The SQL-based All-Declarative FORWARD Web Application
Development Framework * '

Yupeng Fu
UC San Diego

yupeng@cs.ucsd.edu

Yannis Papakonstantinou
app2you Inc. / UC San Diego

yannis@cs.ucsd.edu

1. INTRODUCTION

The vast majority of database-driven web applications
perform, at a logical level, fundamentally simple INSERT
/ UPDATE / DELETE commands. In response to a user
action on the browser, the web application executes a pro-
gram that transitions the old state to a new state. The
state is primarily persistent and often captured in a single
database. Additional state, which is transient, is maintained
in the session (e.g., the identity of the currently logged-in
user, her shopping cart, etc.) and the pages. The programs
perform a series of simple SQL queries and updates, and de-
cide the next step using simple if-then-else conditions over
the state. The changes made on the transient state, though
technically not expressed in SQL, are also computationally
as simple as basic SQL updates.

Despite their fundamental simplicity, creating web appli-
cations takes a disproportionate amount of time, which is ex-
pended in mundane data integration and coordination across
the three layers of the application: (a) the visual layer on
the browser, (b) the application logic layer on the server,
and (c) the data layer in the database.

Challenge 1: Language heterogeneities. Each layer
uses different and heterogeneous languages. The visual layer
is coded in HTML / JavaScript; the application logic layer
utilizes Java (or some other language, such as PHP); and
the data layer utilizes SQL. Even for pure server-side /
pure HTML-based applications, the heterogeneities cause
impedance mismatch between the layers. They are resolved
by mundane code that translates the SQL data into Java
objects and then into HTML. When the front end issues a

*Supported by NSF awards IIS 1018961, IIS 0917379 and a
Google gift.

TThe license grant at the bottom of the first column does
not confer by implication, estoppel or otherwise any license
or rights under any patents of authors or The Regents of the
University of California.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.

5" Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

69

Kian Win Ong
app2you Inc.

kianwin@app2you.com
Michalis Petropoulos

SUNY Buffalo / UC San Diego

mpetropo@buffalo.edu

request, code is again needed to combine memory-residing
objects of the session and the request with database data.
Consequently, developers write a lot of “plumbing” code.
As a data point, in a UCSD web development class taught
by the authors, the students built a web application of their
choice. A class project averages 4700 lines of code and con-
figuration, but for 1 line of SQL, there is a modest 1.5 lines
of Java used for business logic, and 61 lines of Java used
for plumbingE] That is a lot of plumbing code to write for
the computationally simple functionality that is typically
required by the majority of web applications!
Challenge 2: Updating Ajax pages with event-driven
imperative code. Since 2005, Ajax led to a new genera-
tion of web applications characterized by user experience
commensurate to desktop applications. The heavy usage of
JavaScript code for browser-side computation and browser /
server communication leads to superior user experience over
pure server-side applications, comprising

e performance gains through partial updates of the page

e more responsive user interfaces through asynchronous
requests, and

e rich functionality through various JavaScript compo-
nent libraries, such as maps, calendars and tabbed di-
alogs.

For example, consider the web application page of Figure
where each user submits proposal reviews, reads the re-
views provided by the other reviewers and also views a bar
chart of the average grades for each proposal. In a pure
server-side model, submitting a review for a single proposal
will cause the entire page to be recomputed. Indeed, queries
will be issued for the reviews and average grades of all pro-
posals, not only for the reviewed proposal. Furthermore,
the browser will block synchronously and blank out while

"We count as business logic Java lines that decide the control
flow of the application. We count as plumbing the Java lines
responsible for binding SQL to Java and Javascript and vice
versa, plus all code responsible for managing language and
data structure heterogeneities.

A contributing factor to the huge plumbing to business logic
ratio is the best practice usage of MVC frameworks such as
Struts, which is encouraged by the class and promotes code
modularity and reuse by separating the data model, business
logic and user interface, but in turn creates more layers to
copy data between.

& National Science Foundation

g

Hello, ken@ucsd.edu

Reviews
Title Avg Grades My Review
Comment Reviewer
Flving cars Creative idea. Maore tom@abc.edu | B | 7 | U | | == Depth
= A= 1t o2 {4
Ilike it! Maore jane@abc.edu 5 | Overal = Impact
t 2z 4 4 =5
Ridiculous! I don't think this [jochn@abc.edu 25 Overall =1 -
will happen at all! Their . e
idea contradicts with = :
ubmit
common sense. Less
Invisible Impressive. Great impact if | ken@ucsd.edu Impressive. Great impact if they could pepth
cloak they could achieve it. Less . achieve it. L 4
- . - Impact
Promising! More jack@abc.edu . P | L 2. 3 4 5
X - X = Owera S P
Interesting idea! More patric@abc.edu 0 2o 8=

Figure 1: The review page of the running example

it waits for the new page from the server. Finally, vari-
ous aspects of the browser state, including the data of non-
submitted form elements, cursor positions, scroll bar posi-
tions and the state of JavaScript components will be lost
and re-drawn, thus disorienting the user.

For an Ajax page, however, a developer will typically op-
timize his code to realize the benefits of Ajax and solve the
pure server-side problems listed in the previous paragraph.
The same user action (e.g., the review submission) causes
the browser to run an event handling JavaScript function
collecting data from the page’s components relevant to the
action (i.e. the proposal id, the review text and grades), and
send an asynchronous Xml Hittp Request (XHR) with a re-
sponse handler callback function specified. On the server,
the developer implements queries that only compute the
changed data (i.e. the newly inserted review and the av-
erage grade of the corresponding proposal), to take advan-
tage of more efficient queries, as well as to conserve memory
and bandwidth. While the asynchronous request is being
processed, the browser keeps showing the old page instead
of blanking out, and even allows additional user actions and
consequent requests to be issued. When the browser receives
the response, the response handler uses it to partially update
the page’s state. The partial update retains non-submitted
forms, scroll bar positions, etc, therefore allowing the user
to retain his visual anchors on the page.

