
to name a few–but are notoriously difficult for algorithms. By
carefully orchestrating the evaluation of several simple tasks, enter-
prises have also started to realize the power of human computation
for more complex types of analysis. For instance, Freebase.com
has collected over 2 million human responses for tasks related to
data mining, cleansing and curation [24]. Several startups, such as
CrowdFlower [1], uTest [7] and Microtask [4], have developed a
business model on task management for enterprises. In addition,
the research community has developed libraries that provide prim-
itives to create and manage human computation tasks and thus en-
able programmable access to crowd sourcing services [25, 20, 26].

These recent programmatic methods are clearly important and
useful, but we believe that they cannot scale to the increasing com-
plexity of enterprise applications. Essentially, these procedural meth-
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ods suffer from the same problems that plagued data management
applications before declarative query languages. The onus falls on
the programmer/developer to manage which tasks are created and
evaluated, deal with discrepancies in the received answers, com-
bine these answers with existing databases, and so on. Instead,
we propose a declarative approach: the programmer specifies what
must be accomplished through human computation, and the system
transparently optimizes and manages the details of the evaluation.

Complex Task Example. We will use an example inspired by the
popular restaurant aggregator service Yelp in order to illustrate the
spirit of our approach. Assume that Yelp wishes to display a few
images for each restaurant entry, picked from a big database of
user-supplied images. The selected images must not be dark, must
not be copyrighted, and they must either display food served in the
restaurant or display the exterior of the restaurant with its name in
view.

Yelp’s developer can write a procedural application that accesses
each image in the database, checks on its copyright restrictions
(perhaps using another stored database), and then applies the re-
maining predicates using a crowd-sourcing service like Mechanical
Turk. The application may use a toolkit like Turkit [25] in order to
interface with Mechanical Turk. In addition to using the Mechan-
ical Turk, the application may use computer vision algorithms in
order to determine whether an image is dark or not, to augment hu-
man computation with algorithmic computation of lower latency.
Of course, the algorithms may not be able to handle accurately all
images, and hence the developer must make a judicious choice be-
tween the two options for different images. He/she must also or-
chestrate the composition of these simple tasks and determine the
order in which they are evaluated and on which images. The de-
veloper also has to ensure that Mechanical Turk tasks are priced
appropriately and that the total budget remains within limits. Fur-
thermore, he/she has to deal with discrepancies in the answers re-
turned by human workers–not all people may agree on what is a
dark image–and to determine whether the uncertainty in the an-
swers is acceptable.

Overall, this simple example illustrates the large complexity in
developing even simple applications. It is straightforward to see
that this programming model is unsustainable for complex tasks
that need to combine information from databases, human computa-
tion and algorithms.

The Declarative Approach. Our proposed approach views the
crowd sourcing service (CrSS for short) as another database where
facts are computed by human processors. By promoting the CrSS
to a first-class citizen on the same level as extensional data, it is
possible to write a declarative query that seamlessly combines in-
formation from both. In our example, the developer has to only
specify that the in-database images will be filtered with predicates
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that are computed using the Mechanical Turk or algorithms. The
system becomes responsible for optimizing the order in which im-
ages are processed, the order in which tasks are scheduled, whether
tasks are handled by algorithms or a CrSS, the pricing of the lat-
ter tasks, and the seamless transfer of information between the
database system and the external services. Moreover, it provides
built-in mechanisms to handle uncertainty, so that the developer
can explicitly control the quality of the query results. Using the
declarative approach, we can facilitate the development of complex
applications that combine knowledge from human computation, al-
gorithmic computation, and data.

Existing database technology can serve as the starting point to
realize this novel paradigm, but we believe that new research is
required in order to fully support it. Specifically, the declarative
access of crowd sourcing services has a unique combination of
features: the query processor must optimize both for performance
and monetary cost (tasks posted to the CrSS cost money); the ob-
tained data is inherently uncertain, since humans make mistakes or
have different interpretations of the same task; the resulting uncer-
tainty cannot be handled by existing techniques; and, the latency of
human- and algorithmic-based computation is significant and also
unpredictable. This combination is sufficiently complex to require
a redesign of the query processor, creating fertile ground for new
and innovative research in data management.

The goal of this paper is to identify this research opportunity,
perform an initial demarkation of the problem space, and to propose
some concrete research directions.

