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ABSTRACT
Modern web applications rely on databases for persistent storage,
but the strong separation between the application and the database
layer makes it difficult to satisfy end-to-end goals, such as perfor-
mance, reliability, and security. In this paper, we describe Sta-
tusQuo, a system that aims to address this problem by using pro-
gram analysis and program synthesis to enable the seamless move-
ment of functionality between the database and application layers.
It does so by taking the functionality that was originally written
as imperative code and translating it into relational queries that
execute in the database. In addition, it makes runtime decisions
about the optimal placement of computation, in order to reduce
data movement between the database and application server. In
this paper, we describe promising empirical results from the two
key technologies that make up StatusQuo, and highlight some open
research problems that will need to be addressed in order to achieve
the end-to-end vision.

1. INTRODUCTION
The relational database is the de facto persistent storage mech-

anism for web applications. Because of the way that most web
applications are developed, there is a separation between applica-
tion logic—typically written in a general purpose, imperative lan-
guage such as Java or Python—and data access logic—typically
expressed declaratively in SQL and embedded into the applica-
tion. The separation can be physical as well, as the application
and database logic are often run on separate servers.

The hard separation between the application and the database
makes development difficult and often results in applications that
lack the desired performance. For example, to achieve good per-
formance, both the compiler and query optimizer optimize parts of
the program, but they do not share information, so programmers
must manually reorganize their code to move computation and data
across the application/database boundary. In that respect, database
programmers define stored procedures that implement imperative
logic inside the database to reduce communication between the
database and application servers, or rewrite imperative logic into
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SQL queries to allow the query optimizer to efficiently join or
filter data sets. Handcrafting such optimizations can yield order-
of-magnitude performance improvements, but at the cost of code
complexity and readability. Worse, these optimizations can be brit-
tle. Relatively small changes in control flow or data sizes could
have unpredictable consequences and cause the optimizations to
hurt performance. As a result, such optimizations are effectively a
black art, as they require a developer to reason about the behavior
of the distributed implementation of the program.

Reliability and security are also affected by the logical separa-
tion between the database and application. For example, the co-
existence of application data structures and their persistent rela-
tional representations can make it difficult to reason about con-
sistency and therefore ensure the integrity of transactions. Secu-
rity, in turn, can be compromised by any inconsistency between
application-level authorization mechanisms and the corresponding
database-level access controls. The developer may have an end-to-
end security policy in mind, but its piecemeal implementation can
be complex and limiting.

There have been many efforts to create a programming envi-
ronment that unifies the database and application views of data
and removes the “impedance mismatch” arising from the logical
and physical separation between the two. This was a goal of the
object-oriented database (OODB) movement [5, 13], which has
seen a resurgence in recent years due to the widely used object-
relational mapping (ORM) frameworks such as Hibernate for Java
and Django for Python. Many modern database-backed applica-
tions are developed using these frameworks rather than embedded
SQL queries. ORM libraries aim to provide a unified, often imper-
ative, programming model where the developer can express both
the application logic and data accesses, much as object-oriented
databases provide constructs beyond standard SQL to allow devel-
opers to easily move data between the imperative application world
and the declarative database domain. ORM frameworks simplify
database application development by hiding the separation between
the application and the database, but in many cases make perfor-
mance problems worse. For instance, a straightforward translation
of operations on persistent objects into SQL queries can use the
database inefficiently, and programmers may implement relational
operations in imperative code due to a lack of understanding. All
of these lead to inefficient applications.

In contrast to ORMs and OODBs, we are developing a new pro-
gramming system, StatusQuo1, which takes a different approach.
We explicitly avoid forcing developers to use any one program-
ming style. Instead, we allow them to use the programming style—
imperative, declarative, or mixed—that most naturally and con-
1Because we preserve it.



cisely describes the intended computations. In addition, program-
mers are not required to think about how computation over data
will be mapped onto the physical machines. Instead, StatusQuo au-
tomatically decides where computation and data should be placed,
and optimizes the entire application by employing various program
and query optimization techniques. StatusQuo also adaptively al-
ters the placement of code and data in response to changes in the
environment in which the application runs, such as machine load.
Because StatusQuo sees the whole system with information col-
lected during execution time, it can do a better job of optimizing
performance and of enforcing other end-to-end properties of the
application, as compared to a system that only has partial program
information during compile time.

