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ABSTRACT
User feedback is gaining momentum as a means of address-
ing the difficulties underlying information integration tasks.
It can be used to assist users in building information inte-
gration systems and to improve the quality of existing sys-
tems, e.g., in dataspaces. Existing proposals in the area are
confined to specific integration sub-problems considering a
specific kind of feedback sought, in most cases, from a sin-
gle user. We argue in this paper that, in order to maximize
the benefits that can be drawn from user feedback, it should
be considered and managed as a first class citizen. Accord-
ingly, we present generic operations that underpin the man-
agement of feedback within information integration systems,
and that are applicable to feedback of different kinds, poten-
tially supplied by multiple users with different expectations.
We present preliminary solutions that can be adopted for
realizing such operations, and sketch a research agenda for
the information integration community.

Keywords
User feedback, Feedback management, Information integra-
tion, Dataspaces

1. INTRODUCTION
Two decades of extensive research and real world experi-
ence suggest that building information integration systems
is a difficult task [11]. Essentially, the difficulty lies in un-
derstanding user requirements as to what the relevant data
sources are, and the way the contents of the sources are to
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be combined and structured in a form that is compatible
with the user’s conceptualization of the world.

To facilitate information integration, some database re-
searchers have explored the use of feedback solicited from
users. User feedback is a growing theme in information in-
tegration systems, as reflected in the number of recent pro-
posals that utilise user feedback to guide the construction
of information integration systems, and/or to improve the
quality of the services they provide [1, 2, 4, 5, 13, 15, 17, 18].
For example, Talkudar et al. [17, 18] developed the Q system
to assist users in creating integration queries. In doing so,
the system solicits feedback on results of candidate integra-
tion queries. Feedback is also fundamental to the dataspaces
vision [9], which aims to reduce the cost of setting up a data
integration system, and to gradually improve the quality of
the resulting system. The idea is to enlist users to provide
feedback with a view to improving the quality of the services
supplied by the data integration system. For example, Jef-
fery et al. [13] developed a decision-theoretic framework for
specifying the order in which feedback can be solicited on
a collection of schema mappings with the objective of pro-
viding the most benefit to a dataspace. Also, we have shown
in previous work [2], that schema mappings can be selected,
refined and annotated with metrics specifying their fitness
to user requirements based on feedback commenting on the
membership of tuples to relations in the integration schema.
More recently, Doan et al. [7] proposed a taxonomy that
classifies mass collaboration systems, namely systems that
enlist a multitude of human users to help solve a given prob-
lem. In doing so, they identified issues with respect to user
inputs (feedback), e.g., how to recruit and retain users, and
how to evaluate their inputs.

While existing proposals showcase the key role user feed-
back can play within information integration systems, they
are confined to the use of feedback given on a specific arti-
fact, e.g., query [4], query result [2, 17], or mapping [1], to
tackle a specific information integration sub-problem, e.g.,
designing a mapping [1], selecting a mapping [2], or spec-
ifying a query [18, 17]. In doing so, they do not explore
the benefits that can be drawn from using feedback given
on different kinds of artifacts to leverage multiple informa-
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tion integration tasks. Moreover, they make assumptions
that do not necessarily hold in practice, and that if dropped
may lead to costs and losses that outweigh the benefits that
can be drawn from user feedback. For example, they as-
sume that a data integration system either has a single user
(e.g., [18]), or that all the users supplying feedback have the
same requirements (e.g., [13]). In practice, different users
may have different expectations, in which case, the quality
of the services provided by the data integration system may
be seen as deteriorating in response to user feedback, at least
for some users, over time, due to conflicts in requirements.
Also, existing proposals assume that user requirements do
not change over time. This assumption may not hold since
user needs may shift, in which case previously acquired feed-
back may prevent the improvement of the data integration
system with a view to answering new user needs.

We argue that, in order to be able to exploit different kinds
of feedback provided by multiple users to leverage different
information integration tasks, user feedback should be con-
sidered and managed as a first class citizen. Accordingly, we
present in this paper a set of feedback management research
challenges that together aim to foster the semantic cohesion
of the feedback provided by users, and to increase the value
and the benefits that can be drawn from acquired feedback.
We propose preliminary solutions to the research challenges
identified, and sketch a research agenda for the information
integration community.