2. CROWD-SOURCING SERVICES: BASICS
A CrSS allows users to post unit tasks for humans to solve. A

task comprises two main components, namely, a description and a
method for providing an answer. For instance, consider the task of
examining an image in order to determine whether it depicts a clean
location. The description may be formed by the image along with
the text “Is this location clean?”, and the method for providing an
answer can be simply a Yes/No radio button. The CrSS is respon-
sible for posting the task and returning the answers of the human
workers back to the application.

An examination of popular crowd-sourcing services reveals a
wide variety of posted tasks. The degree of difficulty varies widely
as well, from simple tasks that require a few minutes of work, to
elaborate tasks that may take several hours to complete. Such com-
plex tasks typically involve content creation, e.g., write an article
on a topic or review a website. In this paper, we focus on simple
tasks for two reasons: they can form the building blocks of more
complex tasks, and due to their short duration they are more likely
to be picked up by human workers. Extending our ideas to complex
creative tasks is an interesting direction for future work.

There are three more components to a unit task: (a) the monetary
reward for providing the answer, (b) the number of workers who
must solve the task independently before it is deemed completed (in
order to reduce the possibility of mistakes), and (c) any criteria that
a worker must fulfill in order to attempt the task. Several previous
studies have examined the effect of these components on the quality
of the obtained answers, and have developed guidelines for their
configuration [28, 21, 22]. In this paper, we adopt these guidelines
and do not consider these components further.

It is important to note that, depending on the particular CrSS,
there may be significant latency in obtaining answers to posted
tasks. However, we can expect this latency to be reduced in subse-
quent years, as crowd-sourcing services gather a larger population
of human workers and provide better interfaces for matching tasks
to interested workers. In the same direction, several startup compa-

nies are aiming to create a more efficient marketplace for matching
requesters to workers. (It is interesting to note that there has been
a recent surge in crowd-sourcing startups, with more than 20 com-
panies established in the past 5 years.)

3. DECLARATIVE QUERIES OVER HUMANS,
ALGORITHMS AND DATA

The crux of our proposal is to employ a declarative query lan-
guage in order to describe complex tasks over human processors,
data and algorithms. In this section, we describe more concretely
the features of this language and lay the groundwork for defining
its semantics and evaluation methods in subsequent sections.

Query Model. We illustrate the query model using a Datalog-like
formalism. We stress that this is done for notational convenience
and not because we rely on Datalog’s features. (It is unlikely that
we will encounter recursive tasks in practice.)

Let us consider the following example complex task: Find pho-
tos that are large, in jpeg format, and depict a clean beach or a city
that is neither dangerous nor dirty. The task can be encoded as the
following declarative query in our formalism:

travel(I):= rJpeg(I), hClean(I), hBeach(I), aLarge(I)
travel(I):= rJpeg(I), hClean(I), haCity(I,Y), rSafe(Y)

Let us explain each construct in more detail, starting with the first
rule and examining the predicates left-to-right.
• We assume an extensional database table, named rJpeg, that

contains jpeg images. Hence, rJpeg(I) becomes true for
every binding of I to an input image. (We overload I to
represent both the image ID as well as the image itself, in
order to simplify notation. The use should be clear from the
context.)
• The predicate hClean is termed an h-predicate, as it is eval-

uated using a CrSS. The idea is that, for a given binding
to variable I, hClean(I) is evaluated by posting a task to
the CrSS–“Does this image depict a clean location?”–and
retrieving the answer. We discuss the instantiation of such
tasks later.
• Similarly, there is an h-predicate hBeach(I) for checking

whether the image depicts a beach, which is evaluated with
separate tasks.
• Finally, the predicate aLarge is termed an a-predicate and is

evaluated by invoking an algorithm with the binding for I as
an input argument. For instance, the algorithm may examine
the image file to compute the number of pixels.

The second rule employs the same first two predicates and an addi-
tional extensional predicate rSafe which is a table of known safe
cities. An interesting feature here is haCity which is a hybrid ha-
predicate–it can be evaluated by a human worker or by invoking
a specific algorithm. In the case of a human worker, the task will
show the image bound to variable I and will ask for the name of
the depicted city. This value will be returned in variable Y. An al-
gorithmic evaluation will take I as input and generate Y as output.