To do this, StatusQuo must be able to move data and computa-
tion between the application server and the database server, and
translate logic between the declarative and imperative program-
ming models. The translation is done transparently by the com-
piler and runtime system—without requiring the programmer to
rewrite their programs. This is made possible through techniques
for program analysis and transformation which ensure that pro-
grams continue to function correctly even as they are substantially
transformed. Our current StatusQuo prototype works for applica-
tions written in Java that access the database with embedded SQL
via the JDBC interface or the Hibernate ORM framework. How-
ever, we believe our approach should be applicable to other web
application programming environments, including Django, Rails,
and even higher-level environments such as Hadoop.

Key features of StatusQuo include:

• A novel program analysis that identifies blocks of impera-
tive logic that can be translated into relational expressions in
SQL. This transformation moves application logic closer to
the data and allows the database query optimizer to choose
the best implementation for the queries.

• A fine-grained program partitioning method to move impera-
tive logic into the database in the form of stored procedures.
This partitioning is generated to minimize data movement
within the system, and can be changed adaptively at runtime
based on server load.

The rest of this paper describes StatusQuo in more detail. We
begin with an overview of the architecture of StatusQuo in Sec. 2.
Our methods for automatically extracting SQL queries from Java
are sketched in Sec. 3. Sec. 4 discusses our implementation of auto-
matic program partitioning. Some future extensions are suggested
in Sec. 5, and related work is covered in Sec. 6. We conclude in
Sec. 7.

2. SYSTEM DESIGN
Figure 1 shows the design of StatusQuo, which consists of the

code transformer and runtime modules. Given the application source
code, StatusQuo first automatically instruments it and executes the
application on the servers for a short period of time (not shown in
the figure) to collect a workload profile that captures information
such as execution frequency for methods and loops. After that, the
code is passed to the SQL extractor component, which uses the
QBS (Query By Synthesis) algorithm to convert specific blocks of
imperative code into declarative form. Converting code into declar-
ative form gives the system flexibility regarding how and where to
implement the given functionality, and frees the developer from
making such choices during implementation.

After the conversion process, the source is given to the parti-
tioner. The partitioner uses the workload data to split the source
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Figure 1: StatusQuo system design

code into two programs: one to be executed on the database server
as stored procedures, and another to be executed on the applica-
tion server. The goal of partitioning is to reduce the amount of
data transferred and the number of round trips between the two
servers. For declarative code fragments, the partitioner may decide
to execute on the database as SQL queries or convert them into (po-
tentially optimized) imperative code. Another option would be to
directly execute the declarative code on the application server us-
ing a declarative runtime engine, as shown with the dotted lines in
Fig. 1. In addition to splitting program logic, the partitioner also
adds the necessary housekeeping code such as heap synchroniza-
tions in order to preserve the semantics of the application when it
is subsequently executed in a distributed manner. During compi-
lation, the partitioner initially generates several different partitions
under a range of load conditions, with the partitions differing in the
amount of program logic allocated to each server.

The initial partitions are then sent to the runtime module on each
server to execute. In the runtime, the controller component selects
a partition from the set of available partitions based on the current
server load. During program execution, the executors periodically
communicate with each other to transfer the control flow of the
program (called control transfers) and exchange heap data. Mean-
while, the monitoring component measures the load on the servers.
Should any of the servers exceed or otherwise deviate from the
workload that the current partition was designed for (e.g., caused by
other applications that are hosted on the same machine or changes
in workload), the executor informs the controller to dynamically
switch to another partition that is better suited to the new load. The
controller checks to see if such a partition exists in the partition
cache, and if not, it contacts the code transformer module to gen-
erate a new partition. If the workload has changed significantly,
the code transformer may collect new workload information before
generating a new partition.

We have implemented a prototype of the profiler, the code trans-
former that converts imperative code into SQL expressions, the par-
titioner, and the runtime modules of StatusQuo, which we describe



List<User> getRoleUser () {
List<User> listUsers = new ArrayList<User>();
List<User> users = ... /* Hibernate query */
List<Role> roles = ... /* Hibernate query */
for (int i = 0; i < users.size(); i++) {
for (int j = 0; j < roles.size(); j++) {
if (users.get(i).roleId == roles.get(j).roleId) {
User userok = users.get(i);
listUsers.add(userok);

}}}
return listUsers;
}

List<User> getRoleUser () {
List<User> listUsers = db.executeQuery(

"SELECT u
FROM users u, roles r
WHERE u.roleId == r.roleId
ORDER BY u.roleId, r.roleId");

return listUsers; }

Figure 2: (a) Real-world code example that implements join in
Java (top); (b) converted version using QBS (bottom)

in the next two sections. We plan to extend the system with the abil-
ity to generate new partitions during execution time as described
earlier.

