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ABSTRACT

One of the key tenets of database system design is making efficient
use of storage and memory resources. However, existing database
system implementations are actually extremely wasteful of such
resources; for example, most systems leave a great deal of empty
space in tuples, index pages, and data pages, and spend many
CPU cycles reading cold records from disk that are never used.
In this paper, we identify a number of such sources of waste, and
present a series of techniques that limit this waste (e.g., forcing
better memory locality for hot data and using empty space in index
pages to cache popular tuples) without substantially complicating
interfaces or system design. We show that these techniques
effectively reduce memory requirements for real scenarios from
the Wikipedia database (by up to 17.8x) while increasing query
performance (by up to 8x).

1. INTRODUCTION

One of the core tenets of good database design is that resources,
especially RAM and disk bandwidth, should be used efficiently.
DBMS designers have used a number of techniques to optimize
hardware utilization, such as keeping hot tuples in the buffer pool,
and performing sequential access to the disk whenever possible.
Every bit of memory or bandwidth used to fetch or store data that
is not needed is a bit lost.

Despite this fact, many database implementations do a poor
job of using these precious memory resources. For example, the
typical index fill factors have been shown to be around 68% [10],
and this figure can get much worse in the face of updates and
deletes [6]. This 32% of space left unused is the product of a
conscious design decision aimed at reducing expensive node split
operations. Nonetheless, since index sizes often rival the size of
the tables themselves, this is a very significant amount of memory
dedicated to storing absolutely nothing.

Another example results from the use of fixed-size pages, which
need to be read in their entirety just to fetch a single tuple. If
the other tuples on a page are not needed, most of this I/O is
completely wasted. Using a workload trace from Wikipedia, we
found that 99% of accesses to Wikipedia’s revision table, which
stores metadata about article revisions, are focused on the 5% of
tuples that represent the latest revision of the articles. The index
clustering used in Wikipedia leads to heap pages that contain as
little as 2% of frequently queried data.

A third example of waste has to do with inefficient encoding of
data. This can arise due to poor choices in physical representation
(e.g., a string representation for an integer, using bytes to store
booleans or lack of compression) or semantic decisions (e.g.,
storing full timestamps when the application only requests years).
We performed an analysis of tables on multiple databases and
found between 16% to 83% of waste due to inefficient physical
encoding.

In this paper, we describe these and several other examples
of database system resource waste in more detail, and propose a
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number of solutions to these problems, including:

1. A technique to deal with the problem of wasted space in
index pages, that “recycles” this space, using it as a cache for
hot data. We show that the performance benefit we obtain
on a substantial class of queries from the actual Wikipedia
workload can be orders of magnitude higher, and that this
technique can be implemented in a way that doesn’t change
index APIs or increase system complexity.

2. A technique to deal with the problem of cold tuples polluting
pages containing hot data, that clusters commonly accessed
tuples together, improving performance a factor of 6 while
reducing total index sizes a factor of 19.

3. Analysis techniques that deal with the problem of encoding
waste by identifying the most efficient type for a given
column, and treating the programmer-supplied type merely
as a declarative “hint” rather than an actual storage type.
Additionally, we suggest ways to eliminate redundant data
and to exploit ID fields by embedding semantic information
in the values.

In summary, various artifacts of database system implemen-
tations, and poor user choices account for significant amounts
of wasted storage in databases today. We believe there is a
huge opportunity for research that i) optimizes DBMS structures
and policies in a workload-specific manner, ii) empowers users
with tools that automate waste detection and, iii) performs auto-
matic space allocation and layout tuning. Work on self tuning
databases [2] that reorganize column layouts [5], select optimal
indexes [3], and calculate optimal database knobs [9] are high level
optimizations in the right direction, however there is still ample
opportunity at every level of the DBMS architecture, as we will
illustrate in the rest of this paper.

This paper presents our vision to improve resource utilization
in databases; as such, many of our experiments are simplified or
incomplete—we plan to further extend this analysis in the future.