We assume that the application developer provides templates in
order to map a h-predicate to unit tasks, as described in §2. While
unit task design is an extremely important issue, we expect to lever-
age work from the HCI and Questionnaire Design communities to
design effective user interfaces corresponding for each unit task.
The choice of the unit tasks posed for a given h-predicate can have
an effect on both cost and latency, as we discuss in §6.4. To sim-
plify presentation, we assume a fixed mapping from h-predicates
to unit tasks for the remainder of the paper.
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Consider the example of haCity(I, Y). In this case, the tem-
plate may have an image placeholder populated with the binding for
I, a message “Which city (if any) is depicted in this image?”, and
a text box to write the name of the city. The value of the text box
becomes the binding for Y. Similar templates are provided for a-
predicates. Clearly, the provided templates also provide bound/free
annotations for the variables in Datalog predicates. Returning to
the example of haCity(I,Y), it is meaningful to bind X and let
the humans compute Y, while the other way around does not make
much sense. These annotations clearly constrain the order in which
predicates can be evaluated.

Semantics for hQuery. How do we define the results of an hQuery?
This would be straightforward if we were dealing with a regular
Datalog query: we can define what constitutes a correct output tu-
ple, and then define the semantics of the query as the complete set
of correct output tuples. However, neither of these definitions are
obvious in our context.

The definition of a correct output tuple is not straightforward,
since discrepancies arise naturally in the context of h- and a-predicates.
Let us consider again the example of travel images. Different hu-
man workers may have different notions of cleanliness, hence giv-
ing different answers for the same hClean(I) predicate. It may
also be possible to make mistakes, e.g., answer hCity(I,Y) with
the wrong city for a given image. To complicate matters further,
discrepancies may be correlated, e.g., if a human worker answers
negatively for hClean(I) when I is bound to a beach image, then
he/she may be more likely to answer positively when I is bound to
a city image. Overall, it may be possible to both assert and negate
travel(I) depending on which human workers or algorithms are
used to evaluate the predicates.

Clearly, it is necessary to define a “consolidation” mechanism for
discrepancies in order to define correctness. A simple mechanism
might be majority voting – have several human workers (or algo-
rithms) tackle the same question and then take the most frequent
answer. We may even employ a more elaborate scheme where (po-
tentially conflicting) answers are assigned probabilities, and correct
answers are defined based on a probability threshold. In the com-
ing sections, we consider several possibilities of varying complex-
ity and scope. For the time being, we assume that some mechanism
is employed to define what constitutes a correct output tuple.

The second complication is that it may not be desirable to ob-
tain all output tuples. In some cases, the application may impose
a budget on the total cost of CrSS tasks, which limits the num-
ber of h-predicates that can be evaluated and hence the number of
output tuples. In other cases, it may be sufficient to obtain any k
output tuples, for some fixed k, in order to avoid the high latency
and monetary cost of computing all output tuples. We thus arrive
at three different ways that the application can obtain the output of
an hQuery:

1. Return all correct output tuples while minimizing the number
of h-predicate evaluations and total time

2. Return any k correct output tuples while minimizing the num-
ber of h-predicate evaluations and total time, for fixed k.

3. Maximize the number of correct output tuples and minimize
total time for a maximum of m h-predicate evaluations, for
fixed m.

These definitions makes the simplifying assumption that all tasks
are priced equally. This is a reasonable compromise, since appli-
cations are likely to use well established guidelines for pricing unit
tasks [21, 28]. However, the problem of dynamic pricing is still in-
teresting and we consider as a possible extension of our framework.

Other Examples. We now present three other examples to illus-
trate various aspects of our declarative query model.
Example 1: Consider the query: Find all images of people at the
scene of the crime who have a known criminal record. This query
can be written as:

names(A, I):= rCriminal(Y, A), rCand(I), haSim(I,Y)

The EDB table rCriminal contains images of known criminals as
well as their names. The candidate table rCand contains images
of people witnessed at the scene of a crime. The hybrid predicate
haSim tries to evaluate if the person in the candidate table is also
present in the criminal table by performing a fuzzy image match.
This corresponds to the unit task “ Do these two images depict the
same person?”. Alternatively, a face recognition algorithm may be
used to determine whether the two images are of the same person.

Note also that our unit tasks need not have a one-one relationship
with the human predicates. We consider this dimension of query
optimization in more detail in §6.4. For instance, we may post k
images from the candidate table in one column as well as k images
from the criminal table in the second column and pose the task
description “Match images from the first column to images from
the second column that are of the same person.” In this case, the
relationship is one-many.