3. CONVERTING JAVA TO SQL
As mentioned in Sec. 1, current frameworks do not allow cross-

system optimizations between the application and database, and de-
velopers need to commit at development time as to how and where
computation should take place. For example, the code shown in
Fig. 2(a) is abridged from a real-world open source application de-
veloped using Hibernate. The nested loops implement a join be-
tween two lists of persistent data. Had the operation been expressed
in SQL, it would have been executed in the database, where the
query optimizer could have chosen the most efficient way to com-
pute the join, but the fact that it was expressed as imperative code
forces it to run on the application server and puts the operation
outside the reach of the query optimizer. StatusQuo uses a technol-
ogy called QBS to extract relational queries from code like that in
Fig. 2(a). This allows functionality to be pushed to the database and
optimized by the query optimizer even if it was originally written
as imperative code.

The QBS algorithm [9] is part of the SQL extractor component in
StatusQuo. Given an imperative code fragment that uses persistent
data, the algorithm applies program analysis and synthesis tech-
nologies to try to extract a relational specification. For instance,
using the algorithm, the translator converts the code from Fig. 2(a)
into the SQL expression shown in Fig. 2(b). The challenge in trans-
lating Java code fragments into SQL expressions is to bridge the
semantic divide between imperative and declarative code, as dis-
cussed next.

3.1 QBS at a Glance
The first step in bridging the gap between the imperative code

and SQL is to isolate imperative code fragments that manipulate
lists of persistent data and contain no other side-effects. The code
identification is achieved by a preprocessing step that uses standard
program analysis techniques. The next step is to define a notation
that can represent SQL queries, but is also rich enough to describe
the intermediate values computed by the imperative code. Our no-
tation, called QIL, is similar to relational algebra, but uses ordered
lists rather than multisets. Using lists is necessary because ORM

listUsers = π(sort(σ(./ (users, roles,True), fσ), l), fπ)
where:

fσ := get(users, i).roleId = get(roles, j).roleId
fπ := projects all the fields from the User class
l := [users, roles]

listUsers =

{
expressions involving operators: σ, π, ./, sort
and operands: users, roles

}
Figure 3: (a) Specification found by QBS (top); (b) potential
QIL expressions for listUsers from Fig. 2(a) (bottom).

frameworks (and JDBC) expose persistent data using an ordered
list interface, so it is important to be able to reason about the order
of the rows in the computed relations in addition to their contents.

QBS uses a new approach based on software synthesis to infer
a QIL specification for the given imperative code. To illustrate the
idea, consider the code fragment from Fig. 2(a). The central ob-
servation behind the algorithm is that if someone were to annotate
this code with a QIL description of the contents of listUsers like
the one in Fig. 3(a), together with some QIL descriptions of the
intermediate values computed after every iteration of the loops, it
would be possible to use Hoare-style reasoning [17], a classical
verification technique for program specifications, to prove that the
annotations are indeed correct, and that the expression in Fig. 3(a)
indeed represents the value of listUsers at the end of the exe-
cution. The problem, of course, is that no such annotations are
present in the code. By making use of this observation, however,
we can now frame the problem as a search for annotations that can
be proven correct using Hoare-style reasoning. Once the annota-
tions are found, translating an expression like the one in Fig. 3(a)
into SQL is a purely syntactic process.

A naïve strategy for finding the QIL annotations is to search
over all possible QIL expressions and check them for validity using
Hoare-style reasoning. QBS improves upon this strategy by fol-
lowing a two-step process. In the first step, the algorithm analyzes
the structure of the input code fragment to come up with a tem-
plate for the annotations; for example, if the code involves a nested
loop, then the annotations are likely to involve a join operator, so
this operator is added to the template. By deriving this template
from the structure of the code, the algorithm significantly reduces
the space of candidate expressions that needs to be analyzed. In our
example, since objects are inserted into listUsers inside a nested
loop involving users and roles, the analysis determines that po-
tential QIL expressions for listUsers would involve those two
lists as opposed to others. Furthermore, the if statement inside the
loop leads the analysis to add selection (but not aggregation, for in-
stance) as a possible operator involved in the expression, as shown
in Fig. 3(b).

