
Message Futures: Fast Commitment of Transactions in
Multi-datacenter Environments

Faisal Nawab Divyakant Agrawal Amr El Abbadi

Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106
{nawab,agrawal,amr}@cs.ucsb.edu

ABSTRACT
Geo-replication of large Internet services is increasingly de-
ployed for better data locality and fault tolerance. Main-
taining consistency across datacenters is expensive and re-
quires wide-area communication. This renders current so-
lutions to either settle for weaker forms of consistency or
suffer from large delays. In this work we present Message
Futures, a strongly consistent concurrency control manager
with low commit latency to ensure mutual consistency of
replicas across datacenters. By judicial message passing of
relevant information and at opportune time intervals, Mes-
sage Futures can also enforce different priority levels of ac-
cess, where each datacenter experiences a commit latency
relative to its priority. In fact, in many common cases,
transactions can be committed locally without the need for
any communication. An experimental evaluation of Message
Futures on a geo-replicated multi-datacenter setting is pre-
sented. We show that Message Futures achieves a commit
latency around one RTT (Round-Trip Time) for datacenters
with identical priority, and a latency comparable to commit-
ting locally for high priority datacenters.

Keywords
cloud computing, replication, concurrency

1. INTRODUCTION
Modern Internet services are increasingly deployed over ge-
ographically separated datacenters to provide better avail-
ability and fault tolerance. Replication across datacenters
brings data closer to the end user, reducing last-mile latency
and increasing locality. Providing the underlying infrastruc-
ture to manage replication and data management is essential
to rid developers of concerns of consistency and coordina-
tion.

Replication, however, is expensive, requiring management
of concurrency, failures, and communication overhead. Pro-
tocols to manage replication face significant challenges with
large latencies between replicas. Inter-datacenter commu-
nication is prone to variation in Round-Trip Times (RTTs)

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2013.

6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

and loss of packets. Most importantly, RTTs are in the
order of hundreds of milliseconds, e.g., up to 300ms. Deliv-
ering strong guarantees requires awareness of other replicas’
states before committing. With such large RTTs it becomes
apparent that communication overhead dominates the com-
mit latencies observed by users. Solutions often sacrifice
strong consistency guarantees to maintain acceptable re-
sponse times. Weak consistency, however, make application
development significantly more complex. Furthermore, syn-
chronization and concurrency solutions are developed multi-
ple times in every application with considerable vulnerability
to errors.

In this paper we propose Message Futures (MF), a com-
pletely distributed multi-datacenter transaction management
system that provides strong consistency guarantees while
maintaining low commit latency. It achieves an average
commit latency around one RTT. A transaction is com-
mitted when a commit condition on mutual information is
met. At any point in time, the commit condition is designed
to be true for any single object in at most one datacenter.
A Replicated Log (RLog) [19] is utilized to share transac-
tions and state information among datacenters continuously.
RLogs provide enough information to ensure correct trans-
action execution. Thus, the continuous exchange of RLogs
allows a datacenter to commit transactions without initiating
a new wide-area message exchange with other datacenters.
MF guarantees one-copy serializability [2].

In addition to maintaining strong consistency and low la-
tency, the incorporation of RLog improve MF’s resilience
to node and communication failures. RLogs guarantee the
happens-before relation among events. RLogs are propa-
gated continuously and independently. We study the prop-
agation of RLogs to achieve the desired performance prop-
erties. In particular, we study how assigning different RLog
transmission rates allows us to prioritize datacenters and tai-
lor commit latency. This, in many common cases, enables
high priority datacenters to commit transactions immedi-
ately while having a minimal effect on other datacenters
commit latency.

Our contributions are summarized as the following:

• We propose MF, a concurrency control manager (Sec-
tion 3). It provides strong consistency guarantees while
achieving a commit latency close to a single RTT.

• Correctness of MF is proved (Section 3.3).

• We performed a set of experiments on EC2 nodes across
inter-continental datacenters (Section 4). In those ex-
periments, we compare MF’s performance with two
Paxos-based protocols. We also demonstrate how to
tailor the system’s commit latency and how to enable
transactions to commit immediately.

The rest of this document is divided as follows: First, we
overview the system in Section 2 and elucidate the consid-
ered datacenter architecture, the main components of an MF
instance, and RLogs. Then, we proceed to propose MF in
Section 3. We provide an intuitive description followed by
a more formal definition of MF operation and a proof of
its correctness. An evaluation of our system is detailed in
Section 4. Section 5 summarizes related work. Finally, we
conclude the paper with a summary in Section 6.

2. SYSTEM OVERVIEW
We consider a large multi-cloud system consisting of multiple
datacenters, each with a large number of nodes. In what
follows we describe the underlying datacenter architecture,
MF design, and RLogs.

2.1 Datacenter architecture
Each datacenter contains a subset of the nodes that belong
to the system, referred to as a cluster. Each cluster main-
tains a full replica of the system’s data. A key-value store
constitutes the underlying storage. The storage can be dis-
tributed across different servers in the cluster. Since latency
between servers within a single datacenter is small, applying
current solutions for intra-datacenter concurrency does not
affect the overall performance of a geo-replicated system.
Our solution handles inter-datacenter concurrency control.
MF assumes that transactions executed within a datacen-
ter are serializable. A complete datacenter outage is a rare
occurrence. MF focuses on optimizing the normal case op-
eration, that is when all datacenters are available. Clock
synchronization between datacenters is not required by MF.

2.2 Message Futures design
MF is a multi-datacenter concurrency control manager. Com-
ponents in MF’s design include: (1) The transaction client
component to handle clients requests. (2) The replication
component to handle RLog replication. (3) The concurrency
component that performs the concurrency logic to commit or
abort transactions. These components operate on common
global data structures. Each datacenter, DCi, maintains the
following structures:

• Local RLog, Li, is the locally maintained RLog.