The paper is structured as follows. We begin by presenting
a general feedback model that caters for the specification
of the different kinds of feedback that have been considered
in the information integration literature in Section 2. We
then present operations that can be used for fostering the
cohesion of the feedback provided by users by detecting in-
consistencies in feedback (Section 3), and by checking the
validity of feedback over time (Section 4). We go on to
present operations that aim to increase the value and the
benefits derived from user feedback. Specifically, we present
a clustering operation for grouping users with similar ex-
pectations (in Section 5), and an operation for learning new
feedback using collaborative filtering techniques (in Section
6). We close the paper in Section 7 by underlining our main
contributions.

2. WHAT IS FEEDBACK?
In essence, feedback can be seen as annotations that a
user provides to comment on artifacts of an information in-
tegration system, be they matches, mappings, integration
schema, queries or query results, with the objective of in-
forming the construction of the system and/or improving
the quality of the services it provides. We define a feedback
instance by the tuple:

〈obj, t, u, k〉

specifying that the user u annotates the artifact obj using
the term t. The user can provide different kinds of feedback.
k indicates the kind of feedback. The set of terms that can
be used depends on the kind of feedback the user wishes
to provide. They can belong to controlled vocabularies or
domain ontologies. In what follows, we use uf.obj, uf.annot,
uf.user and uf.type to refer to obj, t, u and k, respectively.

The above feedback model is general, in that it can be used
to describe the different kinds of feedback defined in the in-
formation integration literature. Table 1 presents prominent
proposals in the field that use feedback, and shows how the
feedback used in each proposal can be described using the
model presented above.

We present in what follows some examples of feedback de-
fined in the literature and show how they can be mapped to
the above model.

Example 2.1. Consider the Q system developed by Talku-
dar et al. [18]. This system assists users in creating in-
tegration queries that span multiple data sources. To learn
user preference as to which query captures expectations, the
user supplies feedback by ordering result tuples returned by
different alternative queries. For example, consider two tu-
ples t1 and t2 retrieved by the alternative queries q1 and
q2, respectively. If the user judges that t1 meets the ex-
pectations better than t2, then t1 is ranked before t2. Us-
ing our model, such feedback can be specified as follows:
〈〈t1, t2〉, before, u, ranking〉. The vocabulary used for an-
notation, in this case, is composed of two terms before and
after.

Example 2.2. McCann et al. [15] developed a system that
informs schema matching by soliciting feedback from users.
As an example, consider a binary match 〈r1, r2〉 that as-
sociates the relations r1 and r2, and consider that the
user Anhai specified that such a match is incorrect. Us-
ing our model, such feedback can be specified as follows:
〈〈r1, r2〉, fp, Anhai, match correctness〉. Using the same
system, users can provide feedback that specifies (or con-
firms) the data type of a given attribute. For example, the
same user can confirm that the attribute fecha is of type
date, which can be described using our feedback model as
follows: 〈fecha, date, Anhai, type correctness〉.
Example 2.3. We showed in a previous work [2] that feed-
back can be used to annotate schema mappings with esti-
mates specifying the degree to which they meet user ex-
pectations. In doing so, a user annotates result tuples
that are retrieved using candidate mappings to populate
a given relation in the integration schema as true posi-
tives, false positives or false negatives. Consider a relation
r in the integration schema, a mapping m used to popu-
late r using data from the sources, and a tuple t of r

that is retrieved using m. The following feedback instance,
〈〈r, m, t〉, tp, Norman, tuple membership〉, specifies that t is
a true positive, i.e., that t is a member of r according to the
expectations of the user Norman. Using feedback instances of
the above form, candidate mappings for populating the ele-
ments of an integration schema can be annotated, selected
and refined [2].

Having illustrated how the model presented in this section
can be used to describe different kinds of feedback, we now
present operations that act on feedback instances of that
model with the goal of determining the validity of the feed-
back instances provided by users, and to increase the bene-
fits that can be derived from their use.

3. FEEDBACK INCONSISTENCY
Different users may have different requirements. Moreover,
the requirements of the same user may change over time.
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Table 1: Kinds of feedback considered in the information integration literature.