The results of a similarity join query such as the one given above
can be used to derive a result for entity resolution, clustering or
projection (with duplicate elimination).

Example 2: Subsequently, in results of the query above, we may
wish to find the best image corresponding to each potential criminal
A. This query can be posed as follows:

topImg(A, hBest(<I>)):= names(A, I)

In this query, we use an aggregation (i.e., group by) function on the
A, and across all images for a given A, output the one that is the best
(as evaluated by humans). Thus, the aggregation function applied
on all the images for a given A is the h-predicate hBest. Note that
in this case, we may need to post several tasks to ascertain which
image is the best for a given name A. Thus the relationship is many-
one between the posted tasks and the h-predicate.

Example 3: Sorting is another primitive that we would like to use
in our queries. For instance, we may wish to sort the results cor-
responding to each A in the previous query instead of returning a
single best image. Sorting can be expressed using additional syn-
tactic machinery, as is done in prior work in datalog. The results
of the sort are stored in a successor intensional database succ(I,
I’), i.e., I appears immediately before I’ in a sorted order. We
can apply a selection condition to the results of a sorting operation
to obtain the top-k results, for a given k.

Sorting and top-k are examples of second-order predicates, dis-
cussed in more detail in §6.3.

4. FIRST STEP: CERTAIN ANSWERS
Having defined the query language at a logical level, we consider

next the design of a query processor to evaluate such queries.
Our starting assumption is that human processors and algorithms

always answer questions precisely, i.e., no mistakes or discrep-
ancies are observed. In other words, there is no need to ask a
given question to more than one human or algorithm. The adopted
assumption simplifies the semantics of the query language, as a
query answer is any tuple that is derived through the query’s rules
based on the answers of humans and algorithms and the extensional
database.

The certain-answers assumption is clearly unrealistic in several
scenarios, but, as we discuss later, even this simplified case raises
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interesting technical challenges for the design of a query processor.
We lift this assumption in §5, when we discuss the evaluation of
queries under various models of uncertainty.

Design Space. As we argued in §1, a conventional optimize-then-
execute design is not appropriate for our problem, since it is very
difficult to model the cost and distribution of answers from human
processors and algorithms. We are thus led naturally to an adaptive
query processing scheme, where any optimization is based on run-
time observations.

What should the engine optimize for? Performance is clearly im-
portant, since in all cases we wish to minimize total running time.
At the same time, it is equally important to optimize carefully the
questions issued to the CrSS, since we also wish to minimize the
total number of questions or we may even have a bound on the to-
tal number of questions. Thirdly, we may also want to maximize
the number of correct output tuples when the number of questions
is fixed. Essentially, we have a two-criteria optimization problem
that involves two out of time, monetary cost and number of correct
output tuples. This is a unique property of our problem statement
that separates it from previous works in adaptive query processing.

Consider the case when we wish to retrieve all correct tuples.
Selecting which questions to ask is a non-trivial problem and is in
itself a very interesting direction for future work in this area. We
revisit this point at the end of section where we outline some initial
research directions. Based on our own work in this area [30], we
can point out an interesting trade-off: we may employ a computa-
tionally expensive strategy, which adds to the total completion time
of the query, in order to carefully select where to ask the fewest
possible questions, or we may choose a cheaper strategy at the ex-
pense of asking more questions than necessary. It is very difficult to
collapse the two dimensions in a single measure, and hence two dif-
ferent question-selection strategies may simply be incomparable.
However, note that interesting strategies will lie along a skyline of
low computational overhead and low number of questions.

Query Processing Engine. Based on the previous principles, we
envision a query processing engine that operates in successive stages.
In each stage, the engine performs computation solely on predi-
cates of a specific type, i.e., intensional predicates, h-predicates,
or a-predicates. For instance, the engine may first compute some
intermediate results by using relational processing solely on exten-
sional data, then issue some questions to the CrSS, then compute
more intermediate results using relational operators, then evaluate
a-predicates, continue with CrSS questions, and so on. (Since ob-
taining results for h-predicates may involve high latency, they will
be evaluated asynchronously.) Hence, each stage generates more
results by building on the available results of previous stages.