• Pending Transactions list, PTi, contains local pending
transactions. These are transactions that requested to
commit but are still neither committed nor aborted.

• Last Propagated Time, LPTi, is the timestamp of the
processing time of the last sent Li at DCi.

2.3 Replicated Logs
RLogs maintain a global view of the system that can be used
by datacenters to perform their concurrency logic. RLogs

consist of an ordered sequence of events. All events have
timestamps. Each transaction is represented by an event.
RLogs are continuously propagated to other datacenters.
An algorithm used to efficiently propagate RLogs is pre-
sented in [19]. An N×N Timetable, Ti, is maintained by
Li, where N is the number of datacenters. Each entry in
the Timetable is a timestamp representing a bound on how
much a datacenter knows about another datacenter’s events.
For example, entry Ti(j, k) = τ means that datacenter DCi

knows that datacenter DCj is aware of all events at data-
center DCk up to timestamp τ . An event in Li is discarded
if DCi knows that all datacenters know about it. RLogs
are transitive: events of a datacenter DCA may reach DCC

through another datacenter DCB . The algorithm ensures
two properties. First, all events are eventually known by all
datacenters. Second, if two events have a happened-before
relation [12], their order is maintained in the RLog.

Now we will illustrate our adaptation of the RLog. Each
datacenter is represented by one row and one column in the
Timetable. Each transaction, ti, is represented as an event
record, Etype(ti), in the RLog, where type is either: (1)
Pending transactions (p) that requested to commit but are
neither committed nor aborted yet. (2) Committed transac-
tions (c) that were not propagated to all datacenters yet. A
transaction, ti, starts as a pending transaction with an en-
try record Ep(ti). Once the transaction commits or aborts,
a new event record, Ec(ti), is added to the RLog. A pend-
ing event is maintained until the transaction commits or
aborts. A committed event is maintained in the RLog un-
til it is known to all datacenters. Note also that the clock
must be incremented when new events occur and when Li

is propagated.

3. CONCURRENCY CONTROL
In this section we describe the concurrency control manager.
We begin by giving an overview and an example scenario of
MF. Then, we present the algorithm used to commit trans-
actions. Finally, we establish the correctness of MF.

3.1 Message Futures overview
We start with an intuitive description of MF. Note that each
datacenter,DCA, transmits LA, its local RLog, continuously
regardless of the existence of new events. Consider a pending
transaction ti at DCA. When ti requests to commit, the
current Last Propagated Time, LPTA, is attached to ti and
is referred to as ti→LPTA. Then, ti with its read- and write-
sets are appended to the local Pending Transactions list,
PTA, while only the write-set is appended to LA. Whenever
DCA receives a RLog, LB , it checks for conflicts between
transactions, ti, in PTA and t′ in LB . If a conflict exists,
ti is aborted. A conflict exist if a common object, x, exists
in t′’s write-set and ti’s read- or write-sets. To commit ti,
DCA waits until the following commit condition holds:

Defenition 1. A pending transaction ti in PTA commits
if all read versions of objects in ti’s read-set are identical to
ones in local storage, and

TA[B,A] ≥ ti→LPTA, ∀B(DCB ∈ datacenters)

That is, all objects in ti’s read-set have the same versions
as those in the local storage and datacenter DCA knows

DCA DCB

 A B

A ts(a2) ts(b1)

B ts(a1) ts(b1)

a1

b1

a2

a3 b3

t1.w(x)
t1.r(x)

t1.cr()

t1.commit

t2.r(y)

t2.w(y)

t2.cr()

t2.commit

{Ec(t1), Ec(t2)}

t3.r(y)

t3.w(y)

t3.cr()

t3.abort

t4.w(y)

t4.r(y)

t4.cr()

{Ep(t4)} {Ep(t5)}

t5.w(x)

t5.r(x)

t5.cr()

t4.commit t5.commit

b2{Ep(t3)}

Figure 1: MF example scenario

that all datacenters, DCB , are aware of DCA’s events up
to time ti→LPTA. Conflicts that include ti’s write-set are
detected earlier when remote transactions are received and
their conflicts are detected.

To illustrate the operational aspects of MF and its correct-
ness, consider a successfully committed transaction, ti, at
datacenter DCA as an example. The event of transmit-
ting LA by DCA is denoted by aα, where α is a mono-
tonically increasing number; aα is before aβ if α < β. The
time of an event is represented by the notation ts(e), where
e is the event and the returned time is a locally main-
tained monotonically increasing number. If transaction ti
requests to commit at datacenter DCA at time ts(ti), where
ts(aα) < ts(ti) < ts(aα+1), then ti→LPTA is set to ts(aα).
This ensures that the event record of ti will be included in
LA of every aβ , where β is greater than α. The transaction
commits if the commit condition holds. For any other dat-
acenter, DCB , consider bα as the first transmission of LB ,
where LB ’s Timetable satisfies: TB [B,A] ≥ ts(aα). This
is DCB ’s part in satisfying ti’s commit condition. Recep-
tion of bα’s content by DCA makes it aware of all trans-
actions, tb pre, with commit request times less than ts(bα).
No tb pre conflicts with ti; otherwise, ti would have been
aborted, since tb pre is necessarily included in LB which is
transmitted in bα. Any other transaction, tb post, that re-
quested to commit after ts(bα), is necessarily aborted if it
conflicts with ti. This is because tb post→LPTB is greater
than or equal to ts(bα); tb post will wait until its commit
condition holds. This includes waiting for TB [A,B] to be
greater than or equal to ts(bα). ts(bα) is greater than the
time when aα’s transmission was received by DCB . Thus,
any LA satisfying tb post’s commit condition must have been
sent at a time greater than or equal to ts(aα+1). LA sent at a
time greater than or equal to ts(aα+1) must contain ti, as we
have shown above. Thus, when the record of ti is received at
DCB , tb post is aborted if a conflict existed between ti and
tb post. Since any transaction in DCB requests to commit
either before or after ts(bα), the commit condition ensures
that for any two transactions that are concurrent and con-
flicting, at most one of them will commit.