Proposal Objects on which feedback is given Set of terms used for annotating objects

Alexe et al. [1]
an instance of a given schema and {‘yes’, ‘no’}

the instance obtained by its // used to comment on schema transformation

transformation into another schema

Belhajjame et al. [2]
a result tuple {‘true positive’, ‘false positive’, ‘false negative’}

an attribute and its value {‘true positive’, ‘false positive’, ‘false negative’}

Cao et al. [4]
a candidate query {‘true positive’, ‘false positive’}

a pair of candidate queries {‘before’, ‘after’} // used for ordering queries

Chai et al. [5] a view result tuple {‘insert’, ‘delete’, ‘update’}
Jeffery et al. [13] a mapping {‘true positive’, ‘false positive’}

McCann et al. [15]

a relation attribute set of attribute data types

two attributes of a given relation set of constraints

a match {‘true positive’, ‘false positive’}

Talkudar et al. [18]
a result tuple {‘true positive’, ‘false positive’}

a pair of result tuples {‘before’, ‘after’} // used for ordering results

In this section, we present an approach to detecting these
phenomena, viz. feedback inconsistency. The basic idea
is that if two users have different requirements, then this
difference may give rise to conflicts between the feedback
instances they supply. Similarly, if the requirements of a
given user changes over time, then this change may give
rise to inconsistency between feedback instances supplied at
different points in time. Given two feedback instances uf1
and uf2, we present rules that can be used to check whether
uf1 and uf2 are inconsistent.

We start by considering the case in which uf1 and uf2 an-
notate the same object. uf1 and uf2 are inconsistent if they
are of the same kind, and annotate the same object using
conflicting terms. Below is a rule that detects this type of
inconsistency.

1 inconsistent(uf1, uf2) : −
2 - uf1 and uf2 are of the same kind

3 uf1.type = uf2.type,
4 - uf1 and uf2 label the same object

5 uf1.obj = uf2.obj,
6 - using inconsistent annotation

7 uf1.type.conflictAnnotations(uf1.annot, uf2.annot)

Notice that the notion of inconsistency depends on the
kinds of feedback (line 7); in this respect, the function
conflictAnnotations() acts as an extensibility point. As
a proof of concept, we present below two definitions of this
function for two different kinds of feedback.

Example 3.1. Consider for example that feedback annotates
query tuples as true positives or false positives (e.g., [2]).
In this case, two terms are conflicting if they are different.
That is:

1 conflictAnnotations(c1, c2) : −

2 - The terms c1 and c2 are different

3 c1 6= c2

Example 3.2. Consider now that the feedback provided by
users uses terms taken from domain ontologies (e.g., [15]).
In this case, two concepts are conflicting if they are disjoint.
That is:

1 conflictAnnotations(c1, c2) : −
2 - The data types denoted by c1 and c2
3 - are disjoint

4 c1 u c2 = ⊥

The artifacts that constitute an information integration sys-
tem can be dependent on each other. Such dependencies
may give rise to constraints between feedback, more specif-
ically between the terms used to annotate dependent arti-
facts. If such constraints are not satisfied, then this results
in inconsistency between the feedback instances in question.
This form of inconsistency can be detected using the follow-
ing rule:

1 inconsistent(uf1, uf2) : −
2 - uf1 and uf2 are of the same kind

3 uf1.type = uf2.type,
4 - there is a pair of dependency and constraint

5 - 〈deptype, consttype〉 that are associated with

6 - the kind of feedback uf1.type
7 ∃ 〈deptype, consttype〉 ∈ uf1.type.getDepConstPair(),
8 - the objects annotated by uf1 and uf2 are

9 - related using the deptype dependency

10 dependent(uf1.obj, uf2.obj, deptype),
11 - the annotations assigned by the uf1 and uf2
12 - do not satisfy the consttype constraint

13 ¬constraint(uf1.annot, uf2.annot, consttype)
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where getDepConstPair() is a function that re-
turn pairs of dependency type and constraint type
that are associated with a given feedback type,
dependent(uf1.obj, uf2.obj, deptype) is a predicate
that is true if the objects uf1.obj and uf2.obj
are related by a dependency of type deptype, and
constraint(uf1.annot, uf2.annot, consttype) is a predi-
cate that is true if the constraint of type consttype holds
between the annotations uf1.annot and uf2.annot.

