
SwissBox: An Architecture
for Data Processing Appliances

G. Alonso D. Kossmann T. Roscoe
Systems Group, Department of Computer Science

ETH Zurich, Switzerland
www.systems.ethz.ch

ABSTRACT
Database appliances offer fully integrated hardware, storage, oper-
ating system, database, and related software in a single package.
Database appliances have a relatively long history but the advent of
multicore architectures and cloud computing have facilitated and
accelerated the demand for such integrated solutions. Database ap-
pliances represent a significant departure from the architecture of
traditional systems mainly because of the cross layer optimizations
that are possible. In this paper we describe SwissBox, an architec-
ture for data processing appliances being developed at the Systems
Group of ETH Zurich. SwissBox combines a number of innova-
tions at all system levels – from customized hardware (FPGAs),
an operating systems that treats multicore machines as distributed
systems (Barrelfish), to an elastic storage manager that takes ad-
vantage of both muticores and clusters (Crescando)– to provide a
completely new platform for system development and database re-
search. In the paper we motivate the architecture with several use
cases and discuss each one of its components in detail, pointing
out the challenges to solve and the advantages that cross-layer op-
timizations can bring in practice.

1. INTRODUCTION
Database appliances optimize the design, operation, and mainte-

nance costs of data processing solutions by integrating all the com-
ponents into a single system. Thus, an appliance typically uses
customized hardware and storage, an operating system tailored to
the application, and software highly optimized to the underlying
platform. The advantage of such an approach is that cross-layer
optimization and a high degree of customization can significantly
improve the behavior and characteristics of the system over what is
possible using independent, off-the-shelf components.

The recent interest in appliances is the result of a combination
of factors. First, applications such as cloud computing and social
networks have raised the bar for performance and scalability re-
quirements. Second, existing cluster-based solutions implementing
multi-tier architectures have proven to be both costly and difficult
to maintain, opening the door for tightly integrated, closed systems
maintained by the vendor. Third, the advent of multicore and fast

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.
5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

networks allows enormous processing capacity to be packaged in
just such a box. Last but not least, the enormous cost of today’s in-
frastructure gives users plenty of motivation to consider customized
solutions rather than using general purpose systems, creating the
opportunity for highly tailored approaches focused on narrow ver-
tical markets, or even on single use cases in large enough systems.

These trends, combined with the requirements from a number
of real use cases, are the motivation for SwissBox: an architecture
for data processing appliances we are developing in the Systems
Group at ETH Zurich. SwissBox has two broad goals. First, we
are addressing the challenges in engineering new appliances in the
face of diverse and rapidly changing hardware and workloads.

Second, we are exploring the full ramifications of the freedom
granted by the appliance model to re-architect the entire data pro-
cessing stack from the hardware up to the application.

1.1 Background: Database appliances
The concept of a database appliance, broadly understood, has a

long history. There are, however, important differences between
current and past approaches to building appliances. Today’s appli-
ances use common off-the-shelf components (blade servers, oper-
ating systems, database engines, etc.) combined into a customized
architecture. In contrast, previous, appliances like the Gamma data-
base machine [4] were built using specialized hardware, with the
consequence that their performance could be soon outstripped by
rapidly advancing commodity systems. To illustrate this point, we
briefly discuss three representative modern appliances: SAP’s Busi-
ness Warehouse Accelerator, the Netezza TwinFin, and Oracle’s
Exadata.

SAP’s Business Warehouse Accelerator (BWA) speeds up ac-
cess to a data warehouse by exploiting column stores, indexes in
main memory, and multicore data processing. It consists of an array
of computing blades plus storage nodes connected through a high-
speed network switch. The data is read from the original database
and reorganized into a star schema, reformatted as a column store,
indexed, compressed, and written to the storage nodes. Query pro-
cessing is done in the main memory of independent cores using
on-the-fly aggregation, with the indexes also kept in main memory.

Oracle’s Exadata combines “intelligent storage nodes” and data-
base processing nodes in a shared disk configuration (based on Or-
acle RAC) connected by Infiniband. Exadata pushes relational op-
erators like projections and join filtering to the storage nodes, thus
reducing I/O overhead and network traffic. This is implemented
with a function shipping module that complements the data ship-
ping capability of the (conventional) database engine. To further
reduce access latency, Exadata uses a Flash-based cache between
the storage and the database nodes for hotspot data.