We now illustrate a simple operational scenario of MF de-
picted in Figure 1. The scenario consists of two datacen-
ters, DCA and DCB . The passage of time is represented by
going downward. Arrows are RLog transmissions. Events
in the RLog are shown over the arrow. If no events exist,
nothing will be shown. The corresponding Timetable is also
displayed in one case for demonstration purposes. The no-
tation on the sides are operations performed or issued at
the datacenter. ti.operation(key) represents performing an
operation on the object key for transaction ti. Client op-
erations are read (r), write (w), and commit request (cr).
Commits and aborts are shown inside dotted boxes. As in-
troduced above, RLog transmissions are represented by the
notation δi, where δ is the lower case character of the data-
center’s name and i is a monotonically increasing number.

Consider transaction t1 of DCA. It reads and writes object
x and then requests a commit. t1→LPTA is set to ts(a1).
DCA waits until the commit condition (Definition 1) holds.
When LB , sent at b1, is received at DCA, the commit con-
dition is satisfied and t1 commits. Transaction t2, which
also started after a1, requests a commit. t2→LPTA is also
set to ts(a1). Since it has requested to commit after the
reception of the RLog transmission at ts(b1), the commit
condition holds at the time it requested to commit, hence
t2 commits immediately. Transaction t3 requests to commit
at DCB . t3→LPTB is set to ts(b1) when a commit is re-
quested. However, when LA of a2 arrives at DCB , a conflict
with transaction t2 is detected. In this case, t3 is aborted.
Finally, we show the case of transactions t4 and t5. When
a commit is requested for both of them, t4→LPTA is set to
ts(a2) and t5→LPTB is set to ts(b2). When each datacenter
receives the other datacenter’s RLog, it contains the infor-
mation of the pending transaction of the other datacenter.
However, no conflict is detected. At that point, the commit
condition holds for both of them and both t4 and t5 commit.
We also included a demonstration of TA at time ts(a2).

3.2 Concurrency control protocol
The concurrency component of a datacenter DCA runs con-
tinuously to process LA and PTA. Clients read local values
and buffer write operations. Conflicts with the local storage
are checked by verifying that all read values of ti have the
same version number as the last writes on the local stor-
age. Also, conflicts with other transactions in PTA, pt, are
checked. If a conflict is detected between ti and pt, ti is
aborted. A conflict exists if a common object, x, exists in
pt’s write-set and ti’s read- or write-sets. When a transac-
tion, ti, requests to commit at DCA, it is added to PTA

(with both read- and write-sets) and LA (with its write-set
only) and ti→LPTA will be set to the current LPTA. After
each RLog transmission, LPTA is set to the processing time
of LA, which is the entry TA[A,A]. Upon receiving a RLog,
LB , from any DCB , LA is updated to reflect the received
information, i.e., LB ’s events are merged into LA’s events
and TA is updated.

A concurrency server, at DCA, runs continuously and at
each iteration performs three tasks in the following order:

Process transactions, lt, in LA: This step is demon-
strated in Algorithm 1. Two types of transactions in LA

are considered: (1) Committed transactions that were not

Algorithm 1: Processing transactions in LA.

1 function ProcessLocalLog()
2 for each transaction lt in LA do

3 if (lt was already processed AND is not pending) OR (lt
is local) then

4 continue to next lt

5 for each transaction pt in PTA do

6 if conflictExist (pt, lt) then

7 abort pt

8 if lt is committed then

9 apply lt′s write− set to storage

Algorithm 2: Processing transactions in PTA.

10 function ProcessPendingTransactions ()
11 for each transaction pt in PTA do

12 if for all datacenters, DCB , TA[B, A] ≥ pt→LPTA

AND read-set values are not changed in local storage
then

13 apply pt′s write− set to storage
14 add Ec(pt) to LA

15 remove pt from PTA

processed before, and (2) pending transactions that did not
commit/abort yet. Local transactions in LA are not consid-
ered (line 3). Other transactions are processed according to
their order in LA and checked for conflicts with transactions,
pt, in PTA (lines 5-7). If a conflict was detected between lt

and pt, then pt aborts. A conflict exist if a common object,
x, exists in lt’s write-set and pt’s read- or write-sets. Finally,
if lt is a committed transaction, incorporate its write-set to
the local storage (line 9).

Process transactions, pt, in PTA: Determine if any
pt can commit (Algorithm 2). pt can commit if the com-
mit condition holds (line 12). Committing a transaction
includes incorporating its write-set to local storage, adding
a committed event record, Ec(pt), to LA, and removing pt

from PTA (lines 13-15).

Garbage collection and termination: If a transaction,
ti is committed/aborted then discard Ep(ti). If ti is com-
mitted/aborted and is also known to all datacenters, then
discard Ec(ti).