The page state primarily consists of the browser DOM,
which captures the state of HTML form components such as
text boxes and radio buttons, and the state of the JavaScript
variables, which are often parts of third-party JavaScript
components. Therefore, the developer implements the re-
sponse handler by writing imperative code that navigates
the DOM and JavaScript components, and invokes JavaScript
methods causing the DOM and components to incrementally
render to the browser.

The Ajax optimizations demand a serious amount of ad-
ditional development effort. For one, realizing the benefits
of partial update requires the developer to program custom

70

logic for each action that partially updates the page, which
was not the case in pure server-side programming. In par-
ticular, in a pure server-side implementation, the developer
needs to write code for the effect of each individual action
on the database, but writes only one piece of code that gen-
erates the page according to the database state and session
state. For example, suppose that the page of Figure [I] also
provides a “Delete” (Review) button. The developer will
have to write two pieces of code that modify the database
when “Submit” is clicked and when “Delete” is clicked, re-
spectively. The former issues an INSERT or UPDATE com-
mand while the latter issues a DELETE. Both of them share
the same piece of code that generates the page showing the
list of proposals, their reviews and the average grades. This
piece of code is independent of what user action caused the
re-generation of the page.

In contrast, in an Ajax application, each user action needs
its own code to partially update the page. This piece of code
consists of server-side code that retrieves a subset of the data
needed for the page update, and browser-side JavaScript
code that receives the data and rerenders a sub-region of
the page. In the running example of Figure [T} a different
piece of code would be needed for the “Submit” and the
“Delete” (Review) buttons.

Such event-driven programming (which also occurs in Flash
etc.) is well-known to be both error-prone and laborious
[12], since it requires the developer to correctly assess the
data flow dependencies on the page, and write code that cor-
rectly transitions the application from one consistent state
to another. Moreover, in a time-sensitive collaborative ap-
plication (similar to Google Spreadsheet) where many users
work concurrently, these dependencies may extend beyond
the page of the reviewer who submitted the review, and
into the pages of other reviewers who are viewing the same
proposal on their browsers. For example, if the developer
had issued a query for Average Grade, but not Reviews,
the page will display inconsistent data if another review had
been concurrently inserted into the database.

Further compounding the custom logic required for each

action is the amount of imperative code that needs to be im-
plemented on the browser. Whereas the developer of a pure
server-side application needs to understand only HTML, the
developer of an Ajax application needs to integrate JavaScript
as yet another language, understand the DOM in order to
update the displayed HTML, and write code that refreshes
the JavaScript components’ state based on the nature of
each partial update. Since there is no standardization be-
tween the component interfaces between different third-party
libraries, the developer is left to manually integrate across
these disparate component interfaces.
Challenge 3: Distributed computations over both
browser-side and server-side state. In response to a
user action, the browser sends a HT'TP request to the server
and activates a program, which needs access to relevant data
on the page in order to perform computations that involve
such page data and the database. Writing code that involves
both page data and server-side data was already mundane
and time consuming in pure server-side applications and be-
came even more so in Ajax and Flash.

In a pure server-side application, the browser is essen-
tially stateless since all state is lost when the new page is
loaded. Using HTML markup such as <input type="text"
name="review" />, the developer declaratively specifies the
value collected by the textbox will appear as the parameter
review in the HTTP request. The good news about pure
server-side programming is that when a user action causes
an HTTP request, the browser is responsible for navigating
the DOM, and marshalling the request parameters accord-
ing to the HTML specification. The bad news is that, on
the server-side, the application first unmarshalls the request
parameters by using Java (or PHP, etc.), and then typically
issues SQL queries where the request parameters become pa-
rameters of an SQL statement. Overall, lines of Java code
are expended in such trivial “extract parameter from the
request, plug it in the query” tasks. With Ajax it gets much
worse, as discussed next, since the marshalling of request
parameters is no longer automatic.

In particular, in an Ajax application the browser main-
tains state across HT TP requests. Consequently, the state of
the web application becomes distributed between the browser
and the server. The developer is responsible for defining a
custom marshalling format for the XHR request, typically
in XML or JSON, and for writing imperative code to navi-
gate over the DOM and marshall the relevant page data that
must be sent to the server along with each HTTP request.
The usage of JavaScript components (calendars, etc.) on
the page further complicates the issue by requiring custom
code that converts between the state of the component and
the marshalling format. On the server-side, the developer
writes custom code to unmarshall the request parameters,
and then continues along the usual path, plugging such pa-
rameters into SQL statements.

A select few web application frameworks, such as Echo2
[7] and Microsoft’s ASP.NET |[2], mitigate the issue of dis-
tributed application state by automatically maintaining a
mirror of the browser state on the server. Such synchro-
nization can occur efficiently, using reduced bandwidth, by
having the server send to the browser only the difference
between the previous page state and the new page state.
Yet, mirroring is only a half-solution, since the mirror made
available on the server contains the exact and full state of

71

the browser, despite the fact that each request cares about
a different subset of page data. For example, the submis-
sion of a review for the first proposal of Figure [1] requires
the data collected by the top editor and sliders, while the
submission of a review for the second proposal requires the
data of the bottom editor and sliders. Furthermore, the mir-
rored browser state include visual styling details, which do
not matter when form data are collected, yet they trouble
collection. For example, to read the values of the three slid-
ers Depth, Impact and Overall in Figure [1} using a mirror-
based Ajax framework, the developer will need to navigate
through its ancestor <div> and <table> HTML elements
that are used purely to specify visual layout. The net effect
of these issues is that the developer’s code includes many
mundane lines that navigate around the extraneous infor-
mation in order to obtain the relevant data for the request.