In the second step, the algorithm performs the search symbol-
ically; this means that instead of trying different expressions one
by one, the algorithm defines a set of equations whose solution will
lead to the correct expression. The technology for taking a template
and performing a symbolic search over all the possible ways to
complete the template is the basis for a great deal of recent research
in software synthesis. Our system uses this technology through an
off-the-shelf system called Sketch [28], which automatically per-
forms the symbolic search and produces the desired annotations.

3.2 Experimental Results
We have implemented a prototype of QBS in StatusQuo using the

Polyglot compiler framework [26]. The translator currently takes in
code fragments written in Java that uses the Hibernate ORM frame-
work, and attempts to convert the input into a SQL expression.



Wilos (project management application)
operation type # benchmarks # translated by QBS
projection 1 0
selection 12 4
join 7 7
aggregation 12 10
total 32 21

itracker (bug tracking system)
operation type # benchmarks # translated by QBS
projection 3 2
selection 3 2
join 1 1
aggregation 9 7
total 16 12

Figure 4: QBS experiment results using real-world benchmarks

We tested the ability of QBS to transform real-world code frag-
ments. We scanned through 120k lines of open-source code written
in two applications: a project management application [3] with 62k
LOC, and a bug tracking system [2] with 61k LOC. Both applica-
tions are written in Java using Hibernate. We identified classes that
are mapped to persistent storage, and randomly selected code frag-
ments (such as Fig. 2(a)) that use such classes. This resulted in 49
benchmark code fragments in total. We passed each benchmark to
the QBS prototype, and Fig. 4 shows the number of fragments that
QBS was able to convert into relational equivalents. We broadly
categorize the code fragments according to the type of relational
operation that is performed.

The experiment shows that our prototype is able to recognize
and transform a variety of relational operations, including selec-
tions, joins, and aggregations such as finding max and min values,
sorting, and counting. The slowest transformation of any individual
benchmark took 5 minutes to complete, such as the one shown in
Fig. 2 as that involve join operations, and the average was around 3
minutes. The largest benchmarks involve around 30 lines of source
code, and the majority of the time was spent in the synthesis pro-
cess. Our current prototype only handles read-only persistent oper-
ations, and as a result cannot handle a few benchmarks. In addition,
QBS was unable to transform benchmarks that use type informa-
tion in program logic, such as storing polymorphic records in the
database and performing different operations based on the type of
records retrieved. Including type information in ordered relations
should allow QBS to process most of the benchmarks.

4. AUTOMATIC CODE PLACEMENT
In this section, we describe how StatusQuo takes a Java program

with embedded relational expressions (some of which may have
been generated by the SQL extractor) and splits it into a program
that runs as stored procedures on the database server and a modified
program that runs on the application server.

As noted in the introduction, the performance of database ap-
plications is closely coupled to the way queries are issued to the
database. Experts must learn to avoid common pitfalls like fetching
excessive data with broad queries or causing network delays by is-
suing many independent queries. Carefully crafted queries as well
as mechanisms like stored procedures help optimize performance,
but are difficult to maintain and complicate the application’s de-
sign. Furthermore, these solutions may not perform well under all
workloads and could require refactoring as workloads evolve.

Instead, our goal is to allow developers to write code without
having to think about its distributed implementation. Therefore
StatusQuo must seamlessly and adaptively move code between the
application and database servers. StatusQuo achieves this by con-
verting the original program into a distributed one to be executed

realCost = itemCost;
if (discount < 1.0)
realCost = itemCost * discount;

insertNewLineItem(realCost);

Figure 5: An example code fragment
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Figure 6: Dependency graph

on the two servers using a distributed heap. This automatic parti-
tioning allows developers to think about database applications at a
higher level of abstraction, but it creates three challenges:

Code placement. StatusQuo automatically decides whether each
statement in the program should be executed on the app server
or the database server. This code placement partitions the origi-
nal application code into two distributed programs that communi-
cate when control is transferred from one side to the other. Be-
cause these control transfers introduce network latency, they must
be placed carefully to avoid unnecessary delays.