3.3 Correctness
We now show that MF preserves one-copy serializability. We
use Serialization Graphs (SGs) [2]. Nodes in a SG repre-
sent committed transactions and edges represent conflicts.
An edge (ti, tj) represents one of the following three types:
(1) Write-read (wr) edges where tj directly read-depends
on ti. (2) Write-write (ww) edges where tj directly write-
depends on ti. (3) Read-write (rw) edges where tj directly
anti-depends on ti. A Multi-Version, Multi-Copy (MVMC)
history is one-copy serializable if no cycles exist in its SG.
Acyclicity of SG will be proven by showing that any edge
(ti, tj) translates to an ordering of the commit record of ti,
Ec(ti), preceding (<s) Ec(tj) in RLog. Since the order of
events in RLogs maintains the happens-before relation, and
from the acyclicity of the happens-before relation, proving
this mapping establishes the acyclicity of SG. This is an
intuitive mapping since the ordered list of events in RLog
actually represents a totally ordered history of committed
transactions. We begin by listing some properties of MF to

aid us in proving this mapping.

Property 1. For a transaction tj at DCA, define the set
of previously committed transactions by TXp, where

∀t∈TXp (write-set(t) ∩ read-set(tj) 6= φ) OR (write-
set(t) ∩ write-set(tj) 6= φ). All transactions in TXp have
event records in LA at the time of tj’s commit.

The property asserts that prior to transaction tj ’s commit,
DCA accumulates the history of all previously committed
transactions with at least one object x in their write-set
that is also in tj ’s read- or write-sets.

Property 2. The set of committed transactions, TXc,
that were concurrent at any point in time satisfies the fol-
lowing:

∀tj 6=ti∈TXc (write-set(tj) ∩ read-set(ti) = write-set(tj)
∩ write-set(ti) = φ).

This property states that concurrent transactions can com-
mit only if they have disjoint object sets. Now, we will
consider each edge type and prove our mapping:

Write-read edges. All transactions read from their local
storage. Consider the wr-edge (i, j). A transaction tj at dat-
acenter DCA contains version xv in its read-set. Property 2
indicates that ti and tj are not concurrent, thus ti commit-
ted before tj ’s commit request. Given Property 1 we also
know that all transactions that have key x in their write-sets
are in LA. This includes transaction ti that wrote the most
recent version, i.e., xv. Thus, the order Ec(ti) <s Ec(tj)
is guaranteed in LA and there is no transaction tm that
writes to x having an order Ec(ti) <s Ec(tm) <s Ec(tj).
Since the RLog maintains the order of the happens-before
relation, Ec(ti) <s Ec(tj) will hold for all RLogs.

Write-write edges. Consider two transactions, ti and tj ,
with a common object, x, in their write-sets. Consider an
edge (i, j) in SG. We infer from Property 2 that ti and tj are
not concurrent; ti committed before tj requests a commit.
Furthermore, Property 1 indicates that LA accumulated the
set of all previously committed transactions, TXp, that have
at least one common object in their write-sets with tj . Thus,
ti which wrote the most recent version of x before tj is nec-
essarily in TXp. Thus, the order Ec(ti) <s Ec(tj) is ensured
in LA and there is no transaction tm that writes to x with
the order Ec(ti) <s Ec(tm) <s Ec(tj). The order holds
for all RLogs due to the preservation of the happens-before
relation.

Read-write edges. Consider the case of three transac-
tions, ti, tj , and tk accessing an object x. Assume that tj
and ti request to commit at DCA and DCB respectively.
Assume there is a ww-edge from tk to tj and a wr-edge from
tk to ti, then there should be a rw-edge from ti to tj . We
need to prove the mapping of those transactions to an or-
der Ec(tk) <s Ec(ti) <s Ec(tj). We already proved that
Ec(tk) <s Ec(ti) and Ec(tk) <s Ec(tj). We now need to
only prove that Ec(ti) <s Ec(tj). Suppose to the contrary
that Ec(tj) <s Ec(ti). This is only possible if Ec(tj) was
already in LB when ti commits. There are three cases of

O V I S
C 21 86 159 173
O - 101 169 205
V - - 99 260
I - - - 341

Table 1: RTT latencies between different datacenters in mil-
liseconds.

possible times for tj ’s reception at DCB : (1) Ec(tj) was in
LB before ti requested to commit. This case is not possi-
ble, since MF compares the read versions against the ones in
storage, and having Ec(tj) in LB necessarily means that tj ’s
write-set was incorporated in DCB . (2) Ec(tj) was added to
LB while ti was a pending transaction in PTB . This is also
not possible because all pending transactions are checked
for conflicts with any externally received transaction. So,
when Ec(tj) was first received at DCB , transaction ti would
have been aborted. (3) Ec(tj) arrived at DCB after ti com-
mits. However, when ti commits, the entry Ec(ti) is added
to LB . Thus, Ec(tj) is necessarily added after Ec(ti), hence
Ec(ti) <s Ec(tj). A contradiction is observed for all cases.
Having no transaction tm that writes to x with an order
Ec(ti) <s Ec(tm) <s Ec(tj) follows from our proof of ww-
edges.

The following theorem shows that our mapping is sufficient
to prove one-copy serializability.

Theorem 1. MF ensures one-copy serializability.