1.1 FORWARD’s Declarative Solution

The data management field has recently applied with suc-
cess and great promise declarative data-centric techniques
in network management and games. In a similar fashion,
FORWARD adopts an SQL-based, declarative approach to
Ajax web application implementations, going beyond prior
approaches such as Strudel 8] and WebML [3] that focused
on pure server-side data publishing applications. In par-
ticular, FORWARD removes the great amount of Java and
JavaScript code, which is written to address the challenges
above, and replaces them with the use of SQL-based lan-
guages to facilitate integration and enable automatic opti-
mization. The objective is to “make easy things easy and
difficult things possible”EI

FORWARD is a rapid web application development frame-
work. The web application’s pages are declaratively speci-
fied using page configurations. The programs that run when
a request is issued are also declaratively specified, using pro-
gram configurations. Both page configurations and program
configurations are based on a minimally enhanced version
of SQL, called SQL++, which provides access to the unified
application state virtual database that, besides the persis-
tent database of the application, includes transient memory-
based data (notably session data and the page’s data). The
application runs in a continuous program / page cycle: An
HTTP request triggers the FORWARD interpreter to exe-
cute a program specification. The program reads and writes
the application’s unified state and possibly invokes services
that have side effects beyond the unified application state.
(e.g., send an email). The program typically ends by identi-
fying which page will be displayed next. FORWARD’s inter-
preter creates a new page according to the respective page
configuration. The page specification also specifies programs
that are invoked upon specified user events. The invocation
of a program restarts the program / page cycle.

The key contributions of FORWARD are:

e The use of SQL++ allows unified access to browser
data and server-side data, including both the database
and application server main memory (e.g., session). In
conventional web application programming, such ac-
cess would require Java and Javascript. FORWARD

2This objective is not followed by today’s web application
development frameworks. Paradoxically, powerful Turing-
complete low-level imperative languages (such as Java and
PHP) accomplish tasks that can be easily accomplished by
appropriate SQL-based declarative languages.

eliminates Java and JavaScript from the majority of
web applications, therefore resolving Challenges 1 and 3.

e The page configurations are essentially rendered views
that visualize dynamic data generated by SQL++ and
are automatically kept up-to-date by FORWARD. The
specifications enable Ajax pages that feature arbitrary
HTML and (pre-packaged) Ajax / JavaScript visual
units (e.g. maps, calendars, tabbed windows), simply
by tagging the data with tags such as <map>, calendar,
etc. The AJAX pages are automatically and efficiently
updated by the FORWARD interpreter by appropri-
ately extended use of incremental view maintenance.
The FORWARD developer need not worry about coor-
dinating data from the server to the page’s Ajax com-
ponents, which resolves a “Challenge 2” problem.

e The business logic layer is specified by program config-
urations, where business logic decisions and the trans-
fer of data between the database and services are ex-
pressed in SQL++, or, even simpler, in mappings,
which are translated to SQL++. The program config-
urations have easy unified access to both the browser
data and the database, because FORWARD guaran-
tees that the browser’s page data are correctly reflected
into the unified application state’s page data before
they are used by the programs. The automatic reflec-
tion resolves Challenge 3.

e The page and program configurations have unified ac-
cess to the persisted database, the page and the ses-
sion via a single language (SQL++), therefore resolv-
ing Challenge 1. JavaScript needs to be written only
if one needs to create a custom visual unit. Java needs
to be written only for computations not easily express-
ible in SQL. For example, one can build the entire Mi-
crosoft CMT in the SQL++ based page and program
configurations, except for the reviewer/paper match-
ing step, which requires a Java-coded stable matching
algorithm to assign papers to reviewers according to
their bids.

We argue for the effectiveness of the approach by provid-
ing a demo that shows an order of magnitude lines-of-code
reduction. Furthermore, Section [5| describes ongoing and
future work that will further push the advantages of declar-
ative computation by automating optimizations.

The FORWARD project was recently licensed by app2you
Inc, which is a provider of a Do-It-Yourself (DIY) platform
[11). App2you’s DIY platform is being refactored so that it
produces FORWARD code as the user builds pages with the
DIY tool. In the meantime, app2you Inc has recently de-
ployed earlier versions of FORWARD in three human-centric
business process management applications and is currently
in the process of deploying the presently-described FOR-
WARD version in (a) an analytics-oriented large-scale busi-
ness intelligence application in the pharmaceutical area, and
(b) a business process management application involving
hundreds of pages collecting data via smart forms.

2. RUNNING EXAMPLE

The running example, which is also the accompanying
CIDR demo, is a proposal reviewing Ajax application. The
paper focuses on its review page (see Figure [1]), where the

72

reviewers submit reviews that consist of a comment collected
using a web-based text editor, and depth, impact and over-
all grades collected using slider Javascript components. The
editor appears either in edit mode (e.g. first proposal of
Figure [1) or in display mode (e.g. second proposal). The
page reports the titles of the proposals as hyperlinks that
lead to the proposals’ pdf, the full set of reviews using a
Javascript component with the familar “More” and “Less”
buttons, and a bar chart with the average grades.

The full version of the reviewing application is available
online at demo . forward.ucsd.edu/reviewing, where instruc-
tions are provided on how to use it in any of the three
roles it supports (namely, “applicant”, “reviewer”, “chair”).
The application’s FORWARD specification is available at
demo.forward.ucsd.edu/reviewing/code. Online instruc-
tions on demo.forward.ucsd.edu also teach how to create
your own FORWARD application.

The implementation of the discussed review page required
102 lines of FORWARD page specification and the imple-
mentation of review submission required 42 lines of FOR-
WARD action specification. Building the same required
1,642 lines of HTML, Java, Javascript and SQL code in a
“quick-and-dirty” Ajax application where the code is com-
pact, often against the principles of good MVC coding, which
requires separation of the control flow part of the code from
the visual/interactive part of the code. In a disciplined
MVC-based implementation it would take even moreﬁ

3. CREATING AN APPLICATION

A developer creates an application by providing to the
FORWARD interpreter source configurations, schema defi-
nitions, page configurations and program configurations.