Data synchronization. The imperative code running on each server
should have the same, consistent view of the program heap. For
example, if the code that is moved to the database updates a heap
location, any code that accesses the modified location later on at
the application server must see the update.

Simple strategies for keeping the application and database heaps
synchronized incur unacceptable performance penalties. Eagerly
synchronizing the entire heap after every update would lead to very
high data transfer overhead. Conversely, querying the other server
for possible updates to each location only at the time it is used
would introduce intolerable communication delays.

Adaptive partitioning. Dynamic metrics like the number of times
a statement executes or the size of a data structure are very use-
ful for deciding where to place code. Unfortunately, these prop-
erties change over time—even within the same day—meaning that
for many workloads, a single optimal placement doesn’t exist. For
good performance, the partitioning of code in StatusQuo must adapt
dynamically to the current workload.

4.1 Approach
StatusQuo employs the approach taken in Pyxis [8], which ad-

dresses the above challenges with a combination of static and dy-
namic program analysis. The system works in the following way.
First, the internal dependencies of the application are analyzed us-
ing a series of static analyses that leverage an inter-procedural pointer
analysis. These dependencies are used to build a partition graph
that precisely captures the dependencies between statements with-
out introducing unnecessary dependencies.

The partition graph extends the well-known dependency graph
data structure [15] with cost information that guides the partition-
ing process. Like a dependence graph, the partition graph has a
node for each statement and edges representing data and control
dependencies. Figure 5 shows an example code fragment; its cor-
responding dependency graph is shown in Fig. 6. The data edges
in the graph show that the value of the variable realCost could be
determined by either of the two assignments.

Edges in the partition graph have weights that represent an es-



timate of the latency that will be incurred if the source and target
statements are assigned to different hosts. Nodes also have weights
that represent a statement’s contribution to CPU load. Frequently
executed statements have higher weights. Edge and node weights
are set using the metrics collected through dynamic profiling either
beforehand (as in Pyxis) or at runtime.

The weighted partition graph functions as a cost model for po-
tential partitions. Given a placement of statements onto network
hosts, a partition can be thought of as cutting all the graph edges
connecting statements on different hosts. The sum of the weight
of the cut edges is then a measure of the expected latency due to
network messages. StatusQuo finds an optimal placement for pro-
gram statements by encoding the partition graph as an integer pro-
gramming (IP) problem. An IP solver attempts to find a placement
that minimizes the sum of weights of the cut edges but does not ex-
ceed a budget constraining the increased CPU load on the database,
and multiple partitionings can be generated by assuming different
amount of CPU resources that are available on the database server.

When a solution is found, StatusQuo generates two programs
that implement the original application, one to be run on the ap-
plication server and one on the database server. Statements are
grouped into execution blocks that share the same placement and
control dependencies. The exit points in each execution block spec-
ify a local or remote block where the computation proceeds. For
instance, say the call to insertNewLineItem in Fig. 5 is placed
on the database while the other statements remain at the applica-
tion server. Then, when control is transferred from the application
server to the database, the current value of realCost will be trans-
ferred as well, ensuring that the call’s parameter is up-to-date.

4.2 Runtime Support
The programs that are generated by the StatusQuo partitioner are

compiled and then executed by the StatusQuo runtimes on the two
servers. During execution, program control is transferred between
the two runtimes as needed. As mentioned, the two programs exe-
cute on a distributed heap that is maintained by the runtimes. Dur-
ing compilation, the partitioner automatically inserts heap sync in-
structions in the code to indicate the program variables whose val-
ues need to be forwarded to the remote runtime. However, rather
than forwarding the values immediately when such heap sync in-
structions are encountered during execution, the runtime instead
records such values and forwards them in a batch when the next
control transfer occurs. Batching the heap updates reduces the
amount of communication between the two servers and decreases
application latency.

StatusQuo adapts to changing workloads using runtime monitor-
ing to select a partition dynamically. As mentioned in Sec. 4.1,
several partitions are created by assuming different CPU load bud-
gets on the database server. At runtime, the system monitors load
on the database server and selects a partition that best utilizes the
database’s CPU without overloading it. Our implementation gen-
erates a number of partitions ahead of time. A future extension is
to generate the partitions dynamically and perform code swapping
on the fly.