Proof: MF guarantees the mapping of SG edges, (i, j), to
an order Ec(ti) <s Ec(tj) in RLogs as we showed above. The
order of events in RLogs guarantees the happens-before rela-
tion between events. The Happens-before relation is acyclic.
Since in SG, there is an edge from ti to tj only if Ec(ti) <s

Ec(tj), a cycle in SG will amount to a violation of the
happens-before relation exhibited in RLogs. Thus, SG is
acyclic, hence MF is one-copy serializable. �

4. EXPERIMENTAL EVALUATION
We performed an evaluation of MF on Amazon EC2. The
results are compared with a Paxos-based log replication pro-
tocol and an optimized version of it, called Paxos-CP [16].
Our implementation of the Paxos-based log replication pro-
tocol is based on megastore [1] and we refer to it as the Paxos
commit protocol (or simply Paxos) in the rest of the paper.
Paxos-CP is a variant of the Paxos commit protocol that
allows more concurrency via promotion and combination.
We use machines in five EC2 datacenters: California (C),
Oregon (O), Virginia (V), Ireland (I), and Singapore (S).
RTT latencies across datacenters are shown in Table 1. Each
datacenter runs an instance of MF. We run experiments on
combinations of those datacenters. A combination is repre-
sented by a grouping of the initials of the used datacenters;
experiment CI for example is a scenario of two replicas: one
in California and the other in Ireland. HBase [10] is used as
the underlying key-value store. Yahoo! cloud serving bench-
mark (YCSB) [3] is leveraged to evaluate the system. Since
YCSB does not support transactions, an extended version
of YCSB is used to support transactions and transactional
workloads [6].

 0
 50

 100
 150
 200
 250
 300
 350

CO COV COVI COVIS

C
om

m
it

la
te

nc
y

(m
s)

Datacenters

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

CO COV COVI COVIS

C
om

m
it

la
te

nc
y

(m
s)

Datacenters

MF
Paxos

Paxos-cp

(a) Average commit latency.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

CO COV COVI COVIS

N
um

be
r

of
 c

om
m

its

Datacenters

MF
Paxos

paxos-cp

(b) Number of successful transaction commits.

Figure 2: Transactions average commit latency and number
of commits for scenarios with different numbers of datacen-
ters.

Our experiments focus on measuring the commit latency and
the amount of concurrency in the system. Our results show
that MF commits transactions, of a datacenter i, quickly
with a latency close to RTT i

max, where RTT i
max is the max-

imum RTT experienced by datacenter i and any other dat-
acenter in the scenario. We use the notion RTTmax to de-
note the maximum RTT i

max for all datacenters i. Other
experiments detail the behavior of MF while varying con-
tention, write skewness, and propagation intervals. Also,
we report the results of varying propagation intervals in a
selected datacenter and observe immediate transaction com-
mits for many cases. Thus, a low average commit latency is
demonstrated for the datacenter with the longer propagation
interval. Results are detailed next.

Message Futures performance. Our first set of exper-
iments consists of four scenarios, CO, COV , COV I, and
COV IS. We will report the average commit latencies and
the total number of commits. In this study we compare
MF’s results to those obtained from Paxos and Paxos-CP.
A relatively conservative workload is used for the compari-
son. This is due to Paxos and Paxos-CP’s inability to scale
for even such a conservative workload and to enable us to
observe the characteristics of MF in the normal case oper-

ation. The baseline workload employs five client threads in
each datacenter. The rate of requests is 10 transactions per
second for each datacenter; for five datacenters the overall
rate is 50 transactions per second. We run the experiments
for a total of 500 transactions in each datacenter. Each
transaction accesses 5 objects uniformly from a pool of 1000
keys. Operations are 50% reads and 50% writes. The inter-
val between two RLog transmissions is called the propagation
interval. Unless stated otherwise, the propagation interval
of any datacenter is set to 100ms, hence 10 RLogs are sent
per second.

The results of this experiment are shown in Figure 2. Aver-
age commit latencies are shown in Figure 2(a). The figure is
divided into two parts. The top part shows the whole range
of obtained results. To enable observing MF results more
closely, the lower part is a magnification of the range which
shows commit latencies lower than 360ms. To facilitate com-
paring with RTTmax, RTTmax values are plotted as horizon-
tal lines for all scenarios. Commit latencies for MF are close
to RTTmax and even below it for larger number of datacen-
ters. This is because a datacenter, DCi, achieves an aver-
age commit latency relative to the its RTT i

max value, which
is smaller than or equal to RTTmax. Also, more aborted
transactions yield lower average commit latency, since most
aborts in MF are immediate. MF performs considerably
better than Paxos and Paxos-CP, where the average com-
mit latency is more than 14 seconds for COV IS compared
to 246ms for MF. The number of commits experienced by
the system is affected by the increase in the number of data-
centers and transactions per second (Figure 2(b)). MF, how-
ever, manages to achieve an average number of 361 commits
in the worst case (COV IS), whereas Paxos and Paxos-CP
were only able to achieve an average number of 64 and 237
commits respectively in their best case (CO). Note that
MF’s commit ensures that the commit record is persistent
in at least one datacenter, whereas Paxos and Paxos-CP
ensures that the commit record is persistent in at least a
majority.

The commit latency depends on the issuing datacenter. As
we have shown, the commit latency is a function of RTT i

max.
However, RTT i

max values are different for datacenters in the
same scenario. From Table 1 for example note that RTTC

max

equals 173ms, where RTTS
max equals 341ms, almost double

the value of datacenter C. Thus, we expect the commit la-
tency of a datacenter to be different than other datacenters
according to its RTT i

max value. To illustrate this, results
clustered according to the issuing datacenter are shown in
Figure 3. Two sets of results are shown for different database
sizes, namely 500 and 2500 data objects. It is clear that dat-
acenters C, V , and O perform better than their counterparts
with higher RTT i

max values. In Figure 3(a), the results of
individual latencies show that C, V , and O achieve about
two thirds the latency of I and S for the case of 2500 data
objects. The effect is less apparent for the higher contention
case, i.e., where the number of data objects is 500. This is
due to the higher abort rate. Since most aborts are either
immediate or require much lower latency, they are not as
much affected by the wide-area communication latency. A
point to consider here is that I and S achieve commit la-
tencies that are close to their respective RTT i

max, whereas
C, V , and O are not. This is due the effect of our choice of

 0

 50

 100

 150

 200

 250

 300

 350

 400

C V O I S

A
ve

ra
ge

 c
om

m
it

la
te

nc
y

(m
s)

Datacenter

Latency (DB size=2500)
Latency (DB size=500)

(a) Latency for committed transactions.