3.1 Sources, Objects and Schemas

The source configurations dictate the type of the sources
(e.g., relational database, LDAP server, spreadsheet) and
how to connect to them. As a convenience for the devel-
opment of cloud-based applications and databases, FOR-
WARD implicitly provides to each application an SQL++
database source named db. In the running example, db pro-
vides the full persistent data storage of the application.

A FORWARD application’s programs and pages also have
access to the request, window and session main memory-
based sources, which in the spirit of the session-scoped at-
tributes provided by application servers, have limited life-
times and there may be more than one instances of them at
any time. For example, the session source lives for the du-
ration of a session. All the pages of a browser session and all
the programs initiated by http requests of the browser ses-
sion have access to the same instance of the session source,
while pages and actions of other browser sessions have their
own session instances. Similarly the request source lives
for the duration of processing an http request by a program
(as discussed in Section and each in-progress program
has its own request instance. A window source lives for the
duration of a browser window and becomes available to all
pages and programs of such window.

3 Note that current MVC frameworks interact very poorly
with Ajax due to their literal adherence to the program-page
cycle. In light of the MVC frameworks’ mismatch to Ajax
functionalities we did not attempt measuring how many lines
of Struts or Spring would be required to build the running
example.

p
Browser State

> HTML ‘ ‘ JavaScript L
DOM Components
\ J
FORWARD Interpreter . ’
Page Configuration Program save_review
<html> replace
data
:funit:table> failure ~ success
“—— <fstmt:for query="{SELECT...}"> email [
<tr> review
sent yes default
<funit:barchart> error
<fstmt:for query="{SELECT... | .| home review
query="{; bl N
‘/7 e . . 7\‘
Unified Application State
(accessible via SQL++) |
S) Core Data ‘
Persistent ‘ Session ‘ Program ‘ " Request | *
Database State Data ‘ Data ‘ ‘
 State \ ‘

Figure 2: The FORWARD interpreter hosts applications
that consist of pages and programs

Each source stores one or more objects. Each object has a
name, schema and data. The schema may be explicitly cre-
ated with the Data Definition Language (DDL) of SQL++
or may be imported from the source. For example, the
schema of a relational database source is imported from its
catalog tables. The DDL of SQL++ is a minimal extension
of SQL’s DDL.

3.2 Operation: The Program/Page Cycle

In the spirit of MVC-based frameworks such as Struts and
Spring, a FORWARD application’s operation is explained by
program-page cycles. (In that sense FORWARD’s programs
correspond to Struts’ actions.) An http request triggers the
interpreter to run the program configuration that is associ-
ated with the request’s URL. The program reads and writes
the application’s unified state (i.e., database, request data,
session data) and possibly invokes services that have side
effects beyond the application’s state (e.g., sends an email).
The program’s run typically ends with identifying which
page p will be displayed next. Conceptually, FORWARD’s
intepreter creates a new page according to p’s page configu-
ration, which may be thought of as a rendered SQL++ view
definition, and displays it on the browser. A displayed page
typically catches browser events (such as the user clicking
on a button, mousing over an area, etc; or a browser-side
timer leading to polling) that lead to action invocations (via
http runs) therefore continuing the program-page cycle.

Notice that FORWARD enforces the full separation of the
Controller functionality from the View functionality, which
current MVC frameworks only encourage but do not enforce:
The page configurations are literally views, unable to side
effect the application state.

3.3 The Page Configuration
A page configuration is an XHTML file with added:

1. FORWARD wunits, which are specified as XML ele-
ments in the configuration and are rendered as maps,

73

calendars, tabbed windows and other Javascript-based
components. Internally FORWARD units use compo-
nents from Yahoo UI, Google Visualization and other
libraries and wrap them so that they can participate
in FORWARD’s pages without any Javascript code re-
quired from the developer.

2. SQL-based inlined expressions and for and switch
statements, which are responsible for dynamic data
generation.

Figure [3] provides the page configuration of the review
page. Figure [3] excludes a few parts, which are marked by
<!-- in demo --> and can be found on the online demo.
The complete page configuration’s size is 102 lines.

Lines 2-6 of the page configuration list the HTML that
generates the top of the page and contains the FORWARD
unit funit:tableﬂ Notice that a unit may contain other

units; e.g., the funit:table (line 6) contains the funit:bar_chart

(line 19), the funit:editor (line 33) and the funit:slider
(line 55). A unit may also contain XHTML, which may, in
turn, contain other units.

A fstmt:for statement evaluates its query and for each
tuple in the result (conceptually) outputs an instance of its
body configuration, i.e., of the XHTML within the opening
and closing fstmt:for tags. For example, the fstmt:for
on line 11 outputs for each proposal one instance of the tr
element on line 15 and its content.

The syntax and semantics of the fstmt : for and fstmt:switch

statements are deliberately similar to the forEach and choose
core tags of the popular JSP Standard Tag Library (JSTL)
[10]. The same applies for FORWARD expressions and
JSTL expressions. However, FORWARD’s fstmt:for iter-
ates directly over a query, whereas JSTL’s forEach iterates
over vectors generated by the Java layer, which are in turn
produced by iterating over query results. Besides the obvi-
ous code reduction resulting from removing the Java mid-
dleware, we will see many more important benefits that are
delivered because FORWARD analyzes the queries behind
the dynamic data of the page.