Example 3.3. As an example, consider the following feed-
back instances which annotate values of relation attributes
as true positives or false positives:

• uf = 〈〈r.att, v〉, tp, Norman, value membership〉 speci-
fies that the value v of the attribute att of the r rela-
tion is a true positive, and

• uf′ = 〈〈r′.att′, v〉, fp, Norman, value membership〉
specifies that the value v of the attribute att′ of the
r′ relation is a false positive.

Additionally, consider that there is a foreign key that links
the attribute att of r to the attribute att′ of r′. Given this,
we can deduce that uf and uf′ are inconsistent. Indeed, if
v is a true positive for the attribute att of r, then it should
also be a true positive for the attribute att′ of r′ given the
inclusion constraint implied by the foreign key. The predi-
cates dependent and constraint used for detecting incon-
sistencies of the above form can be defined as follows:

• dependent(uf1.obj, uf2.obj, ‘foreign key′) is true if
the attribute in uf1.obj is linked to the attribute in
uf2.obj using a foreign key, and the attribute values
in uf1.obj and uf2.obj are the same, and is false oth-
erwise.

• constraint(uf1.annot, uf2.annot, ‘tp inclusion′) is
false if uf1.annot takes the value tp and uf2.annot
takes the value fp, and is true otherwise. That is:

1 constraint(annot1, annot1, ‘tp_inclusion′) : −
2 ¬((annot1 = tp), (annot2 = fp)),

4. FEEDBACK VALIDITY
User requirements may change over time in which case previ-
ously acquired feedback may become invalid. In this section,
we specify the situations under which a feedback instance
can be stated to be valid or invalid.

We use the event calculus [14] as a formalism to define the
rules used to check the validity of user feedback. The event
calculus is a logic-based formalism that can be used to de-
duce the state of a given domain based on the events (ac-
tions) that have taken place. In the case of our analysis,
the main event is the fact that a user supplies a feedback
instance uf. We denote this event by supplyFeedback(uf).
In addition we consider the following predicates:

• exists(obj) is true if the object obj exists, and is false,
otherwise.

• valid(uf) is true if the feedback instance uf is valid,
and is false, otherwise.

• invalid(uf) is true if the feedback instance uf is in-
valid, and is false, otherwise.

• hasUnkownStatus(uf) is true if the status of uf is un-
known, and is false if uf is either valid or invalid.

Notice that the above predicates, exists(obj), valid(uf),
invalid(uf) and hasUnkownStatus(uf), are fluent: their
value is subject to change over time. As well as the above
predicates, we consider two predicates that are specific to the
event calculus, viz. holdsAt and happens. holdsAt(fl, t)
and happens(e, t) are used to check that a given fluent fl

holds at a given time point t and to check that a given
event e occurs at a given time point t, respectively. We will
now specify the cases in which a feedback instance is valid,
invalid or has unknown status.

We start by specifying the conditions under which a feed-
back instance uf1 is invalid. uf1 is invalid if there is a valid
feedback instance uf2 that is conflicting with and fresher
than uf1. This is because we consider that inconsistencies
in feedback emerge from changes in requirements, in which
case, uf1 reflects past requirements that have changed, and
as a result, is no longer valid. We formally define the rule
for identifying invalid feedback instances as follows:

1 holdsAt(invalid(uf1), t) : −
2 - uf1 was supplied by the user at a time point

3 - that is equal to or before t

4 happens(supplyFeedback(uf1), t1), t1 ≤ t,
5 - There exists a feedback instance uf2 that was

6 - supplied by the user at a time point that

7 - is equal to or less than t, and greater than t1
8 happens(supplyFeedback(uf2), t2), t1 < t2 ≤ t,
9 - uf2 is inconsistent with uf1,

10 - and is known to be valid at t

11 inconsistent(uf1, uf2), holdsAt(valid(uf2), t)

We now specify the conditions under which a feedback in-
stance uf1 is valid. uf1 is valid at the time point t if it
was supplied by the user before t, there is no conflicting
feedback instance uf2 that is fresher than uf1 and valid
at t, and the object uf1.obj on which feedback is given
exists at t. We do not consider feedback that was given
on an object that is no longer available. This is because
the non existence of the object in question may in certain
cases mean that the annotation given by the feedback is no
longer valid. To illustrate this, consider the following re-
lational table car(model, manufacturer), and consider that
the user gave a feedback instance uf annotating the tuple
〈Mini, Rover〉 as a true positive of the car relation. The
Mini manufacturer changed later on, and the tuple was up-
dated to car = 〈Mini, BMW〉. As a result of this update, the
feedback instance uf given previously is no longer valid. We
formally define the rule for identifying valid feedback in-
stances as follows:

1 holdsAt(valid(uf1), t) : −
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2 - uf1 was supplied by the user at a time point

3 - that is equal to or before t

4 happens(supplyFeedback(uf1), t1), t1 ≤ t,
5 - There is no valid feedback instance uf2 that

6 - is conflicting with and fresher than uf1
7 not (happens(supplyFeedback(uf2), t2),
8 inconsistent(uf1, uf2),
9 holdsAt(valid(uf2), t)), t1 < t2 ≤ t),
10 - The object that uf1 annotates exists at t

11 holdsAt(exists(uf1.obj), t).

Notice that the above rule is recursive. Specifically, the va-
lidity of the feedback instance uf1 is preconditioned by the
non existence of a valid feedback instance uf2 that is con-
flicting with and fresher than uf1.

There are situations in which we are unable to determine
whether a feedback instance is valid or invalid. This is the
case, for example, when the object on which feedback was
given, is no longer available. This is also the case if the
user supplies two inconsistent feedback instances at the same
time. (The latter case may be indicative of malicious be-
haviour of the user [15].) The status of a feedback instance
uf1 is unknown if it is neither valid nor invalid. That is:

1 holdsAt(hasUnkownStatus(uf1), t) : −
2 - uf1 was supplied by the user before t

3 happens(supplyFeedback(uf1), t1), t1 ≤ t,
4 - uf1 is not known to be valid at t

5 not holdsAt(valid(uf1), t),
6 - uf1 is not known to be invalid at t

7 not holdsAt(invalid(uf1), t).

Note that the above analysis on validity of user feedback
can be applied to feedback instances that are supplied by
the same user, or by a group of users that are known to
have the same requirements. This raises the question as to
how to determine whether a group of users have the same re-
quirements. In the following section, we show how clustering
techniques can be used for this purpose.

5. CLUSTERING USERS BASED ON
FEEDBACK

The users of an information integration system should have
the same (or similar) requirements to ensure the cohesion
of the feedback they provide. Checking the consistency of
the feedback provided by different users can be used as a
means for ensuring such cohesion. In this section, we explore
another technique that can be used for this purpose, namely
clustering.

Clustering is unsupervised classification [12]. We use this
technique to group users according to their requirements.
Specifically, given a set of users and their (partial) require-
ments, elicited through feedback, clustering is used to iden-
tify groups of users with similar requirements. Clustering
presents the following potential benefits:

• The feedback provided by the users within a cluster

can be used collectively, thereby improving the quality
of the integration system.

• Clustering may reveal that the users of an existing
information system have different requirements, and
therefore point out the need to create multiple infor-
mation integration systems to replace the existing one.

• Conversely, clustering may identify opportunities for
grouping the users of two or more information integra-
tion systems into a single group, if it turns out that
they have similar requirements.

• Clustering can also be used to identify outlier users
within an information integration system, i.e., users
that have different requirements from the rest of the
users.

As a proof of concept, we present in what follows an example
illustrating how users can be clustered according to their
requirements.

Example 5.1. Consider a set of users who would like to have
information about available proteins. Specifically, there is a
Protein relation in the integration schema that users wish to
query. Not all users have the same requirements, e.g., they
may be interested in proteins belonging to different species
or with different structures, motifs, etc. Clustering can be
used to identify groups of users with similar requirements
as to which tuples should populate the Protein relation.
There are many algorithms for clustering that are readily
available in the literature [12]. To make use of such algo-
rithms, however, we need to choose a pattern representation
for specifying user requirements, and a metric for measuring
the distance between user requirements. In what follows, we
present a pattern representation and a distance metric that
are suitable for the above clustering problem.

Pattern Representation. We specify a user’s requirements
with respect to the extent of the Protein relation using a
pair 〈E, UE〉, where E is the set of tuples that are expected
by the user, i.e., the tuples that the user annotated as true
positives or false negatives, and UE is the set of tuples that
are not expected by the user, i.e., the tuples that the user
annotated as false positives.