Netezza’s TwinFin is based on a grid of “S-Blades” with a re-
dundant front-end node. The grid is based on a custom IP-based

32



network fabric. Each S-Blade is a multicore processor where each
core has an associated FPGA and disk drive. Data is streamed from
the disks to the cores, with the FPGAs acting as filters which de-
compress the data and also execute relational operators such as se-
lection and projection. In this way, an important part of the SQL
processing is offloaded from the CPUs. TwinFin does not distin-
guish storage and data processing nodes, allowing for tighter inte-
gration of layers and, presumably, more optimized query execution.

Common to all these platforms is the combination of off-the-
shelf components and a customized architecture that also includes
specialized hardware. SwissBox is built in a similar fashion, but
aims to explore in general the many cross-layer optimizations and
alternative data processing techniques that become feasible in these
new platforms.

1.2 Background: Use cases
SwissBox is motivated by real use cases provided by our indus-

trial partners in the Enterprise Computing Center at ETH Zurich
(www.ecc.ethz.ch). These emphasize the limitations of exist-
ing systems and suggest that a custom appliance could be a better
approach to address them. Here, we focus on two such cases that
underline the importance of cross layer optimizations.

The first is from Amadeus, the leading airline reservation provider.
Amadeus acts as a cloud provider to the travel industry. Airlines,
airports, travel agencies, and national authorities access reservation
information through data services. Consequently, all queries have
strict response time requirements (less than 2 seconds), and up-
dates must also be propagated under tight time constraints. These
guarantees must be maintained even under peak load (e.g., when a
storm closes multiple airports in a region and a large wave of can-
cellations, re-bookings, and flight changes take place within a very
short period). Furthermore, the query load does not consist solely
of exact match queries: there is an increasing need for supporting
complex queries under the same latency guarantees (for example,
queries related to security).

As we have shown [16], the combination of tight latency guaran-
tees and wide variety of loads cannot be handled with existing en-
gines. The approach of materializing a view and using customized
indexes for each data service quickly reaches a limit on scalability,
not to mention the excessive maintenance cost associated with the
full set of views and indexes necessary in a system of this size.

The challenge of the Amadeus use-case is combining OLTP and
OLAP in a single system under very tight response time constraints.
The requirements are as follows: deterministic and predictable be-
havior under a range of query complexity and update loads without
the maintenance effort of complex tuning parameters, scaling to a
large number of processing nodes, and enough reliability for con-
tinuous operation.

Existing commercial appliances address some, but not all, of
these. All aim at reducing administration costs by removing tun-
ing options: BWA automates schema organization and index cre-
ation, while TwinFin simply does without them. However, none
of the commercial appliances we discuss provide, e.g., predictable
response times or support for heavy update loads.

The second use case comes from the banking industry, and arises
from the combination of increasing volumes of automated trading
and the increasing complexity of regulations governing such trades.
Algorithmic trading results in a high volume trade stream where the
latency between placing the order and the order being executed is
a key factor in the potential earnings. Existing systems can neither
cope with the volume nor process the data fast enough to keep the
latency to an acceptable minimum [13]. The need to inspect these
real time streams for breaches of regulations, unauthorized trades,

and violations of risk thresholds is a daunting but critical task.
The biggest challenge here is processing large volumes of data

under tight latency constraints, with the processing involved be-
coming increasingly complex and sophisticated over time. The re-
quirements we draw from the banking use case are: wire-speed data
processing, low latency responses, dealing with data high volumes
in real time, and scaling in both bandwidth and query complexity.

As above, commercial appliances at best address these require-
ments partially. Both TwinFin and Exadata emphasize the use of
specialized networks to speed up operations, as the network quickly
becomes the main bottleneck in such systems. Both appliances also
move some processing to the storage layer (Exadata) or to network
data path (TwinFin) to reduce the amount of data rate through the
CPUs. However, none of these appliances support on-the-fly pro-
cessing of data streams and they only provide hardware offload for
simple operations.

1.3 Contributions
Motivated by these uses cases and the lack of a suitable solution,

in this paper we outline SwissBox. SwissBox is a blueprint for data
processing appliances that combines several innovative ideas into a
single, tightly integrated platform. A key design principle of Swiss-
Box is that extensive cross-layer optimizations (particularly across
more than two layers) are a key high-level technique for meeting
the requirements of modern application scenarios.