FORWARD'’s page configurations enable nested, corre-
lated structures on the pages. In particular, the query of
a fstmt:for statement found within the body configura-
tion of an enclosing fstmt:for may use attributes from the
output of the query of the enclosing fstmt:for. For exam-
ple, the table reviews has a foreign key proposal. For each
“proposal” instance the correlated query on line 20 produces
a tuple with the average grades of its reviews by using the
proposal_id attribute of its enclosing query. Furthermore,
the page configurations allow variability (e.g., the current
user’s review appears either in edit mode or in display mode)
utilizing the fstmt:switch statement (line 34).

Expressions, which are enclosed in { }, can reference at-
tributes of the query’s output. Furthermore, an expression
may be itself a query. In the interest of flexibility, which has
been the norm in tools and languages for web page creation
FORWARD coerces the types produced by the expressions
to the types required by the FORWARD units or XHTML,
depending on where the expression appears. Therefore, the

“Its syntax is identical to the standard HTML table but,
unlike the HTML table, it aligns the columns of its nested
tables.

5For example, JSP pages convert JSP expressions into
strings whenever possible.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <html xmins:funit="http://forward.ucsd.edu/units"

3 xmlns:fstmt="http://forward.ucsd.edu/statements">

4 <l--in demo: html for css, images, headers, footers-->

5 Hello {session.user}!

6 <funit:table>

7 <th> <!-- table headers -->

8 <td>Title</td>

9 <l--in demo: rest of the headers -->

10 </th>

11 <fstmt:for name="proposals"

12 query="{SELECT id AS proposal_id, title, pdf_link

13 FROM db.proposals

14 ORDER BY proposal_id}">

15 <tr>

16 <td>{title}</td>

17 <l--in demo: comments and reviewers -->

18 <td> <!-- bar chart showing average grades -->

19 <funit:bar_chart>

20 <fstmt:for query="{SELECT AVG(depth) AS avg_depth,
21 AVG(impact) AS avg_impact,
22 AVG(overall) AS avg_overall
23 FROM db.reviews

24 WHERE proposal = proposal_id}”">
25

26 <bar bar_value="{avg_depth}" color="red"/>

27 <bar bar_value="{avg_impact}" color="blue"/>

28 <bar bar_value="{avg_overall} " color="green"/>

29 </fstmt:for>

30 </funit:bar_chart>

31 </td>

32 <td>

33 <funit:editor name="my_review">

34 <fstmt:switch>

35 <fstmt:case condition="{EXISTS (

36 SELECT * FROM db.reviews

37 WHERE reviewer = session.user

38 AND proposal = proposal_id)}’>

39 <text>{SELECT comment FROM db.reviews

40 WHERE reviewer = session.user

41 AND proposal = proposal_id}</text>

42 <state>display</state>

43 </fstmt:case>

44 <fstmt:else>

45 <text>Type your comment here</text>

46 <state>edit</state>

a7 </fstmt:else>

48 </fstmt:switch>

49 </funit:editor>

50 </td>

51 <td> <!-- sliders -->

52 <funit:table>

53 <tr>

54 <td>

55 <funit:slider min="1" max="5" name="depth"

56 value="{SELECT depth FROM db.reviews
57 WHERE reviewer = session.user
58 AND proposal = proposal_id}"/>
59 </td>

60 </tr>

61 <l--in demo: sliders for impact and overall grades >
62 <funit:button onclick="save_review">Submit</funit:button>

63 <l--in demo: several closing tags -->

Figure 3: The page configuration of review

developer need not worry about fine discrepancies between
the types used in the database (which are dictated by the
business logic and are often constrained) and the types used
for rendering, which are often as general as they can be.
For example, the expression that feeds the value attribute
of the funit:slider on line 56 is a tuple that has a single

74

integer attribute. However, it is coerced into a float, which
is the type of argument that the funit:slider expects.
The page as an automatically updated rendered view
Conceptually, the page configuration is evaluated after ev-
ery program execution. While such an explanation is simple
to understand, it is only conceptual. If the page that is dis-
played on the browser window before and after a program’s
execution is the same, then FORWARD will incrementally
update only the parts of it that changed, therefore achiev-
ing the user-friendliness and efficient performance of Ajax
pages, where the page does not leave the user’s screen (and
therefore avoids the annoying blanking out while waiting
for the page to reload) but rather incrementally re-renders
in response to changes. [9] explains how FORWARD utilizes
incremental view maintenance in order to efficiently and au-
tomatically achieve pages as incrementally rendered views.
To XQuery or not to XQuery The page configuration
syntax and semantics of FORWARD closely resemble those
of XQuery, as they both enable nesting, order, variabil-
ity and coercions. Indeed, FORWARD allows similarity to
XQuery to become even more obvious by allowing omission
of the SELECT clause of the queries, which is tantamount
to an automatic SELECT *. We have chosen SQL for three
reasons:

1. The typical query input is the application’s database,
which is almost always relational and therefore we do
not need to complicate the query language semantics
with conventions on how the relational database is
wrapped into XML. In that sense, the page configu-
ration language is close to the SQL/XML relational
input and XML output approach.

2. A main audience of our approach are SQL developers
who feel frustrated by how hard it is to create a ren-
dered view. There is no significant number of XQuery
Web developers yet.

3. Numerous processing, optimization and consistency check-
ing algorithms around the page configuration are amenable

to cleaner reductions to respective SQL problems, with-
out subtle complications that XQuery’s semantics in-
troduce.

Nevertheless, a limited XQuery implementation is also in

the plans, as XQuery provides high power in certain cases,
such as XQuery-Text.
Summary The page configuration is essentially an SQL
view embedded into a visual template, consisting of HTML
and funit tags. Therefore the page configuration resolves
Challenge 1, since it enables the production of pages with-
out requiring Java and javascript code in addition to SQL.
Furthermore, it is implemented as an Ajax page that is au-
tomatically updated to reflect the database state, therefore
resolving Challenge 2 of Ajax application programming.

3.4 Unified Application State

The FORWARD unified application state, in addition to
the conventional persistent data that an application has, also
includes transient application data, such as an automatically-
created logical-level representation of page data, which are
heavily used in web application programming.

