
Hyder – A Transactional Record
Manager for Shared Flash

Philip A. Bernstein, Microsoft Corporation

Colin Reid, Microsoft Corporation

Sudipto Das, UC Santa Barbara

© 2011 Microsoft Corporation

CIDR 2011
January 10, 2011

Hyder: The Big Picture

• Goal: Enable scale-out without partitioning DB or app

2

• Store the whole DB in flash
– which is accessible to all servers
– via a fast data center network

• Main architectural features
– Uses a log-structured DB in flash
– Broadcast log to all servers
– Roll forward log on all servers
– Optimistic concurrency control

Network

Internet

Hyder Log

Server

Hyder
App

Server

Hyder
App

Server

Hyder
App

• There’s no cross-talk between servers

– Hence, Hyder scales-out without partitioning

What is Hyder?

3

An incubation, i.e. research project.

A software stack for transactional record management

• Stores [key, value] pairs, which are accessed within transactions

Functionality
• Record operations:

– Insert, Delete, Update, Get where field = X; Get next

• Transactions: Start, Commit, Abort

Why build another one?
• Exploit flash memory and high-speed networks

to simplify scaling out large-scale web services

Network

Scaling Out with Partitioning

4

Internet

Database
Partition

App

$

Log

Data

Web Server

App $

$

• Database is partitioned across
multiple servers

• Each query is sent to the
appropriate partition(s)

• For scalability, avoid distributed
transactions

• Cross partition consistency is
enforced in the application

• Hard to provision servers and
distribute load evenly

$ $ $ $

Web Server

App $

Web Server

App $

Database
Partition

App

$

Log

Data

Database
Partition

App

$

Log

Data

Database
Partition

App

$

Log

Data

Network

Hyder Scales Out Without Partitioning

5

Internet
• In Hyder, the log is the database

• All servers can access the log

• No partitioning is required

• Database is multi-versioned, so
server caches are trivially coherent

• Hence, can parallelize a query with
consistency across servers

• And servers can fetch pages from
the log or from neighboring
servers’ caches

Hyder Log

Web
Server

Hyder
$

App

Web
Server

Hyder
$

App

Web
Server

Hyder
$

App

Hyder Runs in the Application Process

6

• No distributed programming

• No distributed caches for the
app to keep consistent

• Avoids the expense of RPC’s to a
database server

• Simple high performance
programming model Network

Internet

Hyder Log

Web
Server

Hyder
$

App

Web
Server

Hyder
$

App

Web
Server

Hyder
$

App

Enabling Hardware Assumptions

• Flash offers cheap and abundant I/O operations

 Can spread the DB across a log, with less physical
contiguity

• Cheap high-performance data center networks
 Many servers can share storage, with high performance

• Large, cheap, 64-bit addressable memories
 Reduces the rate that Hyder needs to access the log

• Many-core web servers

 Hyder can afford to roll forward the log on all servers

7

The Hyder Stack

• Segments, stripes and streams

8

• Optimistic transaction protocol

• ISAM, SQL, LINQ, etc.

• Append-only custom controller interface

• Multi-versioned search tree

Network

Scalable Reliable
Storage Layer

Indexed Record
Layer

Transaction
Layer

API

Database is a Search Tree

9

G

B

A

H

C I

D

A D C B I H G

Binary
Search
Tree

Tree is marshaled into the log

In this paper, it’s a binary search tree.

D

Update
D’s value

Binary Tree is Multi-versioned

10

G

B

A

H

C I

D

• Copy on write

• To update a node, replace nodes up to the root

C

G

B

Transaction Execution
• Each server has a cache of the last committed database state

11

A D C B I H G

 DB cache

G

B

C

D

H

I A

last committed

Transaction execution
1. Get pointer to snapshot G

B

C

D

2. Generate updates locally

D C B G

 Snapshot

3. Append intention log record

• A transaction reads a snapshot and writes an intention log record

Log Updates are Broadcast

12

Broadcast
intention

Broadcast
ack

Transaction Commit
• Each server rolls forward transactions in log sequence

• When it processes an intention log record,

– it checks whether the transaction experienced a conflict

– if not, the transaction committed and the server merges the
intention into its last committed state

• All servers make the same commit/abort decisions

13

A D C B I H G

T’s conflict
zone

Did a committed transaction write
into T’s readset or writeset here?

transaction T

D C B G
 Snapshot

Performance
Bottleneck Analysis

• There are 4 bottlenecks in the update pipeline

1. 100K log-appends/second, assuming 20-way parallel flash storage

2. Broadcast 67K update transactions/second over 10 Gb Ethernet

3. Meld can do up to 400K update transactions/second

4. Opt CC: Abort rate depends on conflict probability and txn latency
– Suppose transaction latency is 200 μs

– If all txns conflict, best case SR execution is serial ==> 5000 TPS

– With random arrivals ==> ~ 1600 update TPS

14

Throughput with High Data Contention

15

8

24

40

56

72

10 20 30 40 50 60 70 80

Th
ro

u
gh

p
u

t
(K

 t
p

s)

Offered Load (K tps)

• 8 reads, 2 writes per transaxn

• 99% of ops access 1% of data

• Serializable isolation

• Assume the network, log,
and meld can perform
100K intentions/sec

DB-Size-10K

TxnSize-20, DB-100K

R:W=1:1, DB-100K

DB-Size-50K

DB-Size-100K

Thrashing due to Resource Contention
• Thrashing occurs when exceeding the maximum resource

throughput of 100K/second

16

0

100

200

300

400

500

0

20

40

60

80

100

95 97 99 101 103 105

Tr
an

sa
ct

io
n

 L
at

e
n

cy
 (

m
s)

Tr
an

sa
ct

io
n

 T
h

ro
u

gh
p

u
t

(K

 t
p

s)

Offered Load (K tps)

Hot95-5

Hot80-20

Uniform

Latency

Major Technologies
• Flash is append-only. Custom controller has

mechanisms for synchronization & fault tolerance

• Storage is striped, with a self-adaptive algorithm
for storage allocation and load balancing

• Fault-tolerant protocol for a totally ordered log

• Fast meld algorithm to detect conflicts and merge
intention records into last-committed state

17

Summary of Contributions
• A new data-sharing architecture for scaling out without

partitioning.

• A fault-tolerant append-only log that arbitrates
concurrent appends by independent servers.

• A log-structured multiversion binary-search-tree index.

• An efficient meld algorithm to detect conflicts & merge
committed updates into the last-committed state.

• A simulation analysis of the Hyder architecture under a
variety of workloads and system configurations.

18

Errata for the paper

• In the 5th paragraph of Section 2.3 on sliding
window striping, “AppendStripe” should be
“AppendPage”.

• Also, the following paper should have been
included as related work:

– Radu Stoica, Manos Athanassoulis, Ryan Johnson,
Anastasia Ailamaki: Evaluating and repairing write
performance on flash devices. DaMoN 2009: 9-14

19