The importance of such techniques have been mentioned be-
fore. For instance, as part of the data stream processing carried out
along complex and geographically distributed computational trees
(an idea best captured by the Berkeley HiFi project [6]). In other
areas of systems research, cross-layer techniques have also been the
motivation for new designs of operating system [5] and proposals
for changes to the Internet Architecture [11].

The appliance model allows cross-layer optimization to be ap-
plied to an entire stack within a single box. As such, the appliance
model offers tremendous potential for gains from such optimiza-
tions. The corresponding challenge, however, is that essentially all
layers of these systems need to be redesigned to both adapt them
to the new hardware platforms and to open them up for a better in-
teraction across layers, if their full potential is to be realized. The
optimizations we propose in SwissBox represent an important step
forward in the co-design of all systems layers.

In the short term, SwissBox is a practical way to address the chal-
lenges of predictability and scaleout presented by our use cases, in a
way simply not possible with traditional database engines or cloud
infrastructures. Longer term, SwissBox is a vehicle for exploring
the wider possibilities opened up by the appliance concept. The
model of custom configurations of COTS hardware within a closed
appliance allows us to optimize across many layers in the software
and hardware stack, by adopting novel designs of query processor,
operating system, storage manager, hardware acceleration, and in-
terconnect. We see SwissBox as a first step in this direction.

In the rest of the paper we describe our provisional design for the
SwissBox architecture, and discuss lessons learned and research
directions arising from our work so far.

2. SWISSBOX
SwissBox is a modular architecture for building scalable data

processing appliances with predictable performance. The archi-
tecture consists of a flexible model of the underlying hardware,
together with a functional decomposition of software into layers
(though, as with network protocol stacks, this does not necessarily
imply a layered implementation).

Many of the design decisions in SwissBox have been made both

33



Barrelfish

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Barrelfish

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Barrelfish

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Clock
Scan

Distribution layer
(e-cast)

Hardware Acceleration layer
(FPGA)

Barrelfish

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

Barrelfish

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

Barrelfish

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

shared
OP

S
T

O
R

A
G

E
L
A

Y
E

R
P

R
O

C
E

S
S

IN
G

L
A

Y
E

R

External
streams

Figure 1: The architecture of SwissBox

to take advantage of current hardware and also to facilitate the
adoption of new hardware developments as they become available.
A SwissBox appliance consists of a cluster of commodity multi-
core computational nodes, each of which has multiple network in-
terfaces attached to a scalable interconnect fabric. In turn, some
of these interfaces will include programmable FPGAs on the data-
path. SwissBox is agnostic as to the processor core types, and we
expect a mix of general-purpose cores, GPU-like processors, and
additional FPGAs to be used depending on the configuration. A
promising candidate for the fabric is a 10 Gigabit OpenFlow [14]
switch, which would provide plenty of opportunities for optimiza-
tion across routing and forwarding layers inside the appliance, but
Infiniband is a viable alternative. The fabric also has multiple exter-
nal network ports for connecting the appliance to client machines.

The software architecture of SwissBox is shown in Figure 1.
As in BWA and Exadata, SwissBox distinguishes between storage
and data processing nodes. Storage nodes are multicore machines
which implement the storage manager completely in main mem-
ory, removing the need for block-granularity operations and mak-
ing it easier to adopt byte-addressable persistent storage technol-
ogy such as Phase Change Memory as it becomes available. As in
Exadata and TwinFin, storage nodes can themselves execute query
operators close to the data. Reliability and availability is achieved
by replicating the data across different nodes, while data partition-
ing provides scaling. The storage nodes also provide the basis for
predictable performance by delivering tight guarantees on the time
needed to access any data. Data processing nodes are also mul-
ticore machines configured as a cloud of dynamically provisioned
resources. These nodes run complex query operators shared among
concurrent queries and are deployed at the level of cores.

The layers in the software stack are described in detail in the
sections which follow. At the lowest level, the Barrelfish research
operating system [2] manages heterogeneous multicore machines
and provides scheduling, job placement, interprocess communica-
tion, and device management to upper layer software. The storage
layer is a distributed version of Crescando [16] (represented as a
clock scan in each core in Figure 1), a main memory storage man-
ager with precise latency guarantees that supports basic projection
and selection as well as exact match and range queries.