Distance metric. To define the distance between require-
ments, we start by defining the notion of similarity of re-
quirements. Consider two users u1 and u2. The larger the
overlap between the expected tuples of u1 and u2, i.e., E1
and E2, and the larger the overlap between their unexpected
tuples, UE1 and UE2, the more similar are their requirements
are. A similarity measure that captures this property can
be defined as follows:

sim(u1, u2) = we ×
|E1 ∩ E2|
|E1 ∪ E2|

+ wue ×
|UE1 ∩ UE2|
|UE1 ∪ UE2|

where we and wue are weights such that we + wue = 1. The

ratios |E1 ∩ E2|
|E1 ∪ E2|

and |UE1 ∩ UE2|
|UE1 ∪ UE2|

are known as the Jaccard
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coefficient [3]. The above similarity measure takes values
between 0 and 1, and the corresponding distance metric can
be defined as follows: dis(u1, u2) = 1 − sim(u1, u2).

Using the representation and distance function defined
above, we can group users of the Protein relation using ex-
isting clustering algorithms [3]. In what follows, we present
preliminary empirical results with synthetic data show how
such users can be clustered into groups using hierarchical
agglomerative clustering. Specifically, we consider the fol-
lowing setting. A set of 20 users, each of which provides
feedback instances identifying expected and unexpected tu-
ples of the Protein relation. Regarding the distance metric,
we consider that a feedback instance specifying an expected
tuple has the same weight as a feedback instance specifying
an unexpected tuple, i.e., we = wue = 0.5. To cluster users,
we use the hclust algorithm provided by the R statistical
framework1 for performing hierarchical clustering. Specifi-
cally, we run the following procedure:

1 For each user ui
2 Generate a set of feedback instances UFui
3 For each pair of users 〈ui, uj〉
4 Compute the distance between them

5 Log that distance in the distance matrix DM

6 Invoke the hclust program using as input DM

DM is a two-dimensional array that is used to log the dis-
tances, taken pairwise, of a set of users.

We run the above procedure by varying the size of overlap
in feedback instances between users. Specifically, we consid-
ered the following three scenarios:

1. The overlap in feedback instances between users is
small: less than 5 percent of the feedback instances
supplied by a given user overlap with the feedback in-
stances supplied by another user.

2. The overlap in feedback instances between users is sig-
nificant: 10 to 20 percent of the feedback instances
that are provided by a given user overlap with the
feedback instances supplied by another user.

3. The overlap in feedback instances between users is
large: 20 to 50 percent of the feedback instances that
are provided by a given user overlap with the feedback
instances supplied by another user.

Figures 1, 2 and 3 visualize the clustering results obtained in
each of the above scenarios using dendrograms. The users,
which are identified by integers, are listed along the x-axis
in an order that is convenient for showing the cluster struc-
ture. The y-axis measures inter-cluster distance. Consider,
for example, the users identified by the integers 13 and 17

in Figure 3. They are joined into the same cluster. The dis-
tance between them is 0.1, and no other users are separated
by a distance smaller than that value. Consider Figures 1, 2

1http://www.r-project.org

Figure 1: Clustering results when overlap in user
feedback is small

and 3 together. As expected, the comparison of three den-
drograms shows that the smaller the overlap between users
in terms of feedback, the poorer the quality of the cluster-
ing. Indeed, the intra-cluster distance is large when overlap
in feedback is small (Figure 1). A cluster, therefore, may
contain users with requirements that are significantly differ-
ent. On the other hand, the quality of clustering is better
when overlap in feedback is large. The intra-cluster dis-
tance is reduced (Figure 3), thereby yielding clusters that
join users with similar requirements.

The above example considers feedback instances of the same
kind. In practice, different kinds of feedback instances given
on different kinds of artifacts will be used to elicit user re-
quirements. We can use feedback propagation as a mecha-
nism to deal with the issue. The basic idea can be formu-
lated as follows: given a feedback instance uf annotating an
object of a given type, e.g., a mapping m, derive a feedback
instance uf′ annotating an object of another type, e.g., a
tuple t that is produced using the mapping m. Propagating
feedback may in certain situations be used for aggregating
feedback instances of different types.