4.3 Experimental Results
We tested our implementation on common benchmarks such as

TPC-C and TPC-W. We created two program partitions—one using
a low CPU budget and one using a high CPU budget. We compared
the generated programs to a traditional client-side implementation
as well as a version with manually created stored procedures.

Our experiments showed that StatusQuo-generated programs are
competitive with manually created implementations under a range

of performance profiles. Figure 7(a) shows the results of an ex-
periment in which a high-budget program partition in run when
the database has extra CPU resources. The high-budget program
had similar performance to the manually created stored procedure
implementation. Since more code could be placed on the server, la-
tency was low and CPU utilization at the database was higher. The
low-budget case is shown in Fig. 7(b). Here, a low-budget parti-
tion was run against a database server with a high CPU load. The
StatusQuo-generated program is similar to the client-side imple-
mentation, where all application logic, except for database queries,
is placed on the application server. Latency was higher, but less
load was placed on the database, and as a result a higher through-
put was achieved as compared with the stored procedure version.

When CPU load on the database server changes dynamically,
however, neither the client-side nor the stored-procedure imple-
mentation perform adequately. Figure 7(c) shows an experiment
where the load on the server starts out low, but increases signif-
icantly after three minutes as artificial load is introduced on the
database server. Although the manually created stored procedures
perform well initially, after the load increases, the database server’s
CPU becomes saturated and latency increases. In contrast, the Sta-
tusQuo runtime monitors the load at the server and switches to the
lower-budget partition when the load exceeds a threshold.

In general, many different performance profiles may exist for an
application. By automatically creating program partitions tuned for
each profile, StatusQuo enhances the performance and scalability
of database applications without increasing development complex-
ity. More details about our experimental setup can be found in [8].

5. FUTURE WORK
We have shown how program analysis and synthesis techniques

can be used to migrate from imperative code to declarative queries,
and move code from the application to the database. However,
more can be done to seamlessly integrate computation and data
across application and database servers.

5.1 Flexible Data Placement
The techniques discussed thus far allow data and computation

to be pushed from the app server into the database server, either
as queries or as imperative code. This can help move computa-
tion closer to the data it uses. However, with some workloads, the
best performance may be obtained by moving code and data in the
other direction. For example, if the database server is under heavy
load, it may be better to move computation to the application server.
Data needed by this computation can be forwarded by the database
server and cached at the app server.

Although web caches such as Memcached have similar goals,
they are generic object stores that require manual customization to
implement application-specific caching policies. By contrast, pro-
gram analysis and transformation techniques like those described
in previous sections should make it possible to automatically and
adaptively migrate database operations and associated data to the
application server, exploiting application semantics to implement
an application-specific cache in which cached data is automatically
synchronized during program execution. Techniques from data-
shipping distributed object stores such as Thor [21] and Fabric [22]
are likely to be useful, but challenges remain. First, work is needed
on partitioning declarative queries and on optimizing the part of
such partitioned queries that is moved to the app server. Since
declarative queries do not have side effects, the partitioning prob-
lem, at least, is easier than with imperative code. Second, since app
and database servers have different recovery models, it is difficult to
move computation automatically while seamlessly preserving con-
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Figure 7: TPC-C experiment results on 16-core database server

sistency guarantees. However, we believe that program analysis
can be used to automatically identify exception-triggered impera-
tive recovery code and to integrate its actions with transactional
rollback mechanisms.

5.2 Multiple App Servers and Back Ends
Applications that access multiple back-end database servers al-

ready exist and seem likely to become more common with the di-
versity of available data storage platforms and an increasing de-
mand for data integration. Additionally, applications can be sup-
ported by multiple communicating app servers. While the work on
StatusQuo has thus far been in the context of a single app server
connecting to a single back-end database, the general approach ap-
pears to extend to these more complex systems, facilitating opti-
mization of programs across many diverse systems. Programming
such systems in the higher-level way that we describe here poses
interesting problems in how to express and constrain concurrency
both among the app servers and among the back-end databases.

5.3 Information Security
To protect the confidentiality and integrity of persistent informa-

tion, databases are equipped with access controls that mediate how
applications may read and write information. This functionality
can be useful when different applications share the same database
as a way of exposing information in a limited way to applications
that are not fully trusted to enforce security, or simply as a way to
implement the principle of least privilege.