The storage nodes are coordinated by a distribution layer using

a novel agreement protocol call e-cast to enforce delivery and or-
dering guarantees while supporting dynamic reconfiguration. Be-
tween the distribution layer and the data processing nodes, a hard-
ware acceleration layer uses FPGAs to pre-process data streams,
building on our previous results in this area [17, 13]. Finally, the
data processing layer implements high-level operators (join, sort,
group-by, etc.) and scales using techniques such as result sharing
across queries and orthogonal deployment of operators over cores.

3. OPERATING SYSTEM LAYER
An OS for SwissBox faces several key challenges.
One is traditional: there has always existed a tension between

operating systems and database management systems (see, for ex-
ample, Gray [9]) over resource management. To somewhat over-
simplify, an OS is usually designed to multiplex the machine be-
tween processes based on some global policy, and present an ab-
stract “virtual machine” interface to applications which hides the
details of resource management. This is generally useful, but for
databases it obstructs the application from making optimizations
based on resource availability, and denies it the mechanisms to in-
ternally manage and multiplex the resources allocated to it.

Other challenges are specific to neither databases nor appliances,
but are consequences of recent hardware trends. The advent of mul-
ticore computing, where the number of cores on a die now roughly
follows Moore’s law, has lead to scaling challenges in conventional
OSes like Windows or Linux. Such systems are based on coherent
shared memory, and suffer in performance as core count increases
due to contention for locks, and (more significantly) the simple cost
of moving cache lines between cores and between packages. Such
scaling effects can be, and are, mitigated in traditional OS kernels,
but at a huge cost in software engineering [2]. Worse, these expen-
sive measures are typically rendered obsolete by further advances
in hardware, requiring further re-engineering. for appliances.

Furthermore, traditional OS structures are simply unable to inte-
grate heterogeneous processing cores (instruction set variants, GPUs,
etc.) within a single management framework, nor will they func-
tion on future machines without coherent caches or shared memory,
which are being discussed by chip vendors [10].

Commercial appliances use off-the-shelf OS kernels, which the
vendors then specialize to their hardware platform. This takes ad-
vantage of the freedom given in the appliance model to optimize
layers of software without undue concern for strict compatibility,
and using commodity software dramatically reduces time-to-market.
However, it does not fully meet the emerging challenges outlined
above, most of which arise from the basic architecture of the OS. In
addition, the approach does not exploit the opportunities to rethink
the software stack across layers.

In contrast, the OS in each node of SwissBox is Barrelfish [2],
a research operating system specifically designed to manage het-
erogeneous, multicore environments. Barrelfish is a “multikernel”:
an OS structured as a distributed system whose cores communicate
exclusively via message-passing. This provides a sound founda-
tion for scalability in the future by completely replacing the use of
shared data structures with replication and partitioning techniques.
By separating efficient messaging from core OS functionality, Bar-
relfish is less reliant on short-lived hardware-specific optimizations
for multicore performance. As a distributed system, Barrelfish also
easily handles heterogeneous processing elements and machines
without cache coherence.

We also expect Barrelfish to be a better fit for data process-
ing applications. On each core, the OS is structured as an Ex-
okernel [5], minimizing resource allocation policy in the kernel
and delegating management of resources to application as much as

34



possible. Barrelfish extends this philosophy to the multicore case
through the use of distributed capabilities. The resulting OS re-
tains responsibility for securely multiplexing resources among ap-
plications, but presents them to applications in an “unabstracted”
form, together with efficient mechanisms to support the applica-
tion managing these resources internally. To take two examples
very relevant to databases, CPU cores are allocated to an applica-
tion through upcalls, rather than transparently resuming a process,
allowing fine-grained and efficient application-level scheduling of
concurrent activities, and page faults are vectored back to appli-
cations, which maintain their own page tables, enabling flexible
application management of physical memory.

Beyond this, the use of a flexible research OS within SwissBox
opens up the exciting possibility of OS-Database codesign: archi-
tecting both the operating system and the data processing applica-
tion at the same time. Such opportunities are rare, and the design of
the appropriate interface between an OS and the data storage and
processing layers in SwissBox is an exciting research direction. For
instance, the SwissBox storage layer knows well the read/write pat-
terns it generates, and we are exploring how to pass that informa-
tion to the OS so that the OS can made intelligent decisions rather
than getting on the way or having to “second guess” the applica-
tion. Similarly, from those patterns the OS could derive copy on
write optimizations to facilitate recovery and seamless integration
of the main memory storage layer with a file system.