The stage-based approach separates the evaluation of predicates
of different types and hence isolates the optimization decisions at
two points: inter- and intra-stage. Inter-stage optimization deter-
mines which type of stage to run next and with what resources.
For instance, consider a query that aims to maximize the number
of answers under a limited number of questions. An intuitive op-
timization strategy may favor stages of relational and algorithmic
processing, in order to generate query answers for “free”, and will
invoke CrSS stages infrequently and with a small number of ques-
tions each time. The choice of relational vs algorithmic stages may
be driven by run-time statistics on the rate of generated results,
since the aim is to maximize the number of query answers.

Intra-stage optimization depends on the type of the stage. For a
purely relational stage, we can reuse any of the existing adaptive
query processing techniques that optimize for performance. For a
CrSS or an algorithmic stage, we need to develop strategies to se-

lect what questions to ask, as described earlier. These strategies can
optimizer eithe for performance, in the case of algorithmic stages,
or for a combination of performance and number of issued ques-
tions, in the case of CrSS stages.

What questions should be asked? Intuitively, we wish to ask
questions whose answers provide the most “information gain”, but
the latter is non-trivial to quantify. However, we can define some
useful heuristics that approximate this notion of gain.
• It is useful to prioritize questions based on the number of

affected rules. For instance, we may prefer to ask about
hClean(α) compared to hClean(β) if the former will en-
able the processing of more query rules.
• If we are interested in producing all the query answers, then

it is prudent to ask questions that will reduce the volume of
data to be processed in subsequent stages. Hence, selective
questions are preferred.
• If, instead, for a fixed budget, we are interested in maximiz-

ing the number of query answers, then we want to ask ques-
tions whose answers are likely to lead to more results being
generated in subsequent stages. Hence, non-selective ques-
tions are preferred.

The last two heuristics require some estimation of selectivity,
which can be done in an obvious way based on observations on
past questions. An interesting twist is to also consider data sim-
ilarity in order to obtain more accurate estimates. For instance,
consider again the choice between hClean(α) and hClean(β),
and assume that we are interested in non-selective questions (i.e.,
maximizing the number of query answers). Given a suitable data
similarity function among image objects, we can examine which of
α or β bears a higher resemblance to images for which past hClean
questions have returned positive answers.

Overall, selecting the right questions is a non-trivial optimization
problem in the development of an effective query processor. In our
previous work, we developed several such strategies for specific
classes of human-computable predicates that occur commonly in
larger tasks [30]. Generalizing these strategies, and enhancing them
by taking into account data similarity and the answers to previous
questions, is part of our ongoing work in this area.

5. THE REALITY: UNCERTAINTY
So far, we have assumed that correct answers are provided by

humans to unit tasks posted on the CrSS. However, this is hardly
the case in practice, and we need to deal with incorrect and biased
answers in most cases. In this section, we consider ways and means
of dealing with and resolving this uncertainty.

We describe the sources of uncertainty in §5.1 and how to mod-
ify the ways to use hQuery in §3 to incorporate uncertainty. We
describe three candidate methods of dealing with uncertainty, with
increasing sophistication, in §5.3, §5.4 and §5.5.

For the purposes of this section, we assume that we do not use
negation in hQuery. Even with this assumption, the issues that
come up when dealing with uncertainty and bias are non-trivial.

5.1 Sources of Uncertainty
In the previous section, the only source of uncertainty is when

not all certain answers are obtained. Additional tuples may or may
not be present in the query result that is returned to the user —
as a result of this uncertainty, the resulting answer could be one of
several possible worlds [8], where the worlds contain all the certain
answer tuples obtained, and may or may not contain the remaining
answer tuples.

Also, in §4, we assumed that each human is omniscient; and
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answers every task correctly. It is therefore sufficient to ask a single
human to evaluate any h-predicate on a given tuple via the CrSS.
However, the reality is very different.

Even for a unit task (i.e., a single question), there can be uncer-
tainty in three ways: (a) Humans may make mistakes, e.g., Count
the number of objects in an Image. (b) Humans have subjective
views, e.g., Is the location depicted in this image clean? (c) Hu-
mans may provide spam/malicious responses. In this section, we
consider (a) and (b), and we consider (c) in §6.2. For the purposes
of this section, we assume that humans do not maliciously provide
incorrect answers.