Many applications also rely on mechanisms to restrict access to
data to various users or groups (for example, [1, 27]). The mis-
match between these mechanisms and database access controls al-
ready makes security enforcement awkward and error-prone. Since
StatusQuo views database applications as a unified system, there is
an opportunity to offer a clear and consistent security model.

The challenge is how to state and enforce information security
policies in a system in which code and data placement is not fixed
and even adapts dynamically. If code is moved into the database
server, its accesses must be checked as if they were made by the
application. Dynamically generated code and queries, commonly
used by modern web applications, may need to be restricted even
further. Moving code and data in the other direction, as discussed
in Sec. 5.1, is even more problematic. Data must not be moved to
an application server that is not trusted to enforce its confidentiality.
Conversely, updates caused by transactions partitioned between the
application and database may need to be controlled to prevent an
untrustworthy application server from corrupting written data.

A common problem underlies all these difficulties: access con-

trol mechanisms are fundamentally not compositional. They do not
permit code to be moved and decomposed freely while enforcing
the same security guarantees. However, information flow controls
do offer a compositional way to state and enforce information se-
curity requirements, and recent work has explored compositional
information flow controls on persistent data in a distributed sys-
tem [22, 10, 7]. In particular, the approach taken in the Fabric
system might be applicable to StatusQuo. Fabric supports secure
computation over persistent data at both application server and per-
sistent stores; it checks whether the (manual) partitioning of code
and data protects confidentiality and integrity. (Fabric does not,
however, support declarative queries or automatic partitioning.)

6. RELATED WORK
ORM libraries are not the only means for database application

development. Database applications are traditionally developed us-
ing interfaces such as JDBC that are provided by the application
language runtime. In recent years, there has been work on query
integrated languages such as LINQ [24], along with systems that
introduce new programming constructs into application program-
ming languages for accessing persistent data, such as JReq [20]
and Links [12]. Unfortunately, these systems still require develop-
ers to learn new programming models for accessing persistent data.
StatusQuo is the first proposal we know of that presents a holistic
vision from initial application development to final deployment and
maintenance, and proposes to do so without requiring the develop-
ers to learn new programming models or deploy their applications
on custom database or runtime systems.

QBS [9] is inspired by earlier work on query extraction [29].
The idea in the earlier work is to first infer the persistent data ac-
cess paths in the code and record any branch conditions incurred
along the way, and then convert the data access paths into SQL
queries with the branch conditions as selection predicates. It is not
clear how this approach can be extended to handle joins and ag-
gregates, as joins require combining multiple data access paths and
aggregates often involve loop-carried dependencies [4]. In the lat-
ter case the value of the aggregate is modified inside a loop, and
query inference will need to reason about the relationship between
modified value and the lists that contain persistent data. QBS sub-
stantially extends previous work and demonstrates applicability to
real-world applications by being able to process joins and aggre-
gates, and StatusQuo makes use of the QBS algorithm as a building
block of the end-to-end system.

Toolkits like the Google Web Toolkit (GWT) [16], Volta [23],
and Fabric [22] aim to make manual program partitioning easier by
abstracting away details of distributed computation like network



communication and asynchronous execution. These techniques are
distinct from automatic program partitioning; they still require the
programmer to specify code placements explicitly.

Pyxis is the first system that automatically partitions database
applications written in general-purpose languages between applica-
tion and database servers. Other systems such as Hilda [30], Wish-
bone [25], DryadLINQ [19], and MapReduce [14] implement re-
lational operator placement optimizations across multiple servers,
but require developers to express program logic in custom program-
ming models and do not consider the amount of data transferred
between servers.

Program partitioning has been studied previously in the program-
ming languages community, in systems such as Swift [11], Chrome
[6], and Coign [18]. Prior systems focus on different aspects such
as offloading computation to back-end servers or security, and do
not consider network latency between servers or data transfer size.
Furthermore, Pyxis partitions source code in a fine-grained man-
ner, whereas most prior work partitions code at method and class
boundaries.

7. CONCLUSIONS
StatusQuo is a novel end-to-end solution that aims to ease database

application development. We described two key technologies of
the system, QBS and Pyxis, that enable automatic transformation,
deployment, and adaptive maintenance of database applications for
optimal performance. We demonstrated the feasibility of StatusQuo
on different real-world applications, and outlined some future chal-
lenges in extending the system, such as optimizing for multiple
back ends and ensuring end-to-end system security.
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