4. STORAGE LAYER
The storage layer in SwissBox is based on Crescando, a data

management system designed for the Amadeus use case [16]. In
SwissBox, we use a distributed version of Crescando as the storage
layer because of its predictable performance and easy scalability.
It also establishes the basis for exploring completely new database
architectures that provide high consistency, exploit the availability
of main memory, while still enabling the levels of elasticity and
scalability needed in large applications.

In SwissBox, the interface to the storage manager is at the level
of tuples rather than at the level of disk/memory blocks. Simi-
larly, rather than simple get and puts over blocks, the storage is
accessed via predicates over tuples. This greatly facilitates pushing
part of the query processing down to the storage layer and makes
the storage manager an integral part of the data processing system
not just an abstraction over disk storage. This design choice is cru-
cial to make SwissBox open to further hardware developments and
to provide the same interface regarding of the hardware (or hard-
ware layers) behind the storage manager.

Briefly described, Crescando works as a collection of data pro-
cessing units at the core level. The storage manager works entirely
in main memory, using clusters of machines for scalability and
replication for fault tolerance. Each core continuously scans its
main memory (hence the name clock scan), using an update cursor
and a read cursor where queries and updates are attached in every
cycle. Instead of indexing the data, Crescando dynamically indexes
the queries to speed up checking each record against all outstand-
ing queries. The latency guarantees of Crescando are determined
by the time it takes to complete a scan. In current hardware, Cres-
cando can scan 1.5 GBytes per core in less than a second, answer-
ing thousands of queries per cycle and core, even under a heavy
update load. Within a scan, Crescando maintains the equivalent of
snapshot isolation, with consistency across the whole system being
maintained by e-cast, an agreement protocol specifically developed
for Crescando (see below).

Crescando partitions the data into segments that are placed into
the local memory of a single core. The segments can be replicated

across cores and/or across machines, depending on the configura-
tion chosen. For availability, Crescando maintains several copies of
each segment across different machines so that if one fails, the seg-
ment is still available at a different node. Recovery in Crescando
only requires to place the corresponding data in the memory of the
recovered machine.

To understand the advantages of Crescando, it is important to
understand how it differs from a conventional engine. For single
queries over indexed attributes, Crescando is much slower than a
conventional engine. However, as soon as a query requires a full
table scan or there are updates, Crescando performs much better
and with more stability than conventional engines. In other words,
Crescando trades-off single, one at a time query performance for
predictability (in Crescando all queries and updates are guarantee
to complete within a scan period) and throughput (Crescando is
optimized for running thousands of queries in parallel).

When compared to existing appliances, the storage layer of Swiss-
Box offers several advantages.

As in Exadata, Crescando is an intelligent storage layer that can
process selection and projection predicates, as well as exact match
and range queries. This eliminates a lot of unnecessary traffic
from the network and offers the first opportunity within SwissBox
for pushing down operators close to the source. Unlike Exadata,
in SwissBox we do not need an extra function shipping module
or extra code at the storage layer. The storage layer is built di-
rectly as a query processor that can be easily tuned to match any
latency/throughput requirements with two simple parameters (the
size of a scan and the level of replication).

Like in SAP’s BWA, the storage layer of SwissBox processes
data in main memory, avoiding the overhead of data transfer from
disk. In SwissBox, indexes are not used and the database admin-
istrator does not need to worry about identifying which ones are
needed. This is an important point as one of the motivations for,
e.g., SAP’s BWA is to provide performance in spite of the fact that
users are likely to chose the wrong indexes and data organization
(and this is why BWA reorganizes the data). In the future, the main
memory approach of SwissBox is ideally suited to quickly adopt
Phase Change Memory, thereby combining the advantages of in
memory processing with persistent storage.

