
Carlo Curino,
Evan Jones, Raluca Ada Popa, Eugene Wu, Nirmesh Malviya

Sam Madden, Hari Balakrishnan, Nickolai Zeldovich

CSAIL MIT
Cambridge, MA

Relational Cloud: a database
service for the cloud

Monday, January 17, 2011

Carlo Curino,
Evan Jones, Raluca Ada Popa, Eugene Wu, Nirmesh Malviya

Sam Madden, Hari Balakrishnan, Nickolai Zeldovich

CSAIL MIT
Cambridge, MA

Relational Cloud: a database
service for the cloud

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HW

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HW

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HW WE SEE:
• Fun data management problems!

 THEY SEE:

• stressful, non-core-business, technical challenges
• up-front costs and unpredictable results

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
1

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
1

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
2

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
3

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
4

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
5

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
6

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
7

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
8

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
9

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
11

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
12

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
13

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
14

Monday, January 17, 2011

Startup success: a story of DB drama
startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
1

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
2

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
3

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
4

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
5

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
6

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
7

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
8

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
9

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
11

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
12

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
13

startup
popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
14

 WHAT IS WRONG WITH THIS PICTURE?

 HW resources are under utilized:
• peak-provisioning
• HW for infrequent tasks
• low power-efficiency

 Same problems solved over and over:

• hw/sw selection
• configuration and tuning
• scalability and load balancing startup

popularity

time

the idea!
buy 1st
server

install and
configure
MySQL

setup
nightly
backup

buy backup
server

crash (16h
downtime)

hire
DBA

implement
 fail-over

buy 2nd
server

slashdotted
(4h downtime)

buy 4 more
servers

implement
home-made

load balancing

manual
partitioning

of DB

need
analytics

acquire
analytical

package + HW

set up
DB snapshots

and OLAP
functionalities

migrate
to new DBMS

hire new
DBA

foreseen
growth

acquire
commercial DB

and + HWStart-up
10

Monday, January 17, 2011

• Transactional, Relational DB service

• hide complexity

• exploit resource pooling

• increase automation

• (both for private and public cloud)

Database as a Service

Monday, January 17, 2011

• Existing Commercial DB Services:

• Amazon RDS, SQL Azure (and many others)

• What they got right:

• simplified provisioning/deployment

• reduced administration/tuning headaches

• What is still missing?

• workload placement (to reduce hw cost)

• automatic partitioning (to scale out)

• encryption (to achieve data privacy)

Existing Services

Monday, January 17, 2011

Relational Cloud: Key Contributions

Workload Placement [under submission]

• consolidation up to 17:1

Automatic Partitioning [pvldb2010]

• matches or outperforms manual sharding

Provable Data Privacy [under submission]

• run SQL over encrypted data

• low overhead (22.5% impact on TPC-C throughput)

Monday, January 17, 2011

Relational Cloud: Key Contributions

Workload Placement [under submission]

• consolidation up to 17:1

Automatic Partitioning [pvldb2010]

• matches or outperforms manual sharding

Provable Data Privacy [under submission]

• run SQL over encrypted data

• low overhead (22.5% impact on TPC-C throughput)

Monday, January 17, 2011

Relational Cloud Architecture

Users
(and their workloads)

Monday, January 17, 2011

Relational Cloud Architecture

Unmodified DBMS
backends

Postgres MySQL MySQLPostgresMySQL

Monday, January 17, 2011

monitoring &
admin

Placement

Relational Cloud Architecture

workload-aware
consolidation

MySQL MySQLMySQLPostgres Postgres

Monday, January 17, 2011

monitoring &
admin

Partitioning

Placement

Relational Cloud Architecture

MySQL MySQLMySQL

workload-aware
automatic sharding

Postgres Postgres

Monday, January 17, 2011

monitoring &
admin

Partitioning

Placement

Relational Cloud Architecture

MySQL MySQLMySQLPostgres Postgres

Monday, January 17, 2011

MySQL MySQLMySQL

Relational Cloud Architecture

monitoring &
admin

Partitioning

Placement
Postgres Postgres

Monday, January 17, 2011

monitoring &
admin

cloud run-time

PartitioningFrontend

Placement

Relational Cloud Architecture

distributed query/transactions
high availability via replication

FrontendFrontendFrontend

MySQL MySQLMySQLPostgres Postgres

Monday, January 17, 2011

cloud run-time

FrontendFrontendFrontendFrontend

monitoring &
admin

Partitioning

Placement

client run-time client run-time client run-time

CryptDB

en/decryption
query rewriting

SQL over encrypted data
(adjustable encryption)