Aggregation is also another means that can be explored
when feedback instances are of different kinds. As an exam-
ple, assume that we want to cluster users based on feedback
instances of different kinds. Using the approach described
above, we obtain a set of clusterings {C1, . . . , Cn}; Ci being
the clustering obtained using feedback instances of the ith
type. The obtained clusterings can then be aggregated to
produce a single clustering C that agrees as much as possi-
ble with the n clusterings [10]. We can do so, for example,
by creating a graph G, the vertices of which represent users,
and where the edges are weighted using the information pro-
vided by the clusterings C1, . . . , Cn. Specifically, the weight
of the edge 〈u1, u2〉 linking the users u1 and u2 is the fraction

180



Figure 2: Clustering results when overlap in user
feedback is important

of clusterings in which the two users are placed in different
clusters. The cluster C is then obtained using a partition-
ing of the graph G that cuts as few as possible of the edges
with small weight, e.g., less than 0.5, and cuts as many as
possible of the edges with large weight, e.g., more than 0.5.
Multidimensional clustering algotithms, e.g., PCA, is an-
other means that can be explored for grouping users based
on feedback instances of different types [3], e.g., each dimen-
sion can be used to encode the user requirements that are
derived from feedback instances of a given kind.

As mentioned at the beginning of this section, clustering can
be used as a means for reducing the workload of individual
users in terms of the feedback they provide. We present
in the following section a technique that can be used for
automatically generating user feedback.

6. LEARNING FEEDBACK USING
COLLABORATIVE FILTERING

There are situations in which it is desirable to learn the re-
quirements of a given user. For example, a user may have
only partial knowledge of requirements, in which case, s/he
may not be in a position to provide feedback on given ar-
tifacts. Also, if a new user joins an information integration
system, then we may want to accelerate the requirement ac-
quisition process. In this section, we explore the use of col-
laborative filtering [16], a technology that is used for learn-
ing user preferences, to learn user feedback. Specifically, the
problem that we tackle can be formulated as follows. Given
a user u and an object obj of an information integration
system, predict the feedback uf that u would provide to an-
notate obj based on other users’ feedback. The underlying
assumption to our approach is that if two users have sim-
ilar requirements, then they are likely to provide the same

Figure 3: Clustering results when overlap in user
feedback is large

feedback on a given artifact.

Example 6.1. Assume, for example, that we would like to
know whether a given tuple t can be used to populate a re-
lation r of the integration schema in the conceptualization
of the user u. We can learn the feedback the user u would
provide to annotate t by using the feedback instances that
other users provided to annotate that tuple. Assume that
the users u1, . . . , un provided feedback instances annotating
t. The following formula computes a score, expected(t, u),
estimating the likelihood that t is expected and a score,
unexpected(t, u), estimating the likelihood that t is unex-
pected for u.

expected(t, u) =

Pi=n

i=1(sim(u, ui) × isExp(ui, t))

n

unexpected(t, u) =

Pi=n

i=1(sim(u, ui) × isUnexp(ui, t))

n

expected(t, u) and unexpected(t, u) are calculated as
weighted averages of the feedback given by other users where
the weights are the similarity scores between user require-
ments. sim() is the similarity measure defined in the previ-
ous section. isExp(ui, t) (resp. isUnexp(ui, t)) is a boolean
predicate that is true if the tuple t is expected (resp. unex-
pected) in the conceptualization of the user ui.

The operations that we presented for detecting inconsisten-
cies in feedback, clustering users and learning feedback op-
erate on feedback given on common objects. Therefore, the
results they produce may not be trustworthy when the set
of objects annotated by more than one feedback instance is
small. To improve the quality of the results produced by
the operations presented in this paper, we can take inspi-
ration from model-based collaborative filtering algorithms
[6]. Rather than making predictions based on items that are
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commonly annotated by users, model-based collaborative fil-
tering algorithms employ user annotations to derive, for each
user, a model characterizing his/her preferences. Predictions
are then made by matching those models. We can adopt a
similar approach. The issue here is, of course, which model
to adopt for synthesizing user requirements elicited through
feedback.

As an example, in our previous work [2], users provide feed-
back commenting on the membership of tuples to a relation
in the integration schema. If the set of tuples annotated
by more than one user is small then the operation we pre-
sented for learning feedback may not be able to generate
meaningful feedback.