In terms of cross layer optimizations, the design of Crescando
fits very well with the premises behind Barrelfish. Crescando can
use the interfaces provided by Barrelfish to make runtime decisions
on placement and scheduling. The data storage layer can also be
combined with modern networking techniques such as RDMA (Re-
mote Direct Memory Access) [7]. Through RDMA, a node can
place data directly in the memory of another node without involv-
ing the operating system and minimizing copying of the data. This
is a feature that is commonly available in high end networks like
Infiniband (the network used in Oracle Exadata) but that is now
available through special network cards also for Ethernet networks.
Using RDMA, recovery of nodes, data reorganization, and dynamic
creation of copies can be greatly accelerated over traditional ap-
proaches. For instance, there is some initial work on rethinking the
processing of data joins using RDMA [8].

As an alternative design option, we are also exploring using a
similar one-scan-per-core approach but on a column store (as in
SAP’s BWA). Initial experiments indicate that column stores in
main memory allow interesting and quite effective optimizations
even if no disk access is involved. An intriguing idea that can be
easily supported by the SwissBox storage layer is to store the data
both row-wise and column-wise, routing queries to the most appro-
priate representation.

35



5. DISTRIBUTION LAYER
The distribution layer of SwissBox is one of its distinct features

that differentiate it from existing appliances and that confers Swiss-
Box very interesting properties. Such a layer is commonly found
in cloud solutions, particularly in distributed key value stores, e.g.,
[1], but we are not aware of any database appliance using anything
similar.

In SwissBox, this layer is implemented on the basis of a new
agreement protocol, e-cast, that distributes reads and writes across
the storage layer nodes. E-cast combines results from virtual syn-
chrony [3] and state machine replication [12, 15] to provide a highly
optimized protocol that maintains consistency across replicated,
partitioned data. Aside of the performance and configuration ad-
vantages it offers, e-cast supports dynamic reorganization for both
transparent fail-over and elasticity. Through these features, Swiss-
Box is in a position to easily scale up and down its storage layer,
something that is not possible as far as we are aware with existing
appliances.

The distribution layer offers many opportunities for research and
exploring new architectural designs. For instance, E-cast works
across nodes of the storage layer. Barrelfish does something simi-
lar but across the cores of a multicore machine. As part of ongoing
work, we are analyzing the characteristics of multicore machines
as distributed systems and taking advantage of their special prop-
erties (e.g., messaging implemented as shared memory, synchro-
nized clocks) to develop a suite of agreement protocols specially
tailored to multicore machines. An interesting design option would
be to interface e-cast and Barrelfish so that the two of them act as
seamless extensions of each other. This is particularly interesting in
SwissBox because both the storage management and data process-
ing layers are organized in terms of independent units of execution
allocated to one core. The resulting protocol would act as a hierar-
chical network that would allow SwissBox to treat a pool of mul-
ticore machines not as a series of independent nodes but as a pool
of cores with the distance between them (the network overhead) as
the parameter to use for query optimization.

The elasticity provided by e-cast will also play a crucial role in
the automatic configuration of SwissBox. As pointed out above, a
key parameter in tuning the response time of the storage manager
is the size of a clock scan. The smaller the scan, the faster the
storage layer but the more nodes are needed. With e-cast we have a
way to easily reorganize the storage layer: consolidating the data in
few nodes if the response time constraints allow it or expanding the
storage layer across many nodes if the size of the scan needs to be
reduced or the level of replication needs to be increased to meet the
given performance requirements. E-cast provides here the logic to
maintain consistency in the face of dynamic reconfigurations while
techniques like RDMA provide the mechanisms for quickly migrat-
ing, copying, or reorganizing the independent work units allocated
to cores.

6. HARDWARE ACCELERATION LAYER
Both the use case from the financial industry discussed above

and the emphasis of commercial appliances in fast networks point
to one of the major bottlenecks encountered today by cluster based
solutions: the network. SwissBox is no exception in this regard.
The problem is twofold. On the one hand, concurrent accesses
compete for bandwidth and the network latency is higher than on
a local disk. On the other hand, using a network card typically in-
volves the operating system, additional data copies, and a reduced
capacity to process data at the speed it arrives from the network.

In SwissBox we use an additional layer of FPGAs for process-

ing the data streams as they travel from the storage layer to the data
processing layer. The hardware acceleration layer offers a second
tier to which operators and parts of queries can be pushed down.
This layer is similar in functionality to that found in TwinFin and
can be used for a variety of purposes: aggregation, decompression,
dictionary translation and expansion, complex event detection, or
filtering of tuples. The key advantage of this layer is that we have
shown it can process data at wire speed, something that conven-
tional network interfaces cannot do unless the number of packets
from the network is drastically reduced [17].