CryptDBCryptDB

Relational Cloud Architecture

MySQL MySQLMySQLPostgres Postgres

Monday, January 17, 2011

cloud run-time

FrontendFrontendFrontendFrontend

monitoring &
admin

Partitioning

Placement

Relational Cloud Architecture
client run-time client run-time client run-time

CryptDBCryptDBCryptDB

MySQL MySQLMySQLPostgres Postgres

Monday, January 17, 2011

Workload Placement

Problem Definition:
Allocate workloads to servers in a way that:
 1) minimizes number of servers used
 2) balances load across servers
 3) maintains performance unchanged

• Each workload initially run on a dedicated server

• Consolidate DB machines

Scenario:

Monday, January 17, 2011

measure resource
utilization

W2

W3

W1
disk i/o
ram

cpu

DBMSs tend to use all
available resources

Workload Placement

disk i/o
ram

cpu

disk i/o
ram

cpu

Monday, January 17, 2011

measure resource
utilization

W2

W3

W1
disk i/o
ram

cpu

estimate
combined load

numerical models

resource
non-linearities

Workload Placement

disk i/o
ram

cpu

disk i/o
ram

cpu

Monday, January 17, 2011

measure resource
utilization

W2

W3

W1
disk i/o
ram

cpu

estimate
combined load

numerical models

find optimal
assignment

non-linear
programming

Local Minima
(balanced load
for K servers)

Global Minimum
(minimum possible K,

and balanced load
for K servers)

Constraint Violation Penalty
(workloads assignments, or
max resources is violated)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
es

load assigned to one of the servers
0% 100% 0% 100%

4-server solutions 5-server solutions 6-server solutions
0% 100%

Figure 5: Simplified rendering of the objective function

GHz CPUs, 32 GB of RAM and a single 7200 RPM SATA drive,
running our disk profiling workload of MySQL. The working set
sizes for the workload fit in RAM, since this is the common config-
uration for the OLTP environments we target.

Figure 4 shows a two-dimensional polynomial fit of this data—
the actual data points are not shown for the sake of clarity. The
X-axis shows the working-set size, the Y-axis shows the user re-
quest throughput measured in updated tuples per second, and the
contours indicates the disk I/O that the workload generates on the
test machine4. Increasing the rate at which rows are updated re-
sults in a non-linear increase in the aggregate I/O. Somewhat sur-
prisingly, a larger working set also results in more I/O, again with a
non-linear relationship. This is because when update operations are
spread throughout a bigger file, they are more likely to touch clean
pages, resulting in more total dirty pages per unit of time and caus-
ing more pages to be written back. The thick dashed line shows a
quadratic curve fit to the maximum disk throughput for each dataset
size (the points that it fits two are shown as black circles.) This is
the point of disk-I/O saturation for our single disk configuration.
Larger working set sizes yield lower throughput because they re-
quire in average more pages to be written back to achieve the same
transaction throughput, and this experiment is disk bound.

This map is used to predict how multiple workloads will behave
when combined. We have observed that the combined throughput
of several workloads (as tested using various TPC-C DB sizes, var-
ious synthetic micro-benchmarks and Wikipedia on both MySQL
and PostgreSQL) respects the following property when the working
set of the consolidated databases fits into memory:

Running multiple databases, with aggregate working set size X,

at an aggregate row modification throughput (i.e., update, insert,

or delete rate) Y produces the same disk I/O pressure as running a

single workload with working set size X at update throughput Y.

This is due to several reasons. First, in the steady state, no data
needs to be read from disk no matter the number of databases, since
we assume that all of working sets nearly completely fit in memory.

Second, the disk I/O is composed of: i) log writes, whose
throughput depends only on the insert/update rate Y and transac-
tion log record size, which is roughly constant and small for typi-
cal OLTP workloads, and ii) dirty pages being written back to disk,
which, for, OLTP workloads, results in similar mix of sorted ran-
dom writes for either the single or multiple database case.