Structurally, the unified application state consists of the
set of all sources, such as the session, db and core, which

are described by an SQL++ schema. In order to accom-
modate the needs of pages, of session data and of other
data typically occurring in web application programming,
SQL++ is a minimal extension of SQL, whereas each schema
is a tuple. An attribute of the tuple may be either a scalar
type or a table, whose tuples have attributes that may re-
cursively contain nested tables. Notice that standard SQL
corresponds to the case where a schema is simply a tuple of
tables (think of SQL’s table names as being the attribute
names of the top level tuple) and each table’s tuples may
only have scalars (as opposed to nested tables). In order to
allow variability in the spirit of XQuery and OQL, SQL-++
also supports an OQL-like union construct.

An example of a schema that uses the extra features of
SQL++ is the session, which in the running example is sim-
ply a tuple containing only the standard scalar attributes
session_id, user and role that are set by FORWARD’s
session management and authentication/authorization util-
ities (not shown). The expression {session.user} on line 5
is a SQL++ query accessing the attribute user of the tuple
of the session schema. A key integration contribution of
FORWARD, which attacks Challenges 1 and 3, is the ability
of SQL++ to combine persistent data with transient data
using just a single SQL++ query. For example, consider the
queries on lines 36 and 39 that combine the session.user
with the table reviews of the persistent schema db to pro-
duce the reviews of the currently logged-in user in just three
lines of SQL. More integration contributions are made by the
core schema and data, discussed next.

The core schema captures in an SQL++ schema the subset
of page data that have been named by the developer, using
the special tag name, in the page configuration. Therefore
the core enables the developer to resolve part of Challenge 3,
by enabling him to create a data structure encompassing
the data of interest to the programs as opposed to, say, vi-
sual details. FORWARD infers the core schema by inspec-
tion of the page configuration. In the running example, the
core schema, which happens to fall within standard SQL,
is a table of the proposals that appear on the screen along
with their reviews and grades. In particular, it is a table
named proposals (due to the fstmt:for on line 11) with a
string attribute named my_review (due to line 33) and float
attributes depth, impact and overall due to the sliders
(the last two not shown in Figure [3)). The table proposals
also has the key attribute proposal_id so that one can as-
sociate the data collected by the multiple instances of the
editor and the sliders with proposals. Mechanically, FOR-
WARD infers this attribute to be the key of the query that
feeds proposals using a straightforward key inference algo-
rithm. Notice that such inference relies on the underlying
db.proposals table having a known key, which is an un-
avoidable assumption of the running example, no matter
what technologies one uses to implement it.

Notice that the algorithm that infers the core schema uti-
lizes statements and queries of the page configuration, i.e.
the page’s logical aspects, while it mostly ignores the unit
structure and XHTML (the visual aspects). The only unit
aspect that matters is the types of data collected by the
user, i.e., string from the funit:editor and floats from the
funit:sliders. This is a key advantage over page mirror-
based frameworks, such as Microsoft’s ASP.NET, that of-
fer to the developer a server-side mirror of the page data,
so that the developer does not have to code in Javascript.

75

Unfortunately, the structure of the mirror follows the (typ-
ically very busy) visual structure of the page, as opposed
to the data structure that best fits the database (a typi-
cal “Challenge 3” problem). In the running example, had
we followed ASP.NET’s approach, instead of having three
attributes names named depth, impact and overall, cor-
responding to the three sliders, we would have a hard-to-
use nested table whose first tuple would be implicitly as-
sumed to contain the depth, its second tuple to contain the
impact, etc. The fact that FORWARD’s page configuration
enables extracting the core data is testimony of the power
of a declarative approach fueled by logical statements and
queries.

An important piece of data in the core is information
about which program was invoked. In the running exam-
ple, the page invokes the program save_review (line 62),
and therefore it is important to know upon invocation which
one of the many instances of the save_review was invoked.
There are as many instances as proposals on the page. The
core identifies the proposal_id for the invoked save_review.

FORWARD guarantees that the core data is automati-
cally up-to-date when a program starts its execution. This
is a key contribution towards resolving Challenge 3. In a
conventional Ajax application, Javascript and Java code has
to be written to establish a copy of relevant page data on
the server, in a way that they can be subsequently combined
with the database.

The name attribute convention is reminiscent of the HTML
standard’s convention to allow a name to be associated with
each form element and consequently generate request pa-
rameters with the provided names. Drawing further the
similarities to HTML’s request parameters, the request ob-
jects keep only the tuple of the core that correspond to the
invoked program.

Mappings (Section raise the level of programming
even higher by allowing the developer to select, project and
combine data utilizing a mapping interface.

3.5 The Program Configuration

A program configuration is a composition of synchronous
services in an acyclic structure with a single starting ser-
vice, which is where the program’s execution starts. For
example, Figure 2] shows the graphical representation of the
save_review program configuration, which is composing ser-
vices replace_data and email, among others.

Services input data from the unified application state. For
example, the starting service replace_data takes as input
data indicated by the mapping of Figure 4| The invocation
of a service has one or more possible outcomes, and each out-
come (1) generates a corresponding service output, which
becomes part of the unified application state, and (2) leads
to the invocation of a consequent service or the end of the
program. The replace_data service has a success outcome
and a failure one. The former adds the replaced_tuple
to the unified application state and the latter adds a failure
message in order to facilitate the invocation of the conse-
quent email service, which will email the failure message to
the application administrator.

FORWARD offers a special service called page (depicted
by the page icon in Figure [2) that programs use to instruct
the FORWARD interpreter of which page to display next.