Feedback that comments on tuple membership was used in
[2] to annotate schema mappings with metrics estimating
their precision and recall. Specifically, given R, a relational
table, and m, a mapping that is a candidate to populate R, the
precision of m given the feedback UFui supplied by the user ui
is defined as the ratio of the number of true positive tuples
returned by m to the sum of the number of true positive
tuples and the number of false positive tuples of m given the
feedback instances in UFui . Similarly, the recall of m is defined
as the ratio of the number of true positive tuples returned
by m to the sum of the number of true positive tuples and
the number of false negative tuples of m given UFui . That is:

Precision(m, UFui) =
|tp(m, UFui)|

|tp(m, UFui)| + |fp(m, UFui)|

Recall(m, UFui) =
|tp(m, UFui)|

|tp(m, UFui)| + |fn(m, UFui)|

where |s| denotes the magnitude of the set s, and tp(m, UFui),
fp(m, UFui) and tp(m, UFui) denote, respectively, the sets of
true positives, false positives and false negatives of m given
the feedback instances in UFui .

When overlaps between the sets of feedback instances pro-
vided by different users are small, the approach we described
for learning feedback is likely to be ineffective: predictions
will be made using little or no evidence, and as such are
likely to be inaccurate. To overcome this problem, we can
make use of the precision and recall estimates defined above
to learn feedback. Indeed, such estimates synthesize user
requirements as to the quality of the mapping used to pop-
ulate a given relation. Therefore, they can be used to com-
pare users’ requirements. Users with similar requirements
are likely to be associated with close estimates, and, con-
versely, users with different requirements are likely to be
associated with disparate estimates. Using such estimates,
we can therefore learn the feedback instance a given user ui
would provide to annotate a given tuple t by matching the
precision and recall estimates computed based on the feed-
back supplied by ui with the precision and recall estimates
computed for other users.

As well as collaborative learning techniques, feedback
can be inferred by exploiting available domain knowl-
edge. To illustrate this, consider the two following re-
lational tables Protein(name, accession, gene, pfam) and
ProteinFamily(id, desc) and consider a referential integrity

constraint specifying that a value of the attribute pfam of
the Protein relation is also a value of the attribute id of
the ProteinFamily relation. Consider now that the user
supplies a feedback instance specifying that PF05387 is an
expected value of the pfam attribute. Given the above in-
tegrity constraint, we can derive a feedback instance spec-
ifying that the value PF05387 is an expected value of the
id attribute. Likewise, if the user specifies that a given in-
stance is an unexpected value for the id attribute, then we
can derive a feedback instance specifying that such a value
is unexpected for the pfam attribute.

It is also worth mentioning that feedback provides partial in-
formation about user requirements. We cannot expect users
to provide feedback on every artifact. Instead, in most cases,
users will be willing to provide feedback on a small subset of
the objects they are presented with. Because of the scarcity
of the feedback, the results of the operations presented for
verifying the validity of feedback, clustering users and learn-
ing feedback may be wrong or misleading, e.g., an invalid
feedback instance may be found to be valid, or two users
with different requirements can be grouped into the same
cluster. This raises the question as to how to manage uncer-
tainty in the results produced by the operations given the
feedback used as input. A possible solution that can be ex-
plored consists in devising metrics, such as those adopted in
[8, 2], to estimate the degree to which the results of an op-
eration are correct based on the proportion of objects that
are annotated by feedback.

7. CONCLUSIONS
While it is recognised that user feedback can play a central
role in dealing with the difficulties underlying the construc-
tion and maintenance of information integration systems,
existing proposals, e.g., [2, 17, 4, 11], address specific inte-
gration sub-problems considering a specific kind of feedback
sought, in most cases from a single user, to annotate a spe-
cific kind of artifacts. We have shown in this paper that
treating feedback as a first class citizen presents several ad-
vantages. Specifically, we presented a straightforward model
for describing different kinds of feedback that have been con-
sidered in the information integration literature. We pro-
posed operations that can underpin the management of feed-
back within information integration systems, and that are
applicable to feedback instances of the model we proposed.
We illustrated through examples how such operations can be
used to maximize the benefits that can be derived from feed-
back compared with existing proposals. In particular, the
operations presented can be applied to feedback instances of
different kinds supplied by users with different and changing
requirements. We have presented preliminary solutions that
can be adopted in the realization of such operations. Fur-
thermore, we identified issues (and therefore research oppor-
tunities) that underlie feedback management in information
integration systems.
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