Therefore, to predict the amount of disk I/O that will be used
when multiple workloads are run simultaneously inside of a single

4We use a Least Absolute Residuals (LAR) second-order, polyno-
mial fit of the disk I/O to build the disk model shown by the contour
of Figure 4. We chose this model because it was accurate enough
in our experiment to accurately predict disk I/O rates and in our
consolidated workloads.

DBMS, we monitor each workload for a period of time, collecting
a profile of the workload consisting of the buffer pool working set
size and the average insert/update rate. These are the axes of Fig-
ure 4. By summing these parameters from all workloads, and using
a map like that shown in Figure 4 for the machine onto which the
databases are to be consolidated, we can predict how much disk
I/O the combined workload will need. The focus is on obtaining
a precise estimate for the high-load portion of the curve, as this
is the part required to verify that the combined workload will not
saturate the disk. Precision with very low disk load is not nearly
as important. As we show in Section 7, this model is significantly
more accurate than any simple approach that sums the disk I/O of
a set of consolidated workloads, especially for high-load situations
where it reduces the estimation error by up to a factor of 32.

In Section 7.5 we present experimental evidence that, for a rather
broad range of workloads, the profile we build is independent of
database size, and from the specific transaction types, and that it
only depends on: (i) row update rates, (ii) the database working set
size, and (iii) the DBMS/OS/hardware configuration. This allows
us to build profiles for each DBMS/OS/hardware configuration we
need to handle, covering a broad spectrum of workloads.

In our implementation we profile a machine by scanning the
space of throughputs and working set sizes, testing each possible
combination. This takes about two hours. We are investigating
ways to speed up this process, including sampling fewer points,
and building models incrementally. For example, if a similar ma-
chine configuration has been already profiled, a small number of
data points should be sufficient to adapt an existing profile to the
new configuration.

5. CONSOLIDATION ENGINE

We now turn to the problem of determining which workloads
should be combined together. The goal is to find an assignment that
minimizes the number of machines, and that balances load across
those machines as evenly as possible, while avoiding resource over-
commitment. We model the problem of assigning workloads to
servers as a mixed-integer non-linear optimization problem. The
inputs to this problem are a list of machines with disk, memory, and
CPU capacities, and a collection of workload profiles specifying
the resource utilization of each resource as a time series sampled at
regular intervals. We also allow the user to specify replication re-
quirements for each workload, as well as pin individual workloads
to specific machines. Machine capacities and resource utilizations
are normalized to account for heterogeneous hardware.

Formally, we state the optimization problem as follows (these
functions have been simplified for the sake of presentation; addi-
tional details are in Section 6):

minimize
x

X

tj

(e(
P

i Cti∗xij) ∗ signum(
X

i

xij));

subject to ∀i
X

j

xij = Ri;

∀j maxt(
X

i

CPUti ∗ xij) < MaxCPUj ;

∀j maxt(
X

i

MEMti ∗ xij) < MaxMEMj ;

∀j diskModel(DISKti, xij) < MaxDISKj ;

. . .

additional placement constraints

. . .

∀i, jxij ∈ N ; 0 ≤ xij ≤ 1

5

non-linear constraints
and objective function

Workload Placement

disk i/o
ram

cpu

disk i/o
ram

cpu

Monday, January 17, 2011

• No overcommit of HW using:

• historical resource time-series

• combined resource estimation

• Each workload is assigned

• HA via replication (e.g., W2)
S1 S2 S3 S4

W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

Non-Linear Integer Constraints:

Workload Placement

servers

w
or

kl
oa

ds

Monday, January 17, 2011

• No overcommit of HW using:

• historical resource time-series

• combined resource estimation

• Each workload is assigned

• HA via replication (e.g., W2)
S1 S2 S3 S4

W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

Non-Linear Integer Constraints:

Workload Placement

S1 S2 S3 S4
W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

servers

w
or

kl
oa

ds

Monday, January 17, 2011

• No overcommit of HW using:

• historical resource time-series

• combined resource estimation

• Each workload is assigned

• HA via replication (e.g., W2)
S1 S2 S3 S4

W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

Non-Linear Integer Constraints:

Workload Placement

S1 S2 S3 S4
W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

S1 S2 S3 S4
W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

servers

w
or

kl
oa

ds

Monday, January 17, 2011

• No overcommit of HW using:

• historical resource time-series

• combined resource estimation

• Each workload is assigned

• HA via replication (e.g., W2)
S1 S2 S3 S4

W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

Non-Linear Integer Constraints:

Workload Placement

S1 S2 S3 S4
W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

S1 S2 S3 S4
W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

S1 S2 S3 S4
W1 0 0 0 1
W2 1 0 1 0
W3 1 0 0 0
W4 0 0 1 0
W5 0 0 0 1
W6 0 0 1 0
W7 1 0 0 1

servers

w
or

kl
oa

ds

Monday, January 17, 2011

• minimize servers (use SIGNUM)

• maximize balance (use EXP)

Local Minima
(balanced load
for K servers)

Global Minimum
(minimum possible K,

and balanced load
for K servers)

Constraint Violation Penalty
(workloads assignments, or
max resources is violated)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
es

load assigned to one of the servers
0% 100% 0% 100%

4-server solutions 5-server solutions 6-server solutions
0% 100%

Figure 5: Simplified rendering of the objective function

GHz CPUs, 32 GB of RAM and a single 7200 RPM SATA drive,
running our disk profiling workload of MySQL. The working set
sizes for the workload fit in RAM, since this is the common config-
uration for the OLTP environments we target.

Figure 4 shows a two-dimensional polynomial fit of this data—
the actual data points are not shown for the sake of clarity. The
X-axis shows the working-set size, the Y-axis shows the user re-
quest throughput measured in updated tuples per second, and the
contours indicates the disk I/O that the workload generates on the
test machine4. Increasing the rate at which rows are updated re-
sults in a non-linear increase in the aggregate I/O. Somewhat sur-
prisingly, a larger working set also results in more I/O, again with a
non-linear relationship. This is because when update operations are
spread throughout a bigger file, they are more likely to touch clean
pages, resulting in more total dirty pages per unit of time and caus-
ing more pages to be written back. The thick dashed line shows a
quadratic curve fit to the maximum disk throughput for each dataset
size (the points that it fits two are shown as black circles.) This is
the point of disk-I/O saturation for our single disk configuration.
Larger working set sizes yield lower throughput because they re-
quire in average more pages to be written back to achieve the same
transaction throughput, and this experiment is disk bound.

This map is used to predict how multiple workloads will behave
when combined. We have observed that the combined throughput
of several workloads (as tested using various TPC-C DB sizes, var-
ious synthetic micro-benchmarks and Wikipedia on both MySQL
and PostgreSQL) respects the following property when the working
set of the consolidated databases fits into memory:

Running multiple databases, with aggregate working set size X,

at an aggregate row modification throughput (i.e., update, insert,

or delete rate) Y produces the same disk I/O pressure as running a

single workload with working set size X at update throughput Y.

This is due to several reasons. First, in the steady state, no data
needs to be read from disk no matter the number of databases, since
we assume that all of working sets nearly completely fit in memory.

Second, the disk I/O is composed of: i) log writes, whose
throughput depends only on the insert/update rate Y and transac-
tion log record size, which is roughly constant and small for typi-
cal OLTP workloads, and ii) dirty pages being written back to disk,
which, for, OLTP workloads, results in similar mix of sorted ran-
dom writes for either the single or multiple database case.

Therefore, to predict the amount of disk I/O that will be used
when multiple workloads are run simultaneously inside of a single

4We use a Least Absolute Residuals (LAR) second-order, polyno-
mial fit of the disk I/O to build the disk model shown by the contour
of Figure 4. We chose this model because it was accurate enough
in our experiment to accurately predict disk I/O rates and in our
consolidated workloads.