The transactional semantics of services differentiate the
ones that have side effects from the ones that do not. A

Unified Application State
ible via SQL++ and i

reviews
proposal

reviewer replace data

— input
> schema_path

————— proposal

[core

request [~ reviewer

proposals
proposal_id
title

success
‘ proposal

my_review ‘
depth

failure

‘ message

failure success

last
review

yy \default

home

session ‘

user ‘ email
‘ ‘ \Lsent
N\ J

error

review

program ‘

Figure 4: Building the save_review program configuration

service has side effects if it makes changes observable by the
outside world, be it by updating the unified application state
or by invoking an external service, such as sending an email
or charging a credit card. The replace_data and email are
examples of services having side effects and are graphically
depicted by a rectangle in Figure 2l A service with no side
effects is depicted by a rhombus and merely chooses what
service will be invoked next. For example, if the outcome of
replace_data is success, then the program will invoke the
last_review service, which simply checks if the review just
saved was the last one to be submitted, and hence does not
have any side effects. If so, another page service will set the
next page to be the home page of the application. Otherwise,
the next page will be the same as the current review page.

Building a program configuration is greatly simplified by
SQL~++ access to the unified application state. It is further
simplified bythe FORWARD mapping language. In princi-
ple, the service input data can be generated by a SQL++
query. In practice though, the developer rarely does so since
the input data of services can be specified much easier using
mappings. Figure@demonstrates how mappings are visually
designed inside FORWARD'’s development environment be-
tween the unified application state and the input schema of
the replace_data service. Notice that the developer seam-
lessly draws mappings from the persistent database state db,
the request data and the session data to the input schema
of the service. For consequent services, the developer is also
able to draw mappings from the program data generated by
previous services invocations.

3.6 The Scope of FORWARD Applications

The SQL~++ based program and page configurations have
limitations, when compared against programs and pages
written using combinations of Java, Javascript and SQL. We

76

argue that these limitations are within the spirit of “make
easy things easy and difficult things possible”: Still every
application is doable, while common applications are much
easier to write.

In the case of programs, notice that a program is an acyclic
graph.Therefore programs comprise (1) sequencing of ser-
vices, most of which are plain SQL statements, and (2)
if-then-else control. However, programs lack explicit loop
structures. The restriction is much less severe than it ini-
tially appears to be because there are implicit loops in the
service implementations. For example, the email service of
the example sends an email to each of the many recipients.
Nevertheless, the limitation raises three key questions:

First, what percentage of applications do not require ex-
plicit loops? Database theorists had introduced the rela-
tional transducer [1], which described the program executed
after a user interaction by a plain sequence of SQL com-
mands, and essentially conjectured that the business process
of most web applications is describable within the expres-
sive power of SQL (notably without recursion). Later, the
WAVE project showed that this conjecture applies to well-
known web applications, such as dell.com [5|. The authors
have collected an interesting piece of evidence pointing in
the same direction: Two of the authors have given a web
application development class, at SUNY Buffalo and UCSD
respectively, asking students to specify and build a web ap-
plication of their choice as a class project. The vast majority
of student applications avoid the limitation. For example,
in the Winter 2010 UCSD offering of the class, all student
projects avoided the limitation.

The next question is how can the limitation be overcome
when explicit loops are truly needed in a program? In such
cases the developer may write a service in Java and enjoy
the full power of Java. Indeed, the developer may write the
whole program in Java.

Finally, what are the benefits of the no-loops limitation?
The lack of explicit loops simplifies the semantics of ser-
vice compositions to the point that a program is simply
plugging together services via mapping a service’s output
to other services’ input. The practical failure of prior visual
programming tools and business process languages that at-
tempted to capture the full extent of programming makes
us believe that visual programming should be limited to the
simple cases, while Java provides the “bail-out”.

4. INTERNAL ARCHITECTURE

The internal architecture of the FORWARD interpreter
is illustrated in Figure [5] which displays internal modules
(labelled with red numbers) in association with developer-
visible concepts of Figure] For efficiency of storage and
communications, FORWARD maintains a visual page state,
which provides an abstraction over the browser state by in-
cluding the externally visible state of visual units, but ex-
cluding their implementation details. Two copies of the vi-
sual page state lazily mirrored between the browser and the
server.

When the user performs interactions such as typing in a
text box, the HTML DOM and the JavaScript variables of
visual components change in the browser state. The respec-
tive state collectors of each FORWARD unit synchronize the
appropriate part of the browser state with the correspond-
ing part of the browser-side visual page state. When the
user eventually triggers an event that leads to invoking a

Browser State ‘

‘ Qrowser-side

HTML ‘ ‘ JavaScript
DOM Components Visual Page State
» Incremental State Collectors
Renderers

e Program Invoker —
/

v

FORWARD

Interpreter Page Configuration

Program

0)
Server-Side

Visual Page State

Incremental View
Maintenance

7
Modlﬁcatlon Log

-
Unified Application State 4
(accessible via SQL++) /

Core Data

<
Per5|stent Session GanEst
Request
Database ‘ State anta ‘
_ State R——
\ ' o

I

Figure 5: Internal FORWARD Architecture

program, such as clicking the submit button of Figure
the program invoker guarantees that the browser-side vi-
sual page state has been fully mirrored onto the server-side
before the program executes. This guarantee is efficiently
implemented via incremental writes to the prior visual page
state.

Using the program invocation context and page configu-
ration, the interpreter calculates (1) the core data, by pro-
jecting only the named attributes of the visual page state,
and (2) the request data. As services within the program
read from and write to the unified application state, the sys-
tem also uses a modification log to intercept all changes to
the unified application state. By using the modification log
in combination with the unified application state, the inter-
preter employs incremental view maintenance optimizations
to incrementally maintain the current visual page state to
the next visual page state [9]. The current implementation
uses an off-the-shelf relational database without modifica-
tion to the database engine. It intercepts changes by instru-
menting database-related services. By storing the modifica-
tion log as well as transient parts of the unified application
state in memory-resident tables of the RDBMS, the current
implementation issues incremental queries that are more ef-
ficient than the original queries in the page configuration,
since they retrieve data primarily from the memory-resident
tables. As illustrated in [9], incremental view maintenance
can speed up the evaluation of page queries by more than
an order of magnitude.