When there are multiple h-predicates, operating on multiple tu-
ples/objects, there could be further sources of uncertainty or bias:
(a) Answers that humans give to various h-predicates for the same
tuple/object may be correlated. For instance, if a human thinks that
an image is that of a city, then his answer to hCity would be (neg-
atively) correlated with that of hBeach. (b) Answers that humans
give to different tuples for the same h-predicate may be correlated.
(c) Number of workers attempting each question may be very dif-
ferent, as a result, we may have several YES/NO answers on some
questions for a given predicate but may not have them on other
questions for the same predicate. (d) Number of people attempting
different h-predicates may be different.

Thus, since the provided answers may be biased, incomplete, un-
normalized or uncertain, we need to develop the means to reason
when a h-predicate is true (on a specific tuple) given the answers of
human workers for the same predicate and other predicates. Uncer-
tainty also arises when dealing with ha-predicates or a-predicates.
To handle this case, we assume that algorithms will provide an es-
timate on the reliability of the generated answers, which will allow
us to handle answers from the CrSS and algorithms in a unified
framework.

5.2 Incorporating Uncertainty
Since we have uncertainty as to whether or not an actual tuple

is part of the query result, we can resort to using probabilities to
quantify our belief as to whether or not a tuple is correct. This
uncertainty could be in two forms, the probability of presence or
absence of a tuple (defined before in uncertain databases [36, 12, 9]
as maybe annotations), or the probability of each of a set of values
for an attribute or group of attributes in a tuple (defined in uncertain
databases as alternative annotations).

As a natural extension of certain answers, we propose the use of
probability thresholds: For each way of using hQuery as defined in
§3, we are given an additional parameter τ , representing the prob-
ability threshold. In other words, only tuples whose probability of
being present in the query result is ≥ τ , are correct and should be
returned to the user.

For instance, for problem 1, instead of requiring only certain an-
swers to be present in the query result as in the previous section, we
would like all tuples whose confidence is ≥ τ to be present in the
query result. Notice that when τ = 1, this is equivalent to enforing
all and only certain answers to be present in the query result, thus
our technique of incorporating uncertainty into the ways of using
hQuery forms a natural generalization of the ways of using hQuery
in §3 when answers are uncertain.

Thus the main challenge that we will deal with in subsequent
sections is how we compute confidences of tuples derived from h-
ha- and a-predicates, and how we combine these confidences to
compute those of tuples that should be in the query result.

5.3 Majority Voting: The easy way out
For the first method of computing probabilities, we use the sim-

ple strategy of majority voting. This scheme assumes that a fixed
(large) number of identical, but independent workers attempt each
question. In addition, no worker attempts more than one question.
Thus, there are very few biases that come into play in this setting.

We compute the resulting answer for a h-predicate on a given
tuple as simply the majority of the answers of the humans. Indeed,
there is an implicit belief that the majority would be a good proxy
for the correct answer. It is easy to see that this scheme essentially
eliminates all probabilities, by simply awarding the most ‘likely’ al-
ternative a probability of 1, while all other alternatives are awarded
a probability of 0. Subsequently, we can produce results as we do
for certain answers in §4.

Thus, in this scheme, it is not possible to get fine-grained prob-
abilities for various tuples. As a result, there could be errors. For
instance, we may miss out on certain tuples whose probabilities
may be greater than τ , but were generated in conjunction with an
alternative binding for a human-computed tuple that was not the
one that had the majority. Secondly, when faced with alternatives
that have nearly the same number of votes, or when there are many
alternatives with the same number of votes, it is not clear how we
can meaningful the majority answer is. One option is to simply ask
more humans on the fly.

5.4 Probabilistic Approach with IID Workers
Here, we assume that for each question, workers are drawn inde-

pendently and identically distributed (IID) from an a-priori distri-
bution. For instance, there is an inherent distribution for the ques-
tion hBeach(Image3), which could be, for instance, Yes - 0.6,
No - 0.4, and each human attempting the corresponding question
would sample randomly from this inherent distribution. Of course,
this distribution is not given to us, and needs to be inferred based on
the answers of the humans to the question, based on maximum like-
lihood (i.e., each alternative has a probability equal to the fraction
of humans that select it as an answer), or some other a-posteriori
inference approach [11]. For hybrid predicates, we need to com-
bine two distributions (one from algorithmic evaluation, and one
from human computation) to give one unified distribution over al-
ternatives.

