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~Analysis in the Big Data Era

Data Analysis

e Automate decision processes '

* Increase cost savings and revenue

Massive Data Insight

[ Key to Success = Timely and Cost-Effective Analysis]
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mn the Big Data Era

e Popular option
e Hadoop software stack
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Analysis in the Big Data Era

e Popular option
e Hadoop software stack

e Burden on the users
e Responsible for provisioning & configuration
e Usually lack expertise to tune the system

e Challenges

e Tasks expressed In general-purpose programming
languages

e [nput data stored as files and interpreted at run-time
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~Starfish: Self-Tuning System

e NOT our goal: Improve Hadoop’s peak performance
e Our goal: Provide good performance automatically
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“Workload on a Starfish Cluster

e MapReduce (MR) Job

e Workflow
e Physical: directed graph of MR job nodes
e Logical: directed graph of SPJA & UDF nodes

e \Workload: Collection of workflows
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“Starfish Architecture
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" Workload-level tuning

[ Workload Optimizer ] [ Elastisizer ]

Workflow-level tuning
{ Workflow-aware J

Scheduler

J

[ Just-in-Time Optimizer ]

[ Profiler ][ Sampler ]\

Data Manager

Metadata Intermediate Data Layout &
Storage Mgr.

Mgr. Data Mgr.
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Workload-level tuning
[Workload‘thimizer} [ Elastisizer ] ( 2

Workflow-level tuning

[ Workflow-aware } What-if
Scheduler

!
| | Just-in-Time Optimizer ] :
! : N

| [ Profiler ][ Sampler ] !

Data Manager

Metadata Intermediate Data Layout &
Mgr. Data Mgr. Storage Mgr.
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mguration Parameters

TeraSort in Hadoop

WordCount in Hadoop

Running Time (sec)

400 o

lo.sort.record.percent io.sort.mb mapred.reduce.tasks io.sort.record.percent

e Over 190 parameters
e Many affect performance in complex ways
e Impact depends on Job, Data, and Cluster properties
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mpproach

Rules of TeraSort in Hadoop
thumb

WordCount in Hadoop
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e Rules of thumb
e mapred.reduce.tasks = 0.9 * number_of reduce_slots
e i0.sort.record.percent = 16 / (16 + average record_size)

e Rules of thumb may not suffice
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Just-in-Time Job Optimization

e Just-in-Time Optimizer
e Searches through the high-dimensional space of
parameter settings

e What-if Engine
e Uses mix of simulation and model-based estimation
e Sampler

e Collects statistics about input, intermediate, and output
key-value spaces of MapReduce jobs

e Profiler
e Collects information about MR job executions
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“Job Profiler

e Dynamic instrumentation
e Monitor specific components in a system
e Collect run-time information

e Benefits
e Zero overhead when it i1s turned off
e Works with unmodified MapReduce programs

e Used to construct a job profile
e Concise representation of the job execution
e Allows for in-depth analysis of the job behavior
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Starfish Architecture

Workload-level tuning

[ Workload Optimizer

} [ Elastisizer

“ Workflow-level tuning

[ Scheduler

Workflow-aware ]

Job-level tuning

[ Just-in-Time Optimizer

|

[ Profiler

} [ Sampler

|

Data Manager

Mgr.

Data Mgr.

01/12/2011

Metadata Intermediate Data Layout &
Storage Mgr.

Duke University



o

~Job Workflows
e Producer-Consumer Job P
relationships among jobs Tasks

e Data Layout crucial for later
jobs
e Effective use of parallelism
e Task scheduling
e Major Problem -
e Unbalanced data layouts
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~Unbalanced Data Layouts

e Issues with data-locality-aware schedulers
e Performance degradation due to reduced parallelism
 Further unbalanced layout due to job outputs
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“Workflow-Aware Scheduler

e Goal: Optimize overall performance of workflow
e Select best data layout + job parameters
e Space of options
 Block placement policy
 Replication factor
 Block size
e Output compression
e Approach
e Simulate task scheduling and block placement policies
e Perform cost-based search
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Starfish Architecture

" Workload-level tuning

[ Profiler M Sampler }

Data Manager

Metadata
Mgr.

[ Workload Optimizer ] [ Elastisizer ] | |
Workflow-level tuning
[ Workflow-aware } What-if
Scheduler Engine
Job-level tuning
[ Just-In-Time Optimizer }
\ .

Intermediate Data Layout &
Data Mgr. Storage Mgr.

\

|

01/12/2011

Duke University

17



mg Starfish Workloads
e Data-flow sharing

e Materialization
e Reorganization

Java Client Pk{—live Oozie| |Elastic MR
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~Jumbo Operator

* Single MapReduce job to process multiple Select-
Project-Aggregate operations over a table

e Enables sharing of scans, computation, sorting,
shuffling, and output generation
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C/MTfenges and Opportunities

1. Study the interactions among optimizations across
different levels

2. Construct a What-if Engine that can model these
Interactions

© [ Optimize logical workloads ] f By
o

= ﬂ _ What-if
s [ Translate to MapReduce jobs ] Engine

s J

c

—_ [ Schedule on Map & Reduce Slots ] 3 b
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Elastisizer — Hadoop Provisioning

e Goal: Make provisioning decisions based on workload
requirements (e.g., completion time, cost)

m2nodes ™4 nodes ™6 nodes m 2 nodes ™4 nodes ™6 nodes
12000 $6.00
g 10000 - $5.00
S 8000 - & $4.00
6000 - 2 $3.00
9 ©
§ 4000 - $2.00
%2000 - $1.00 -
n
0 - $0.00 -
ml.small ml.large ml.xlarge ml.small mllarge ml.xlarge
Node Type on Amazon EC2 Node Type on Amazon EC2
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"~ Starfish: Self-Tuning System

Focus simultaneously on
e Different workload granularities
» Workload
e Workflows
e Jobs (procedural and declarative)
e Across various decision points
e Provisioning
e Optimization

» Scheduling @ij %

e Data layout ~/
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