Finally, the interpreter uses data diffs to efficiently reflect
changes back to the browser-side visual page state. The
same data diffs are also provided to the respective incremen-
tal renderers of each visual unit, which, in turn, program-
matically translates the data diff of the visual page state into
updates of the underlying DOM elements or method calls of
the underlying JavaScript components. Essentially, the in-
cremental renderers modularize and encapsulate the partial
update logic necessary to utilize Javascript components, so

77

that developers do not have to provide such custom logic for
each page. Also illustrated in 9], in addition to performance
gains due to less DOM elements / JavaScript components
being initialized, incremental rendering also delivers a better
user experience by reducing flicker and preserving unsaved
browser state such as focus and scroll positions.

To convert between the different schemas of the core data
and the visual page state, the compilation of the page con-
figuration automatically produces a mapping between these
two schemas. For example, as discussed in Section 3.2, the
core data comprises three (flat) attributes depth, impact
and overall, whereas the visual page state represents the
corresponding sliders nested within a table unit, thus the
mapping language mitigates such structural differences in-
cluding extraneous attributes (by projection) and nested tu-
ples (by flattening). Mappings are also used to produce type
coercions, such as automatically converting an integer at-
tribute in the core data to a float attribute in the visual
page state, and vice versa.

S. FUTURE WORK ON OPTIMIZATIONS

As the history of SQL-based systems has shown, a key
benefit of declarative approaches is the enablement of (i)
automatic optimizations and (ii) static analysis that can
improve the operation of the system or detect possible er-
roneous behaviors. As discussed in Section [d] the efficient
incremental maintenance of the Ajax pages is a derivative of
the declarative SQL-based approach. FORWARD ongoing
and future work will extend the benefits of the declarative
approach towards the following optimizations and function-
alities, which would otherwise require programmer efforts
to be accomplished. Notice that the declarative approach
reduces each of the following problems into an extension or
specialization of respective problems where the data man-
agement community has delivered automatic optimization
techniques.

Page query optimization The obvious (according to the
semantics) way to collect the data needed by a page config-
uration is not necessarily the most efficient. For example,
the data needed for the page of the running example can be
collected by running the outer query of Lines 12-14, which
returns proposals, and then, for every proposal tuple, in-
stantiate the proposal_id and run the query of Lines 20
to 24, which returns their grades. A more efficient way to
collect proposals and grades is by sending a single query.
Research in OQL and XQuery has ran into similar issues
and has provided a list of rewritings that can be employed
for performance gains in such situations.

Pub-sub optimizations for updating myriads of open
pages Consider a popular application where there are myr-
iads of pages open at any point in time. When the database
data change, these pages have to be correspondingly up-
dated. For example, when a Facebook user changes his sta-
tus, the currently open pages of his friends must be updated.
FORWARD'’s reduction of the data reported by a page into
essentially a rendered view, opens the gate to leveraging
database work (e.g., |4} |6]) for the rapid update of only the
relevant open pages.

Location transparency, browser side operation and
mobility The SQL++ queries over the unified application
state are location transparent in the sense that they do
not dictate whether they are executed fully at the server
or whether they are executed partially at the server and

partially at the browser. While the current version of FOR-
WARD mirrors the browser data on the server and runs
SQL++ fully on the server, alternate methods are also pos-
sible. A possibility that is beneficial to mobile applications
is to create caches of the parts of the application state on
the browser. Then certain queries and programs will be able
to operate on a disconnected browser.

6. ACKNOWLEDGEMENTS

We thank Kevin Zhao for his worthy-of-authorship contri-
butions. Kevin does not appear in the author list since he is
the author of another CIDR 2011 paper. We thank Fernando
Gutierrez, Ryan Mourey, Sam Wood and Erick Zamora for
the contribution of multiple FORWARD units. We thank
Alin Deutsch for many discussions on FORWARD.

7. REFERENCES

[1] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. In
PODS ’98: Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 179187, New York, NY,
USA, 1998. ACM.

[2] Asp.net, 2009. http://www.asp.net/|

[3] S. Ceri, P. Fraternali, and A. Bongio. Web modeling
language (webml): a modeling language for designing
web sites. Computer Networks, 33(1-6):137-157, 2000.

[4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. In SIGMOD Conference, pages
379-390, 2000.

[5] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and
D. Zhou. A verifier for interactive, data-driven web
applications. In SIGMOD Conference, pages 539-550,
2005.

[6] Y. Diao and M. J. Franklin. Query processing for
high-volume xml message brokering. In VLDB, pages
261-272, 2003.

[7] Echo web framework, 2009.
http://echo.nextapp.com/site/.

[8] M. F. Fernandez, D. Florescu, A. Y. Levy, and
D. Suciu. Declarative specification of web sites with
strudel. VLDB J., 9(1):38-55, 2000.

[9] Y. Fu, K. Kowalczykowski, K. W. Ong, K. K. Zhao,
and Y. Papakonstantinou. Ajax-based report pages as
incrementally rendered views. In SIGMOD Conference
(to appear), 2010.

[10] Javaserver pages standard tag library, 2010.
http://java.sun.com/products/jsp/jstl/.

[11] K. Kowalczykowski, K. W. Ong, K. K. Zhao,
A. Deutsch, Y. Papakonstantinou, and
M. Petropoulos. Do-it-yourself custom forms-driven
workflow applications. In CIDR, 2009.

[12] S. Miro. Who moved my state? Dr. Dobb’s, 2003.

78

http://www.asp.net/
http://echo.nextapp.com/site/
http://java.sun.com/products/jsp/jstl/