This distribution is the same as distributions over alternatives in
uncertain databases [36]. We assume, as in the previous scheme,
that a fixed large number of people attempt each question. Thus,
the probabilities are normalized and there are no additional biases.

Subsequently, for each unevaluated h-predicate on a given tuple,
we assume that the probability is 0 for all alternatives. Once predi-
cates get evaluated either by humans or by algorithms, the probabil-
ities for various alternatives get updated. We can use standard con-
fidence computation (as in uncertain databases) in order to compute
confidence of each result tuple. These probabilities would have to
be recomputed every time a human predicate is evaluated.

However, if there is no negation, then the confidence of each out-
put tuple can only increase with additional h-predicate evaluation.
We can therefore use this property to avoid evaluating additional
human predicates that derive the same output tuple (that already
has a confidence ≥ τ ), and we can return output tuples as and
when they become available. Of course, for those output tuples
whose confidence is < τ , it might still be the case that with addi-
tional human predicate evaluation, they become part of the query
result.

5.5 Approach Using Item-Response Theory
In this scheme, we utilize all forms of uncertainty considered

in §5.1. This situation has parallels with questionnaire analysis,
when a questionnaire containing several questions is attempted by
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many humans. Each human may choose to answer some or all of
the questions. As in our case, there may be correlations between
answers to various questions for each human, as well as uncertainty
in the answers for even a single question.

Questionnaires are usually analyzed using Item Response The-
ory (IRT) [2]. Item Response Theory is the science of inferences
and scoring for tests, questionnaires and examinations. In our case,
the inferences may be especially tricky given that only a handful of
humans attempt each question.

6. EXTENSIONS
We now describe some interesting extensions to the basic model.

6.1 Costing
An important aspect of posting tasks to the CrSS is to decide

how to price each task. So far, we have assumed that we price each
task equally, as a result of which the number of tasks posted is a
measure of total amount spent. However, we may be able to speed
up query processing by intelligent pricing of tasks.

More specifically, it is clear that we can reduce latency by as-
signing higher prices. Additionally, for tasks that help us obtain
query tuples easier, it would be helpful to price them higher (for
instance, if there are two queries deriving output tuples, one with a
single h-predicate, and the other with 4 h-predicates, it would be
beneficial to price the single h-predicate higher, since that would
yield query tuples faster). Also, for tasks that are harder to attempt,
pricing should be higher, otherwise humans may prefer to attempt
other tasks earlier. Additionally, if we have a deadline for task com-
pletion, it would be wise to use a low price early in the evaluation
process, and to increase the price closer to the completion deadline.

However, to maximize the number of questions under a fixed
budget, we may want to replicate each question fewer times and
issue a low price, at the cost of getting delayed, uncertain answers.

6.2 Spam
As in any setting, we need to safeguard our CrSS from adver-

sarial attacks. These attacks could be similar to link farms (where
a clique of nodes in a network gets a high pagerank due to high
connectivity amongst themselves [17]), as well as algorithms mim-
icking humans (in other words, spam).

There are two ways of beating spam (each with limitations):
(a) Use majority voting, penalizing any human who does not pro-
duce the majority answer. However, this method is susceptible to
groups of algorithms mimicking humans colluding together to an-
swer questions arbitrarily in the same fashion, as in a link farm.
(b) Have a “test” question, with any human who gets it incorrect
not being able to attempt the actual question. This test is akin to
CAPTCHAs [34] that are essentially turing tests to discern algo-
rithms from humans. If the ratio of test to actual questions is high,
then the cost to use the CrSS may be too high. On the other hand,
if the ratio of test to actual questions is low, then the humans may
manually solve the test question, and then arbitrarily guess for the
rest of the questions.

6.3 Second Order Predicates
Instead of h-predicates, one could also use human-computable

algorithms, where the algorithms take in a question budget, and a
latency requirement, select several questions to post to the CrSS
and return an aggregated answer. These human-computable algo-
rithms could be of various kinds, e.g., sort ten images, pick the
odd one out, or cluster search results. For instance, the human-
computable algorithm for sorting would be optimized to ask much
fewer than the

(
n
2

)
comparisons required. Design of a human com-

putable algorithm to select an optimal set of questions to ask hu-
mans to solve a graph search problem has been examined in prior
work [30].