An interesting aspect of the hardware acceleration layer is that
the implementation of data processing algorithms in hardware re-
quires very different techniques than those commonly used in CPU
based systems. For instance, in [17] we have shown that the func-
tionality of a hash table can be implemented in hardware with a
pipelined circuit that can process multiple elements in parallel, rea-
ching a much higher throughput than in a CPU based system. Such
fundamental differences in the underlying algorithms raise ques-
tions about the ability to compile queries where operators will be
placed in different tiers and one of those tiers involves hardware
based operators. Both Exadata and TwinFin claim that they place
operators on different layers (the intelligent storage of Exadata, or
the FPGAs of TwinFin) although the query compilation process
and the cost optimization functions that guide the query compila-
tion are not obvious. From the available information, these systems
place only simple operators such as selection, projection, and de-
compression in the lower layers. A question that we aim at answer-
ing as part of the evolution of SwissBox is whether more complex
operators can also be pushed down to the lower layers and what
are the cost models to use as part of the query optimization process
[13]. To do this, an ongoing research effort around SwissBox is
how to characterize data processing operators so that we can pro-
vide a uniform interface to those operators regardless of where they
are located in the data processing hierarchy within an appliance.

7. DATA PROCESSING LAYER
The layers described so far can only execute relative simple que-

ries. To support the full of SQL or even generic data process-
ing operators written in other languages, SwissBox incorporates
a data processing layer where operators for more complex queries
are executed. These operators are allocated to cores as indepen-
dent work units in nodes running Barrelfish (in a similar configu-
ration as the storage nodes). The scalability and elasticity in the
design comes from the fact that the operators can be deployed in
arbitrary cores/machines (similar to TwinFin and BWA), with the
placement controlled by the query plan optimization. Unlike in ex-
isting systems, these operators do not work one query at a time.
They have been designed to be shared by many concurrent queries
(in the thousands) and make heavy use of intermediate result shar-
ing. The way this is achieved is by using the Crescando storage
nodes –which also process queries concurrently– to label a stream
of results with the id’s of the queries for which the record is in-
tended. These result sets are streamed to the corresponding data
processing node (after filtering through the FPGA layer), which
then performs the operation concurrently for all queries, separat-
ing the results only afterwards. This design increases the possible
throughput considerably and also helps to reduce the data traffic
across the system since records that are in the result set or interme-
diate result set of many queries are sent only once rather than once
for each outstanding query.

Note that the data processing operators can be placed on data
processing nodes or they can also be placed on the core of storage
nodes. This gives SwissBox another degree of freedom for deploy-

36



ing highly optimized query plans. For instance, operators such as
sort, group by, and aggregation can be easily placed on cores next
to Crescando cores. The result is that there is no traffic over the
network as, in many cases, the entire query can be pushed down to
the storage layer. This design mirrors somewhat that of TwinFin
in that it blurs the separation between data processing and storage
nodes. Unlike TwinFin, however, we can eliminate the traffic over
the network entirely for some queries and we can choose to place
the operators in the data processing nodes instead for scalability
and elasticity purposes.

The advantage of the data processing layer approach is that we
can maintain the predictability of the system by ensuring the ex-
ecution of a part of a query that runs on these nodes has a well
defined upper bound. The overall cost of a query would then be
the time to get the data from the storage layer (which is accurately
defined thanks to the Crescando approach), the transmission over-
head of the network if any, and the processing overhead of the high
level SQL operators in the data processing nodes. We believe that
the unique architecture of SwissBox allows to place tight bounds
on these overheads and to capture these bounds with very few pa-
rameters. This opens up the possibility of tools for automatic con-
figuration of all layers of SwissBox given a set of response time
requirements. Note that such tools will make heavy use of the open
interface of Barrelfish, the well defined tuning parameters of Cres-
cando, and the elasticity of the data processing layer, with the hard-
ware acceleration and the possibility of pushing down operators
close to the storage layer providing additional leverage to address
the problem.

8. CONCLUSIONS
SwissBox is intended both as a data appliance to be deployed in

real settings and as a vehicle for research to enable the complete
redesign of the software stack.