 0

 100

 200

 300

 400

 500

C V O I S

nu
m

be
r

of
 c

om
m

its

datacenter

Number of commits (DB size=2500)
Number of commits (DB size=500)

(b) Number of successful transaction commits, out of 500
transactions.

Figure 3: Detailed performance of each datacenter in a
CVOIS scenario.

propagation latency which has a more visible effect for lower
RTT i

max values. It will be shown in a later experiment (Fig-
ure 6) how enforcing a lower propagation interval will make
the commit latency of datacenter C close to RTTC

max. The
number of commits, shown in Figure 3(b), do not show the
same variation and dependence on RTT i

max. The number of
commits are only slightly better for C and O for scenarios
with higher contention.

Contention effect. In the next set of experiments we
would like to study the effect of contention on the per-
formance of MF. This is tested by varying the size of the
database from 50 to 5000 data objects on a CV OIS scenario.
Figure 4 shows obtained results. Observe how the effect of
high contention is apparent for values smaller than 500 data
objects. The results then gradually converge to performance
results close to scenarios with no contention. For example,
the number of commits, as shown in Figure 4(b), increase by
7% when the number of data objects is increased from 2500
to 5000. This is at the cost of a 3% increase in commit la-
tency (Figure 4(a)). Two main observations are to be taken
from these results. First, the effect of increasing the num-
ber of data objects diminishes as the size of the database
increases. Second, there is a trade-off between commit la-

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 c
om

m
it

la
te

nc
y

(m
s)

Database number of data objects

Commit Latency (ms)

(a) Latency for committed transactions.

 0

 500

 1000

 1500

 2000

 2500

50 100 500 1000 2500 5000

nu
m

be
r

of
 c

om
m

its

Database number of data objects

Number of commits

(b) Number of successful transaction commits, out of 2500
transactions.

Figure 4: The effect of contention on Message Futures.

tency and number of commits with respect to the size of the
database. This is an important factor for deciding a suitable
granularity for a given database.

Write to read ratio. In all previous experiments an oper-
ation can be either a read or a write with equal probability.
While this can be considered as a workload with a high num-
ber of writes, it is necessary to investigate the behavior of
MF for different write to read ratios. The results for varying
the write to read ratio are shown in Figure 5 for a CV OIS

scenario. Two sets of experiments were performed with dif-
ferent database sizes, i.e., 500 and 2500 data objects. Com-
mit latency results, shown in Figure 5(a), demonstrate the
degrading effect of increasing write to read ratio. This ef-
fect is larger for scenarios with higher contention. Consider
going from a write to read ratio of 1:9 to 9:1. A degradation
of 16.6% is observed for a database with 2500 data objects
compared to a degradation of 37% for a database with 500
data objects. The number of commits experiences similar
behavior where a degradation of 15.5% is observed for a size
of 2500 compared to 46.8% for a size of 500 data objects.

Propagation interval effect. Now we study the effect of
the propagation interval on MF. To illustrate this effect, we
plot the Cumulative Distribution Function (CDF) of trans-

 0

 50

 100

 150

 200

 250

 300

 350

 400

1:9 3:7 5:5 7:3 9:1

A
ve

ra
ge

 c
om

m
it

la
te

nc
y

(m
s)

Write to read ratio

Average commit latency (DB size=2500)
Average commit latency (DB size=500)

(a) Latency for committed transactions.

 0

 500

 1000

 1500

 2000

 2500

 3000

1:9 3:7 5:5 7:3 9:1

nu
m

be
r

of
 c

om
m

its

Write to read ratio

Number of commits (DB size=2500)
Number of commits (DB size=500)

(b) Number of successful transaction commits, out of 2500
transactions.

Figure 5: The effect of Write-to-read ratio on Message Fu-
tures.

actions’ commit latencies for Datacenter C in a CV OIS sce-
nario for different propagation interval values. In Figure 6,
the propagation interval is increased from 10ms to 200ms.
Note that the propagation interval changed in this set of
experiments is for all datacenters, hence it is a global prop-
agation interval. Increasing the propagation interval causes
an increase in commit latencies. Furthermore, increasing the
global propagation interval causes the commit latency values
to be more variant. For example, with a global propagation
interval of 200ms, the bulk of commit latency values range
from 300 to 540ms, whereas a global propagation interval of
10ms causes the range of the bulk of commit latency values
to be from 170 to 250ms. The range of values of the latter
is almost one third of the former.

Performance prioritization In Section 3 we showed how
a transaction can immediately commit if the commit con-
dition is already satisfied. Commit latency and regions of
immediate commits highly depend on the dynamics of trans-
mitting and receiving RLogs. For example, immediate com-
mits will only occur when the commit condition with re-
spect to all other datacenters is satisfied. Smart scheduling
of RLog transmission will increase the duration of immedi-
ate commits. In the following experiment we use a fixed rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Commit latency (ms)

Prop. Int. = 10ms
Prop. Int = 50ms

Prop. Int. = 100ms
Prop. Int. = 200ms

Figure 6: Cumulative density function of commit latency of
500 transactions at datacenter C for four global values of
propagation intervals.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 c
om

m
it

la
te

nc
y

(m
s)

Propagation interval for datacenter C (ms)

Datacenter C
Average of datacenters V,O,I, and S

Figure 7: Transactions average commit latency while in-
creasing the propagation interval of datacenter C in a
CVOIS scenario.