6.4 Mapping to Unit Tasks
The choice of unit tasks corresponding to an h-predicate can af-

fect the amount of time taken to obtain a result from the CrSS, the
cost, as well as the inherent uncertainty in the answer. It is there-
fore an important dimension for query optimization. For instance,
for a sorting predicate, we may use pairwise comparisons as our
unit tasks (i.e., which of these two items is better?), or multi-way
comparisons (i.e., what is the correct ranking for the following k
items?). While pairwise comparisons may yield more accurate re-
sults, multi-way comparisons may result in answers being obtained
faster, and at lesser cost. On the other hand, sorting by rating each
item (i.e., how would you rate this item on a scale of 1-10?) would
involve fewer tasks being posed to the CrSS, but may result in much
higher uncertainty. Thus, in addition to deciding which questions
to ask, the query optimizer needs to decide how to ask them to bal-
ance cost, uncertainty as well as latency.

6.5 Scheduling
In this section, we briefly discuss issues in the design of a query

engine processing several hQuery queries in a batch. Firstly, we
would want to schedule tasks at times based on availability of ca-
pable workers, e.g., if the query is to identify cities in Europe, it
is pragmatic to schedule those tasks when it is daytime in Europe.
Additionally, we may want to schedule and price tasks based on
priority order of completion, i.e., price important tasks higher and
post them earlier. As in standard joint query optimization, it would
be beneficial to share computation between queries in the work-
load. In particular, h- and a-predicates that have been evaluated
do not need to be reevaluated, and can be stored in an extensional
database for reuse while processing other queries.

7. RELATED WORK
A number of recent works have considered the design of libraries

to access crowd sourcing services such as Mechanical Turk [3]. Lit-
tle et. al. [25, 26] suggested iterative and parallel tasks as design
patterns in order to build more complex applications over Mechan-
ical Turk. Heymann et. al. [20] describes the design of a program-
ming environment built on top of Mechanical Turk that contains
modular and reusable components.

Kochhar et. al. [24] describes how Freebase has been using hu-
man judgement for various data cleansing tasks. Crowd-sourcing
services are also used to provide input to active learning
algorithms [33]. A few works have also explored other aspects of
crowd-sourcing, such as designing good tasks [22], pricing tasks [28,
21], the occurrence of spam and bias [23, 27] and so on. The survey
by Doan et. al. [16] provides a good overview of the general area
of human involvement or collaboration and how it may be used to
solve problems.

We argued earlier about the necessity of adaptive query process-
ing due to the difficulty of obtaining accurate cost models for h-
and a-predicates. We hope to leverage the extensive previous work
on this topic in the context of relational database systems [15]. Ad-
ditionally, the issues of uncertainty arising in human computable
predicates are more intricate than the ones found in existing uncer-
tain databases [36, 9, 12], however some of the confidence compu-
tation techniques therein can be reused in our context.

There has been some work in the past on optimizing query plans
that contain expensive predicates [14, 19], however, in our case,
we also need to deal with pricing as well as uncertainty. The work
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on online aggregation [18] allows users to specify on the fly which
data is important and needs relational processing. However, in our
case, humans perform the processing.

Additionally, from an application standpoint, there have been
several papers considering the use of human experts in various tasks
such as data integration and exploration [31, 35, 32, 29] and in-
formation extraction [13]. Our previous work examined the opti-
mization of graph search tasks that harness human processors via a
crowd-sourcing service [30].

8. CONCLUSIONS
With the vision of being able to process and answer queries

on data more effectively, we proposed, in this paper, the use of a
CrSS in addition to standard relational database operators. We pre-
sented hQuery, a declarative query model operating over human-
computable predicates, databases as well as external algorithms,
and discussed the challenges involved in optimizing hQuery, in
particular, the presence of uncertainty derived from the answers of
humans, as well as tradeoffs between number of certain (or prob-
abilistic) answers, time allocated, and monetary cost. In addition,
due to not-so-well-understood operators, unknown latencies, accu-
racy and selectivity and lack of cardinality estimates, query pro-
cessing can become especially hairy. We defined several research
problems, with increasing levels of complexity, for the case of per-
fect answers, as well as when answers are uncertain. This work also
raises some research issues on how humans interpret and answer
questions. We believe that the research problems outlined herein,
and the general area of optimizing humans as well as databases,
form an interesting and important area for future database research.
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