2. UNUSED SPACE

Unused space is defined as waste due to bytes that are allocated
on disk or in RAM but do not contain data. Such waste is often
allocated or reserved for expected data writes in the future, or as
the result of poor data placement policies. We present one possible
way to reuse this waste as it occurs in B+Tree pages.

2.1 Index Caches

The average fill factor of B+tree index pages is 68% [10]. In
practice, real implementations are often substantially less — for
example, in a frequently updated database for our CarTel (http:
//cartel.csail.mit.edu) research project, the fill factor
is only 45%. The waste could be eliminated by compacting the
pages with a fill factor of 100%, which would benefit read-only
workloads, but lead to excessive node splits and result in low
utilization of those pages in the presence of inserts. We want a
way to use this space as a cache (that can be overwritten when the
space is needed to store legitimate index contents); we describe
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Figure 1: Anatomy of an index page

such a scheme in the rest of this section.

B+tree leaf nodes often store tuple pointers rather than physical
tuple data, requiring an additional page access to retrieve the
associated data page. In OLTP workloads, if the page access
necessitates an additional disk I/O, the overhead can be substantial.
By caching some tuples’ data in their corresponding index leaf
pages, the index can be used to directly answer queries, which
makes use of unused space and avoids following pointers from
leaf pages. We show experiments that suggest this can lead to
substantial performance improvements on a trace of the Wikipedia
workload without substantially complicating the index API or
implementation.

As an alternative to a caching-based approach, one could
imagine using covering indexes (i.e., adding all of the fields used
in any query to the index key), which can also avoid accessing the
heap to answer queries. However, covering indices still store cold
data, waste space and bloat the index size, which wastes more total
bytes, and increases pressure on RAM.

2.1.1 Cache Overview

The index cache stores field values of the most frequently
accessed tuples in the index leaf pages, without introducing
any disk I/O overhead. Most importantly, we preserve existing
index maintenance algorithms and piggy-back off normal query
processing to perform cache maintenance.

To simplify the discussion, we assume that the index keys and
the tuples are fixed length. Metadata about the field lengths is
stored on the index’s metadata page in memory. The typical
index page layout (Figure 1) consists of a fixed size page header
and footer, a region of index key values, and a logically ordered
directory of small fixed size pointers to the keys. The data and
directory start from the high and low areas of the page and grow
towards the center, and the page header stores pointers to the start
and end of the free space, which is used as the cache store.

The cache space is split into slots where the beginning of each
slot is aligned to the cache entry size (e.g., if the item size is 25
bytes, then the start of each slot is a multiple of 25). A slot either
contains data or is zeroed out. Items begin with the tuple id to
identify the data, followed by the field values.

When an index page is read during a lookup for a tuple with
id ¢, we scan the cache slots for a cached version of t. Queries
that project a subset of the index key and the cached fields can be
answered without retrieving the data pages from the buffer pool,
or worse, from disk (e.g., if the query projects A,B,C, the index
key is A, B, and we cache C.) On a cache miss, we construct and
insert the new cache item into the cache of the index leaf page
that references the tuple, possibly evicting an existing item from
that page’s cache has not been accessed recently. In order to not
introduce additional disk I/O, cache modifications do not dirty the
page.

We avoid impacting existing index operations by allowing key
inserts to freely overwrite the periphery of the cache space at any
time. Thus it is important to keep hot items in the interior of the
free space, where they will be overwritten last. It is possible to
calculate the most stable location, .S, as a function of (ignoring
fixed size headers and footers) the index key size K, directory
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pointer size D, and page size P: S = % x P

The cache is logically split into buckets of N slots each. When
an item is first inserted, it is placed in a random free slot, or if
no slots are free, evicts a random item in a peripheral bucket. On
a lookup, we swap the item with a random entry in the adjacent
bucket closer to S. This way, when the key and directory regions
expand, the least accessed cache items are overwritten first.