DBMS, we monitor each workload for a period of time, collecting
a profile of the workload consisting of the buffer pool working set
size and the average insert/update rate. These are the axes of Fig-
ure 4. By summing these parameters from all workloads, and using
a map like that shown in Figure 4 for the machine onto which the
databases are to be consolidated, we can predict how much disk
I/O the combined workload will need. The focus is on obtaining
a precise estimate for the high-load portion of the curve, as this
is the part required to verify that the combined workload will not
saturate the disk. Precision with very low disk load is not nearly
as important. As we show in Section 7, this model is significantly
more accurate than any simple approach that sums the disk I/O of
a set of consolidated workloads, especially for high-load situations
where it reduces the estimation error by up to a factor of 32.

In Section 7.5 we present experimental evidence that, for a rather
broad range of workloads, the profile we build is independent of
database size, and from the specific transaction types, and that it
only depends on: (i) row update rates, (ii) the database working set
size, and (iii) the DBMS/OS/hardware configuration. This allows
us to build profiles for each DBMS/OS/hardware configuration we
need to handle, covering a broad spectrum of workloads.

In our implementation we profile a machine by scanning the
space of throughputs and working set sizes, testing each possible
combination. This takes about two hours. We are investigating
ways to speed up this process, including sampling fewer points,
and building models incrementally. For example, if a similar ma-
chine configuration has been already profiled, a small number of
data points should be sufficient to adapt an existing profile to the
new configuration.

5. CONSOLIDATION ENGINE

We now turn to the problem of determining which workloads
should be combined together. The goal is to find an assignment that
minimizes the number of machines, and that balances load across
those machines as evenly as possible, while avoiding resource over-
commitment. We model the problem of assigning workloads to
servers as a mixed-integer non-linear optimization problem. The
inputs to this problem are a list of machines with disk, memory, and
CPU capacities, and a collection of workload profiles specifying
the resource utilization of each resource as a time series sampled at
regular intervals. We also allow the user to specify replication re-
quirements for each workload, as well as pin individual workloads
to specific machines. Machine capacities and resource utilizations
are normalized to account for heterogeneous hardware.

Formally, we state the optimization problem as follows (these
functions have been simplified for the sake of presentation; addi-
tional details are in Section 6):

minimize
x

X

tj

(e(
P

i Cti∗xij) ∗ signum(
X

i

xij));

subject to ∀i
X

j

xij = Ri;

∀j maxt(
X

i

CPUti ∗ xij) < MaxCPUj ;

∀j maxt(
X

i

MEMti ∗ xij) < MaxMEMj ;

∀j diskModel(DISKti, xij) < MaxDISKj ;

. . .

additional placement constraints

. . .

∀i, jxij ∈ N ; 0 ≤ xij ≤ 1

5

Objective function:

Workload Placement

Monday, January 17, 2011

Workload Placement Results

• Validated our approach on synthetic data

• Estimated real-world impact:

• Load statistics from production data-centers:
Wikipedia, Wikia, SecondLife, MIT

• Huge potential consolidation: 6:1 to 17:1

Monday, January 17, 2011

Partitioning

• scalability

• manageability

Problem Definition:
Partition the database into N chunks in a way
that maximizes the workload performance

Why:

Monday, January 17, 2011

Partitioning

• scalability

• manageability

Problem Definition:
Partition the database into N chunks in a way
that maximizes the workload performance

 KEY TO SCALABILITY (OLTP/Web):

• Limit percentage of distributed transaction

Why:

Monday, January 17, 2011

Graph-based Partitioning

2 3

5

1

4

PARTITION 0
PARTITION 1

GRAPH REPRESENTATION

transaction edges

1
1 1

1

1
1

INPUT

Workload Trace

 BEGIN
 UPDATE account SET bal=bal-1k WHERE id=1;
 UPDATE account SET bal=bal+1k WHERE id=2;
 COMMIT

 BEGIN
 UPDATE SET bal=bal+1k WHERE bal < 100k;
 COMMIT

 BEGIN
 SELECT * FROM account WHERE id IN {1,3}
 ABORT

 BEGIN
 UPDATE account SET bal=60k WHERE id=2;
 SELECT * FROM account WHERE id=5;
 COMMIT

