Relational Cloud: a database service for the cloud

Evan Jones, Raluca Ada Popa, Fugene VVu, Nirmesh Malviya Sam Madden, Hara Jaka Jaka Man, Nickolai Zeldovich

Relational Cloud: a database service for the cloud

Carlo Curino, Evan Jones, Raluca Ada Popa, Eugene Wu, Nirmesh Malviya Sam Madden, Hari Balakrishnan, Nickolai Zeldovich

CSAIL MIT Cambridge, MA

WHAT IS WRONG WITH THIS PICTURE?

HW resources are under utilized:

- peak-provisioning
- HW for infrequent tasks
- low power-efficiency

Same problems solved over and over:

- hw/sw selection
- configuration and tuning
- scalability and load balancing

Database as a Service

• Transactional, Relational DB service

- hide complexity
- exploit resource pooling
- increase automation
- (both for private and public cloud)

Existing Services

- Existing Commercial DB Services:
 - Amazon RDS, SQL Azure (and many others)
- What they got right:
 - simplified provisioning/deployment
 - reduced administration/tuning headaches
- What is still missing?
 - workload placement (to reduce hw cost)
 - automatic partitioning (to scale out)
 - encryption (to achieve data privacy)

Relational Cloud: Key Contributions

Workload Placement [under submission]

• consolidation up to 17:1

Automatic Partitioning [pvldb2010]

matches or outperforms manual sharding

Provable Data Privacy [under submission]

- run SQL over encrypted data
- low overhead (22.5% impact on TPC-C throughput)

Relational Cloud: Key Contributions

Workload Placement [under submission]

• consolidation up to 17:1

Automatic Partitioning [pvldb2010]

matches or outperforms manual sharding

Provable Data Privacy [under submission]

- run SQL over encrypted data
- low overhead (22.5% impact on TPC-C throughput)

monitoring & admin

Placement

workload-aware consolidation

monitoring &

Partitioning

Placement

monitoring & admin

Placement

Scenario:

- Each workload initially run on a dedicated server
- Consolidate DB machines

Problem Definition:

Allocate workloads to servers in a way that:

- I) minimizes number of servers used
- 2) balances load across servers
- 3) maintains performance unchanged

measure resource utilization

measure resource utilization

estimate combined load

numerical models

measure resource utilization

WI

estimate combined load

numerical models

find optimal assignment

non-linear programming

non-linear constraints and objective function

Non-Linear Integer Constraints:

- No overcommit of HW using:
 - historical resource time-series
 - combined resource estimation
- Each workload is assigned
- HA via replication (e.g.,W2)

		SI	S2	S3	S4
workloads	WI	0	0	0	
	W2		0		0
	W3		0	0	0
	W4	0	0		0
	W5	0	0	0	
	W6	0	0		0
	W7		0	0	

Non-Linear Integer Constraints:

- No overcommit of HW using:
 - historical resource time-series
 - combined resource estimation
- Each workload is assigned
- HA via replication (e.g.,W2)

		SI	S2	S 3	S4
vorkloads	WI	0	0	0	
	W2	-	0		0
	W3	-	0	0	0
	W 4	0	0		0
	W5	0	0	0	
	W6	0	0		0
	W7	I	0	0	

Non-Linear Integer Constraints:

- No overcommit of HW using:
 - historical resource time-series
 - combined resource estimation
- Each workload is assigned
- HA via replication (e.g.,W2)

		SI	S2	S 3	S4
vorkloads	WI	0	0	0	-
	W2		0		0
	W3		0	0	0
	W 4	0	0		0
	W5	0	0	0	
	W6	0	0		0
	W7		0	0	

Non-Linear Integer Constraints:

- No overcommit of HW using:
 - historical resource time-series
 - combined resource estimation
- Each workload is assigned
- HA via replication (e.g.,W2)

		SI	S2	S3	S4
workloads	WI	0	0	0	
	W2		0		0
	W3		0	0	0
	W 4	0	0		0
	W5	0	0	0	
	W6	0	0		0
	W7		0	0	

Objective function:

- minimize servers (use SIGNUM)
- maximize balance (use EXP)

Workload Placement Results

- Validated our approach on synthetic data
- Estimated real-world impact:
 - Load statistics from production data-centers: Wikipedia, Wikia, SecondLife, MIT
 - Huge potential consolidation: 6:1 to 17:1

Partitioning

Why:

- scalability
- manageability

Problem Definition:

Partition the database into N chunks in a way that maximizes the workload performance

Why:

scalability

KEY TO SCALABILITY (OLTP/Web):

Limit percentage of distributed transaction

Partition the database into N chunks in a way that maximizes the workload performance

Graph Partitioning Demo

• Example inspired by YCSB

Single table, short scans

Partitioning Results

Conclusions

- Database as a Service has real potential
- Key Features to fully enable DBaaS
 - Workload Placement (up to 17:1 consolidation)
 - Automatic Partitioning (matches manual partitioning)
 - Provable Privacy (22.5% performance impact)
- What's next?
 - Live Migration
 - Dynamic reallocation/repartitioning

Conclusions

- Database as a Service has real potential
- Key Features to fully enable DBaaS
 - Workload Placement (up to 17:1 consolidation)
 - Automatic Partitioning (matches manual partitioning)
 - Provable Privacy (22.5% performance impact)
- What's next?
 - Live Migration
 - Dynamic reallocation/repartitioning

For follow-up comments and job-offers: curino@mit.edu