2.1.2  Efficient Consistency Enforcement

So far, we have described how to read and populate the index
cache. We now briefly outline an efficient index cache invalidation
scheme to handle system crashes and modifications to a field
whose cache page has been stolen. To support full index invalida-
tion, we add a cache sequence number to each index page header
(CSNp), and maintain a global CSN for the index (C'SN;q4g). By
preserving the invariants that 1) CSN, <= CSN;q4, and 2) a
page cache is only valid if CSN, = C'SN;4,., we can efficiently
invalidate the entire cache by incrementing C'SN;q,. Although
this guarantees correctness, it is inefficient to invalidate the entire
index on update queries. Instead, we create and store predicates
that uniquely identify the updated tuples and append them to an
in-memory log. When an index page is read during normal query
execution, we zero the cache space if any predicates match keys
in the page. If the list grows above a threshold, we can increment
CS N4, and clear the list. Finding a way to efficiently index and
search these predicates is an area for future work.

2.1.3 Latching

One point of concern is that we are turning every index leaf
page read into a write, which may introduce higher lock/latch
contention.  Fortunately, normal index operations can freely
overwrite the cache, so we only need to acquire short term latches
for the duration of the cache writes. Additionally, we can give up
a write operation if the latch is not immediately available.

2.1.4  Performance

In an analysis of Wikipedia, we found that the most popular
class (40%) of queries accesses the page table using the name_title
index, which uses a composite key of (namespace id, page title),
and projects up to 4 additional fields. The index contains 360 MB
of key data and, assuming that the index is 68% full and all 4
fields are cached (25 bytes/cache item), the index can store up to
7.9 million cache items — representing over 70% of the tuples in
the page table and allowing us to answer nearly all of these queries
through the index (due to skew in the page access).

We ran a simulation to study how the hit rate varies with
the cache size using a zipfian distribution similar to Wikipedia
(oo = .5) and found that the swapping based cache management
algorithm exhibits high hit rates (Figure 2(a)). Each point is the
average hit rate after 100k lookups and the x-axis is the percentage
of the items that the cache can hold (which will vary depending
on the tuple size and index fill factor). We compare Swap,
which simulates a read-only workload that does not overwrite the
index cache (constant cache size), and Shrink, which simulates
a read/insert workload that overwrites half of the index cache at a
constant rate over the duration of the experiment. Swap exceeds
90% hit rate when the cache size is only 25% of the table. Shrink
only reduces the hit rate by 5%, showing that swapping effectively
moves hot items towards the middle.

Figure 2(b) is a micro-benchmark that illustrates the perfor-
mance benefits of index caching over a random lookup distribu-
tion. We assume that the index is fully in memory, and simulate
the index and buffer pool using large in-memory arrays. An index
cache miss must access a random page in the buffer pool, and
a buffer pool miss must read a page from an on-disk file. We
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Figure 2: Index caching experiments

measure the performance improvement as the index cache (x-axis)
and buffer pool (lines) hit rates vary from O to 100%. Different
lines show what happens with increasing buffer pool hit rates. The
hit rate depends on the available RAM for the buffer pool, as well
as the sizes of the data pages and working set. Higher buffer pool
hit rates, unsurprisingly, lead to better performance. The x-axis
shows what happens as the hit rate of our index cache increases
— higher cache hit rates substantially improve performance as we
avoid both the memory access to the buffer pool as well as the
additional disk I/O in the event that the data page is not in the
buffer pool. Thus, even with when the dataset fully fits in memory
(100% buffer pool hit rate), we still see a 2.7x improvement in
performance by avoiding the additional memory accesses to pages
in the buffer pool. We measured the index cache hit rate for our
subset of the Wikipedia workload to be above 90%, suggesting that
Wikipedia should see query performance gains of up to several
orders of magnitude by employing this technique.

Figure 2(c) extends the previous experiment to illustrate the
overhead of using index caching. We assume the buffer pool hit
rate is 100% and see that index caching has 0.3us of overhead,
which disappears when the cache hit rate exceeds 35%, and
ultimately outperforms nocache by 2.7x.