As an appliance, SwissBox has a number of unique features that
make it very suitable to the use cases described earlier as well as
in a wide range of other environments. In SwissBox, there is no
locking or read-write contention at the storage layer, allowing us
to support very high update rates without impacting the read rates.
Moreover, all layers of the system but specially the storage manager
–which is traditionally the main problem in this regard– provide
predictable performance for both reads and writes. This allows us
to build systems that by design can meet tight response time con-
straints.

When compared to key-value stores like Cassandra [1], Swiss-
Box provides full data consistency, elasticity, and the ability to per-
form complex SQL queries, thereby establishing a completely new
point in the design space. When compared to existing appliances,
SwissBox’s multi-query optimization strategies at all levels and the
organization of work into independent units mapped to cores pro-
vide a degree of flexibility and scalability that cannot be achieved
with disk based systems. In SwissBox we can benefit from many of
the same hardware optimizations used in existing appliances (e.g.,
SSD storage, FPGA processing) but we can also exploit many other
cross-layer optimizations that are not possible in today’s appliances
thanks to the use of Barrelfish as the underlying operating system.

As a research platform, SwissBox gives us the opportunity to
completely redesign the data processing stack from the ground up,
exploring at the same time how to best take advantage of new de-
velopments in hardware. This is a rather urgent matter given the
pace at which key elements of the data processing infrastructure are
evolving. That SwissBox is an appliance makes it possible to ap-
ply cross-layer optimizations within a single box, thereby opening
up the possibility of taking these cross-layers optimizations much

further than it has been possible in distributed platforms. At the
same time, it will allow us to rethink the interfaces and role of the
different layers of a data processing system in terms of meeting
new requirements like predictable performance or elasticity. Our
intention is to make SWissBox open source -even the hardware
architecture- to provide an open platform for experimentation and
education where new data processing techniques can be tested and
compared free from the limitations and legacy constraints of exist-
ing database engines.

9. REFERENCES
[1] http://cassandra.apache.org/.
[2] A. Baumann, P. Barham, P.-É. Dagand, T. L. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In SOSP, pages 29–44, 2009.

[3] K. Birman. A History of the Virtual Synchrony Model.
Technical report, Cornell University, 2009.
http://www.cs.cornell.edu/ken/History.pdf.

[4] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The Gamma
Database Machine Project. IEEE Trans. Knowl. Data Eng.,
2(1):44–62, 1990.

[5] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level
resource management. In Proc. SOSP, pages 251–266,
December 1995.

[6] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss,
S. Rizvi, E. W. 0002, O. Cooper, A. Edakkunni, and
W. Hong. Design considerations for high fan-in systems: The
HiFi approach. In CIDR, pages 290–304, 2005.

[7] P. W. Frey and G. Alonso. Minimizing the hidden cost of
RDMA. In ICDCS, pages 553–560, 2009.

[8] P. W. Frey, R. Goncalves, M. L. Kersten, and J. Teubner. A
spinning join that does not get dizzy. In ICDCS, pages
283–292, 2010.

[9] J. Gray. Notes on database operating systems. In Bayer et.
al., editor, Operating Systems, an Advanced Course,
number 60 in Lecture Notes in Computer Science, pages
393–481. Springer-Verlag, 1978.

[10] J. Howard and et al. A 48-core IA-32 message-passing
processor with DVFS in 45nm CMOS. In International
Solid-State Circuits Conference, pages 108–109, Feb. 2010.

[11] R. R. Kompella, A. Greenberg, J. Rexford, A. C. Snoeren,
and J. Yates. Cross-layer visibility as a service. In In Proc. IV
HotNets Workshop, 2005.

[12] L. Lamport. Using Time Instead of Timeout for
Fault-Tolerant Distributed Systems. ACM Transactions on
Programming Languages and Systems, 6(2), 1984.

[13] R. Müller, J. Teubner, and G. Alonso. Streams on Wires - A
Query Compiler for FPGAs. PVLDB, 2(1):229–240, 2009.

[14] OpenFlow Consortium. Openflow. www.openflow.org,
September 2010.

[15] F. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing
Surveys, 22(299), 1990.

[16] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable Performance for Unpredictable
Workloads. PVLDB, 2(1):706–717, 2009.

[17] L. Woods, J. Teubner, and G. Alonso. Complex event
detection at wire speed with FPGAs. PVLDB, 3(1), 2010.

37