 BEGIN
 UPDATE SET bal=bal*1.1 WHERE id >= 4;
 COMMIT

2

EXPLANATION

ID < 4
ID >= 4

P: 0

P: 1

Database

Monday, January 17, 2011

Graph-based Partitioning

2 3

5

1

4

PARTITION 0
PARTITION 1

GRAPH REPRESENTATION

transaction edges

1
1 1

1

1
1

INPUT

Workload Trace

 BEGIN
 UPDATE account SET bal=bal-1k WHERE id=1;
 UPDATE account SET bal=bal+1k WHERE id=2;
 COMMIT

 BEGIN
 UPDATE SET bal=bal+1k WHERE bal < 100k;
 COMMIT

 BEGIN
 SELECT * FROM account WHERE id IN {1,3}
 ABORT

 BEGIN
 UPDATE account SET bal=60k WHERE id=2;
 SELECT * FROM account WHERE id=5;
 COMMIT

 BEGIN
 UPDATE SET bal=bal*1.1 WHERE id >= 4;
 COMMIT

2

EXPLANATION

ID < 4
ID >= 4

P: 0

P: 1

Database

Input
(logs+preprocessing)

Monday, January 17, 2011

Graph-based Partitioning

2 3

5

1

4

PARTITION 0
PARTITION 1

GRAPH REPRESENTATION

transaction edges

1
1 1

1

1
1

INPUT

Workload Trace

 BEGIN
 UPDATE account SET bal=bal-1k WHERE id=1;
 UPDATE account SET bal=bal+1k WHERE id=2;
 COMMIT

 BEGIN
 UPDATE SET bal=bal+1k WHERE bal < 100k;
 COMMIT

 BEGIN
 SELECT * FROM account WHERE id IN {1,3}
 ABORT

 BEGIN
 UPDATE account SET bal=60k WHERE id=2;
 SELECT * FROM account WHERE id=5;
 COMMIT

 BEGIN
 UPDATE SET bal=bal*1.1 WHERE id >= 4;
 COMMIT

2

EXPLANATION

ID < 4
ID >= 4

P: 0

P: 1

Database

Graph Partitioning
(METIS)

Monday, January 17, 2011

Graph-based Partitioning

2 3

5

1

4

PARTITION 0
PARTITION 1

GRAPH REPRESENTATION

transaction edges

1
1 1

1

1
1

INPUT

Workload Trace

 BEGIN
 UPDATE account SET bal=bal-1k WHERE id=1;
 UPDATE account SET bal=bal+1k WHERE id=2;
 COMMIT

 BEGIN
 UPDATE SET bal=bal+1k WHERE bal < 100k;
 COMMIT

 BEGIN
 SELECT * FROM account WHERE id IN {1,3}
 ABORT

 BEGIN
 UPDATE account SET bal=60k WHERE id=2;
 SELECT * FROM account WHERE id=5;
 COMMIT

 BEGIN
 UPDATE SET bal=bal*1.1 WHERE id >= 4;
 COMMIT

2

EXPLANATION

ID < 4
ID >= 4

P: 0

P: 1

Database

Classification
(Decision Tree)

Monday, January 17, 2011

Graph Partitioning Demo

• Example inspired by YCSB

• Single table, short scans

Monday, January 17, 2011

Partitioning Results

0

20

40

60

80

100

62.1

99.9

8

100

6
10.8

4.5
10.8

%
 o

f d
is

tr
ib

ut
ed

 t
ra

ns
ac

tio
ns

TPCC 50 Warehouses
(10-way partitioning)

SCHISM MANUAL REPLICATION HASHING

Epinions.com
(2-way partitioning)

Monday, January 17, 2011

Conclusions
• Database as a Service has real potential

• Key Features to fully enable DBaaS

• Workload Placement (up to 17:1 consolidation)

• Automatic Partitioning (matches manual partitioning)

• Provable Privacy (22.5% performance impact)

• What’s next?

• Live Migration

• Dynamic reallocation/repartitioning

Monday, January 17, 2011

Conclusions
• Database as a Service has real potential

• Key Features to fully enable DBaaS

• Workload Placement (up to 17:1 consolidation)

• Automatic Partitioning (matches manual partitioning)

• Provable Privacy (22.5% performance impact)

• What’s next?

• Live Migration

• Dynamic reallocation/repartitioning

For follow-up comments and job-offers: curino@mit.edu
Monday, January 17, 2011

mailto:curino@mit.edu
mailto:curino@mit.edu