scheduler with different rates to observe the effect of increas-
ing the propagation interval of one datacenter and how that
enables us to achieve higher performance results for it. In
this experiment, we report the results obtained for C and
compare it against the average of all other datacenters in
a COV IS scenario. Datacenters other than C have their
propagation interval fixed at 10ms in all runs to observe the
effect of C’s propagation interval in isolation. The results
are shown in Figure 7. As the propagation interval of C

increases, an improvement of C’s average latency is experi-
enced. This improvement is at the expense of an increase of
the average commit latency of all other datacenters. An im-
portant point to observe in C’s propagation interval values
is 500ms. C’s commit latency at this point is 75% less than
the run with a propagation interval of 50ms for C. Before
this point, the average of other datacenter increases slowly,
i.e., an increase of 65ms. However, after the 500ms point, al-
though C’s commit latency continue to decrease, this is at a
higher cost for other datacenters’ commit latencies. Observe
that compared to the point at 500ms, when C’s propagation
interval increases to 1000ms its average commit latency im-
proves by dropping another 74% of its latency to be 10ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Commit latency (ms)

C’s Prop. Int. = 50ms
C’s Prop. Int = 500ms

C’s Prop. Int. = 1000ms

Figure 8: Cumulative Distribution Function of commit la-
tencies of 500 transactions in datacenter C with different
propagation interval values.

whereas the average of other datacenters increase by 119%.
Changing the propagation interval does not show a clear ef-
fect on the number of commits for C; a number of commits
between 376 and 426 is maintained for all runs. The effect
on other datacenters is a slowly decreasing average number
of commits from 386 to 345 successful commits.

To study the effect of increasing the propagation interval of
one datacenter we performed another set of experiments to
observe the commit latency values of all transactions. This
will allow us to extract the number of transactions that
committed immediately and show how other transactions
behave. The experiments were performed on a CV OIS sce-
nario where C is the only datacenter issuing transactions.
Datacenters other than C transmit RLogs with a fixed in-
terval of 10ms. The results are shown in Figure 8. A CDF
of obtained commit latency values of scenarios with differ-
ent propagation intervals are plotted. Note how increasing
the propagation interval increases the amount of immedi-
ate commits. About 60% and 90% immediate commits are
recorded for a propagation interval of 500ms and 1000ms,
respectively. Also, note that transactions collectively per-
forms better as the propagation interval increases.

5. RELATED WORK
State of the art solutions vary significantly. In this section,
we summarize the literature of concurrency management for
multi-datacenter environments. Then, we attempt to de-
scribe MF’s approach in contrast to other work.

Two-Phase Commit (2PC), and other traditional protocols,
were not intended for geographically separated datacenters.
2PC requires a coordinator, introducing a single point of fail-
ure. Lock and release exchanges require at least two RTTs
for each transaction in addition to blocking other stores.

Paxos [13] is a consensus algorithm that could be leveraged
to implement concurrency control for multi-datacenters [1,
9, 11, 16]. Paxos takes at least two rounds of communica-
tion to reach consensus on a value, a prepare phase and an
acceptance phase. It is a majority algorithm, meaning that
it can reach consensus by coordinating with at least a ma-

jority of nodes. Gray and Lamport [9] propose using Paxos
to commit protocols in order to avoid the blocking problem
incurred in 2PC. Another way to use Paxos for concurrency
control is via log replication [1, 16]. In those protocols, par-
ticipants compete on writing to log positions. By reaching
consensus on every position in the log, correctness is main-
tained, since all participants agree on the transaction order.
MDCC [11] uses a variant of Paxos to atomically commit
transactions while providing replication at the same time.
Each record requires a Paxos round to be accepted. A record
is accepted if it did not introduce any conflicts. When all
records are accepted and learned, then the transaction is
considered committed. Paxos, though master-less, requires
at least two RTTs for transaction commits. Also, it cannot
handle highly concurrent scenarios as is, since transactions
contend even if they were not in conflict. Optimizations
were proposed to minimize latency by using a variant called
Fast Paxos [14]. In it, the master is bypassed, thus allowing
for collisions. Collisions require master intervention and re-
traction to classic Paxos, leading to poorer performance for
conflicting transactions.

A Transactional layer that sits over a replication layer was
also studied and implemented in large-scale systems [5, 7,
8]. Google Spanner [5] is a recently introduced global-scale
concurrency control manager used by Google. Data are
partitioned and each partition is replicated across datacen-
ters. Leaders are assigned to each partition. Transactions
read from the leader and read objects are locked. Transac-
tions commit by running 2PC on partition leaders. In this
paradigm, 2PC and Two-Phase Locking are used to achieve
concurrency control and Paxos is used to achieve replica con-
sistency. Scatter [8] is also another solution that uses 2PC
over Paxos in a fashion similar to Spanner. It is a key-value
store that uses Distributed Hash Tables.

Geo-replication of data stores was tackled by recent work [4,
15,17]. These systems sacrifice strong consistency for better
performance. Data stores are partitioned and each partition
is assigned a master. Thus, requests close to the master are
served without being affected by the large latency between
data centers. However, this approach is only effective if data
can be localized efficiently and requests access a restricted
partition. PNUTS [4] uses a reliable Pub/Sub message pass-
ing system to transmit updates asynchronously across data
centers. PNUTS, however, is a key-value data store and
does not support transactions. Walter [17] extends Snap-
shot Isolation to a variant called Parallel Snapshot Isolation
(PSI). PSI relaxes the snapshot read condition to be the last
committed version in the local data center rather than the
last committed version globally. Also, write-write conflicts
should not be concurrent in any single site. The final prop-
erty of PSI is the preservation of commit causality across
sites. COPS [15] delivers causal consistency with convergent
conflict handling, called causal+. Causal consistency is ob-
served by maintaining the causal dependency of operations
and ensuring that the propagation of operations from one
data center to the other follows the causal order in the local
data store. Calvin [18] is a recently proposed protocol for
distributed transactions that trades throughput for latency.
Global transaction ordering is achieved by ordering trans-
actions in batches. Unfortunately, this makes transactions
experience large commit latencies.