In our experiments, we hand picked the fields to cache in the
index and discovered a number of useful heuristics for selecting
these fields. First, the fields should be stable (i.e., rarely updated).
Updates must access the updated field values in the heap tuple,
so frequently updated fields do not benefit from index caching.
Second, the cached fields should be chosen to fully answer a large
class of queries. We found that over 40% of Wikipedia queries can
be directly answered through an index cache on 4 attributes. These
heuristics are at odds with each other, so the optimal choice of
fields to cache is dependent on the workload, and is an interesting
direction for future work.

2.2 Additional Directions

There are many other types of data that might be cached in index
pages, for example: statistics, pre-computed query results, or other
index pages are all options. In addition, these same concepts can
be applied to data pages as well. For example, data pages can
cache the results of foreign key joins, to avoid additional disk
accesses for join queries. More ambitiously, if a data page is
consistently read during the execution of a complex join query,
caching the query results can offer substantial query performance
improvements.

3. LOCALITY WASTE

We define locality waste as waste due to ineffective placement
of data. A common example is when a full tuple must be read
into memory even though the query only accesses a small subset
of the fields. Equally wasteful is when cold tuples are read into
memory only because they are co-located near a single hot tuple
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(e.g., on the same page). In this section we provide an example of
access frequency based horizontal partitioning that improves query
lookups in Wikipedia’s revision table by over 8, and sketch an
improvement to index caching in update intensive scenarios using
vertical partitioning.

3.1 Horizontal Partitioning

The first form of locality waste we discuss results from hot and
cold tuples being co-located on the same data page. This occurs
when the tuple placement strategy (e.g., append to table) does not
match the access patterns. We argue for clustering and partitioning
tables by access pattern rather than by range or hash partitioning.
This is particularly beneficial for lookup based workloads that
access a small set of hot tuples distributed throughout the table.

For example, Wikipedia’s revision table stores a tuple for every
new page revision; each tuple contains a unique revision ID, the
page ID, a pointer to the text content, and several additional fields.
99.9% of page requests access the 5% of the tuples that represent
the most recent revisions for each page; however, these hot tuples
are scattered throughout the table, with as few as one hot tuple per
data page (2% utilization). Hash and range partitioning are not
possible because the access frequency is not related to any field
values.

Figure 3 shows the possible performance benefits of access
based clustering on Wikipedia’s revision table. Our clustering
algorithm relocates hot tuples by deleting then appending them
to the end of the table. The 0%, 54%, and 100% curves vary the
percentage of hot tuples that are clustered while the Partition
curve additionally creates a separate partition for the hot tuples.
The workload is derived from 10% of 2 hours of Wikipedia’s
Apache logs. Lookup performance improved by 1.8x after
clustering 54% of the hot tuples (2% of the table), and by 2.15x%
after clustering all hot tuples. Creating a partition for hot tuples
reduces query costs by 8.4x. The reason partitioning has such a
profound impact is that reducing the index size from 27.1 GB for
the full table to 1.4 GB for the hot partition allows the entire index
to fit in RAM.

The properties of the workload dictate how to identify hot tuples
and move tuples between the hot and cold partitions. In Wikipedia,
hot revision tuples are those that are pointed to from the page table,
so newly inserted revision tuples can replace the previously hot
tuple for the same page, which is then moved to the cold partition
(note that this does require updating foreign key pointers and/or
using forwarding tables to redirect queries using old ids to the new
tuples). Other applications may have different policies, or require
automated tools to keep track of access patterns.

3.2 Vertical Partitioning

Just as horizontal partitioning reduces locality waste, vertical
partitioning can also be used to improve database performance [1,
7] and maximize memory utilization. For example, separating
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the cached fields from the uncached fields can complement in-
dex caching by minimizing the amount of redundant data read
into memory when queries access fields not found in the index.
Additionally, splitting the table based on the field update rate
can increase the write density per page. Weighing the benefit of
vertical partitioning against cost of merging the partitions together
makes makes this problem non-trivial and interesting.