In our work we abstract a multi-datacenter environment as
a hierarchy of two levels. Those are the inter- and intra-
datacenter levels. There are two main characteristics that
differentiate those two levels: (1) coordination between nodes
are much more expensive across datacenters. (2) machine
failures are more frequent than datacenter outages. Ob-
serving those differences indicates that an inter-datacenter
concurrency manager should target minimizing the cost of
wide-area replication, whereas an intra-datacenter concur-
rency manager should target increasing fault-tolerance. The
paper focuses on the former target by proposing MF to be an
inter-datacenter concurrency manager. By abstracting each
datacenter as a single entity we minimize the required com-
munication and by designing with wide-area latency aware-
ness we minimize the cost of wide-area coordination. Tradi-
tional Paxos solutions do not provide such an abstraction,
thus increasing message complexity and inter-datacenter co-
ordination cost. Solutions with a transactional layer on top
of a replication layer increases the required wide-area mes-
saging. Systems that follow this paradigm require planned
machine placement to overcome the cost of wide-area mes-
saging, i.e., placing a majority of machines in close prox-
imity to each other. However, placing a majority in close
proximity will make the system vulnerable to natural disas-
ters. Furthermore, since the majority is at close proximity,
any client, no matter where it is, will be required to coor-
dinate with at least one of them. Our approach divides the
problem into two levels, where each level is transactional,
and replication is achieved by executing transactions at each
datacenter.

6. CONCLUSION
We proposed Message Futures, a geo-replicated concurrency
control manager for multi-datacenter environments. It ex-
hibits low commit latency of transactions, with latency close
to the RTT of the system. Proactive message passing of
state and transaction information enables datacenters to in-
fer enough information to commit transactions. RLogs are
incorporated in the MF design to increase fault tolerance
and leverage its conservation of the happens-before relation.
We demonstrated how our scheme can be used to prioritize
the performance of different datacenters. A datacenter with
a larger propagation interval experiences lower commit la-
tencies and the immediate commitment of transactions in
many cases. An evaluation on an inter-continental setting
was performed to demonstrate MF’s performance and vali-
date our claims.

7. ACKNOWLEDGMENTS
The authors would like to thank Aaron Elmore and Alex
Pucher for the initial discussions on the design, the anony-
mous reviewers, and Ken Salem for their insightful com-
ments. This work is partially supported by NSF Grant
1053594. Faisal Nawab is funded by a fellowship from King
Fahd University of Petroleum and Minerals. We Also would
like to thank Amazon for access to Amazon EC2.

8. REFERENCES
[1] Jason Baker, Chris Bond, James Corbett, J. J.

Furman, Andrey Khorlin, James Larson, Jean-Michel
Leon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. Megastore: Providing scalable, highly

available storage for interactive services. In CIDR,
pages 223–234, 2011.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[3] B.F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proc. 1st ACM Symp.
Cloud Computing, pages 143–154. ACM, 2010.

[4] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288,
August 2008.

[5] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
JJ Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s
globally-distributed database. To appear in
Proceedings of OSDI, page 1, 2012.

[6] Sudipto Das, Shoji Nishimura, Divyakant Agrawal,
and Amr El Abbadi. Albatross: lightweight elasticity
in shared storage databases for the cloud using live
data migration. Proc. VLDB Endow., 4(8):494–505,
May 2011.

[7] D.K. Gifford. Information storage in a decentralized
computer system. Dissertation Abstracts International
Part B: Science and Engineering[DISS. ABST. INT.
PT. B- SCI. & ENG.], 143, page 1981, 1981.

[8] L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in scatter. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 15–28. ACM,
2011.

[9] J. Gray and L. Lamport. Consensus on transaction
commit. ACM Transactions on Database Systems
(TODS), 31(1):133–160, 2006.

[10] HBase. http://hbase.apache.org, 2011. [Online; acc.
18-Jul-2011].

[11] Tim Kraska, Gene Pang, Michael J. Franklin, and
Samuel Madden. Mdcc: Multi-data center consistency.
CoRR, abs/1203.6049, 2012.

[12] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[13] Leslie Lamport. The part-time parliament. ACM
Trans. Comput. Syst., 16(2):133–169, May 1998.

[14] Leslie Lamport. Fast paxos. Distributed Computing,
19:79–103, 2006. 10.1007/s00446-006-0005-x.

[15] Wyatt Lloyd, Michael J. Freedman, Michael
Kaminsky, and David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area
storage with cops. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, New York, NY, USA, 2011.
ACM.

[16] Stacy Patterson, Aaron J. Elmore, Faisal Nawab,
Divyakant Agrawal, and Amr El Abbadi.
Serializability, not serial: Concurrency control and
availability in multi-datacenter datastores. PVLDB,
5(11):1459–1470, 2012.

[17] Yair Sovran, Russell Power, Marcos K. Aguilera, and
Jinyang Li. Transactional storage for geo-replicated
systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
’11, pages 385–400, New York, NY, USA, 2011. ACM.

[18] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[19] Gene T.J. Wuu and Arthur J. Bernstein. Efficient
solutions to the replicated log and dictionary
problems. In Proceedings of the third annual ACM
symposium on Principles of distributed computing,
PODC ’84, pages 233–242, New York, NY, USA, 1984.
ACM.