4. ENCODING WASTE

We define encoding waste as waste stemming from data that is
inefficiently represented. This can be due to using inappropriate
field types (strings for int values), poor compression, or more
generally, storing data at a higher semantic granularity than what
the application expects. For example, if the application stores
timestamp values yet only expects years then the field contains
encoding waste. In this section, we revisit the process of schema
definitions and present techniques that exploit the semantic infor-
mation in fields.

4.1 Automated Schema Optimization

Column values can be analyzed to understand the typical value
range or the content properties (e.g., only numerical strings) and
compare them against the declared types in the schema. Similarly,
large fields that are either never accessed or only projected or
accessed through equality predicates are good candidates for
compression.

We analyzed several of the largest tables in the Cartel and
Wikipedia databases and found that they can all reduce their phys-
ical encoding waste by 16% to 83% through simple techniques.
For example, Wikipedia’s revision table uses a 14 byte string to
represent a timestamp that can easily be encoded into a 4 byte
timestamp. Most commonly, we found a large number of int fields
that store small value ranges which can easily be encoded in 8,
or even 4 bits. Although individually small optimizations, the
total amounted to over 23.5 GB (20%) of waste in the tables we
inspected. Removing these unused bits increases the data density
and consequently improves query execution performance.

We argue that schema type definitions should be treated as
hints rather than hard constraints. Schemas are typically designed
before the application is built when the workload is unclear. At this
stage, it is safer to over-allocate space. However, as the database
grows, the need for performance tuning, and the knowledge of field
values and allocation requirements grows. At this point, automated
tools can infer true field types and value distributions to modify
internal field definitions and minimize encoding waste, or suggest
these optimizations to the user.

4.2 Semantic IDs

The value of ID fields is often emantically meaningless to the
application, other than as a unique identifier. In other words,
the uniqueness, not the value, is important to the application.
For example, Wikipedia and many applications that use object-
relational-mapping (ORM) layers define an AUTO_INCREMENT
primary key field for each table with such properties. Similarly,
fields such as version number are used to induce order for a unique

entity, whereas the actual value is inconsequential.

One response to this waste is reduction. Fields can be reduced
if proxies exist whose values exhibit the same properties that
the application expects. For example, ID fields representing
uniqueness can be eliminated and the tuple’s physical address can
be used as a proxy. Column stores already infer the id using the
tuple offset [8]. More generally, if there is a functional dependency
X — Y and the semantic properties of Y can be directly inferred
from X, then Y can be dropped.

The second response is to exploit the semantic opaqueness of
primary ID fields and reassign the value to improve database per-
formance. We propose embedding partition information directly in
the ID field as a mechanism to implement the policy described in
Section 3.1. If the data is clustered on the ID field, then simply
updating the ID value is enough to physically move the tuple.
Otherwise, the hot tuples can be shuffled to the end of the table
by transactionally deleting and inserting the tuples.

This same idea can be applied to simplify query routing in
distributed partitioned databases. Recent database partitioning
work [4] attempts to find a partitioning that minimize the number
of distributed transactions for a given workload. Unfortunately,
this may require data placement at a per-tuple level, which
necessitates a large routing table that maps tuple IDs to their
physical location. Such tables can easily become a resource and
performance bottleneck and limit the scalability of the routing
infrastructure. Embedding a tuple’s physical location in its ID
alleviates this bottleneck and we believe it is an exciting area of
future work.

S. CONCLUSIONS

In this paper, we highlighted three classes of waste in modern
database systems—unused space, locality waste, and encoding
waste. We suggested several techniques that have the potential
to reduce or reuse this waste to dramatic effect. In particular,
we proposed access-based horizontal partitioning, which groups
hot tuples together, and index caching, which reuses unused space
in B+Tree indexes, and showed that they can result in order-of-
magnitude efficiency gains. In addition, we introduced the ideas
of interpreting the schema as a layout hint, dropping implicit fields,
and embedding information in fields based on application-level
semantics. The encouraging results we obtained suggest that it
may be time to revisit canonical designs (e.g., B+Trees with a 68%
fill factor) in favor of more efficient ones, especially when (as we
have shown) this efficiency can be obtained without impacting API
or UI complexity.
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