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ABSTRACT
In recent years, a new breed of non-uniform memory access
(NUMA) systems has emerged: multi-socket servers of multi-
cores. This paper makes the case that data management sys-
tems need to employ designs that take into consideration the
characteristics of modern NUMA hardware. To prove our
point, we focus on a primitive that is used as the building
block of numerous data management operations: data shuf-
fling. We perform a comparison of different data shuffling
algorithms and show that a näıve data shuffling algorithm
can be up to 3× slower than the highest performing, NUMA-
aware one. To achieve the highest performance, we employ
a combination of thread binding, NUMA-aware thread allo-
cation, and relaxed global coordination among threads. The
importance of such NUMA-aware algorithm designs will only
increase, as future server systems are expected to feature
ever larger numbers of sockets and increasingly complicated
memory subsystems.

1. INTRODUCTION
The last decade has seen the end of clock-frequency scal-

ing, and the emergence of multi-core processors as the pri-
mary way to improve processor performance. In response,
there have been concerted efforts to develop data manage-
ment systems that exploit multi-core parallelism.
Another equally important trend is towards multi-socket

systems with non-uniform memory access (NUMA) mem-
ory architectures. Each socket in a NUMA system has its
own ‘local’ memory (DRAM) and is connected to the other
sockets and, hence to their memory, via one or more links.
Access latency and bandwidth therefore varies depending
on whether a core in a socket is accessing ‘local’ or ‘remote’
memory. To get good performance on a NUMA system, one
must understand the topology of the interconnect between
sockets and memories and accordingly align the algorithm’s
data structures and communication patterns.
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There is no standard NUMA system: the server market
has a smög̊asbord of different configurations with varying
numbers of sockets, cores per socket, memory DIMMs per
socket, and interconnect topologies. For example, focusing
only on Intel, server configurations range from one to eight
sockets, each socket having four to ten cores and anywhere
from a single 2GB DIMM to sixty-four 32GB DIMMs and
vastly varying inter-processor interconnect (“QPI”, in Intel’s
terminology) topologies. Figure 1 shows the configuration
of 4 different Intel servers we have in our lab: a 2-socket,
two 4-socket systems, and an 8-socket system. The config-
urations also change quite a bit from one generation to the
next.

Primitives: DBMS servers need to perform well across
this hardware spectrum, but it would be impossible to main-
tain a distinct implementation of the core operations of a
DBMS for each machine configuration as they are complex
and consist of millions of lines of code. So we argue that
DBMS software should isolate performance-critical primi-
tives: smaller, isolated modules that can be heavily tuned
for a hardware configuration, and whose specification is sim-
ple enough that they can be provided as libraries by hard-
ware developers (a good analogy here are the Basic Linear
Algebra Subprograms, or BLAS, linear algebra primitives
used heavily in scientific computing [17]).

In this paper, we study data shuffling as an exemplary
data management primitive. We define data shuffling broadly
as threads exchanging roughly equal-sized pieces of data
among themselves. Specifically, we assume each of the N
threads has initially partitioned its data, that reside on its
local memory, into N pieces. The goal is to transmit the ith
partition from each thread onto the ith thread, for all i.

Shuffling is needed in many data management operations.
The most famous example, of course, is Map-Reduce, in
which mapper tasks shuffle data to reducer tasks [8] . Shuf-
fle also appears naturally in parallel joins, aggregation, and
sorts [3, 9, 11] .

There has been much recent research on multi-core-friendly
join, sort, etc., but comparatively less attention on the NUMA
aspects of these algorithms. We find that NUMA awareness
is particularly important for shuffling. In this paper, we an-
alyze the behavior of shuffling on different NUMA machines,
show that a straightforward implementation significantly un-
derutilizes some parts of the inter-processor interconnect,
and present a hardware-tuned shuffle implementation that is
up to 3 times more efficient. We also quantify the potential
of thread and state migration instead of data shuffling as
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Figure 1: Interconnect topologies for four Intel servers. Blue bars represent memory DIMMs, orange blocks
are processors, and pipes are data interconnects. See Section 2 for details.

another approach that achieves equivalent results (multiple
threads access data that are provided by other threads).
The contributions of this paper are three-fold:

• We demonstrate the importance of revising database al-
gorithms to take into consideration the non-uniform mem-
ory access (NUMA) characteristics of multi-socket systems
having multiple cores.

• We focus on shuffling, a primitive that is used in a vari-
ety of important data management algorithms. We show
that a näıve algorithm can be up to 3 times slower than
a NUMA-aware one that exploits thread binding, NUMA-
aware memory allocation, and thread coordination. This
optimized data shuffling primitive can speed up a state-of-
the-art join algorithm by 8%.

• We show the potential of thread migration instead of data
shuffling for highly asymmetric hardware configurations.
In particular, we show that if the working state of threads
is not large, migrating a thread (moving the computation
to the data) can be up to 2× faster than data shuffling
(moving the data to the computation). We show that
thread migration can speed up parallel aggregation algo-
rithms by up to 25%.

The rest of the document is structured as follows. Section 2
discusses the new breed of NUMA systems. The problem
of data shuffling in NUMA environments is described in
Section 3. Section 4 presents a performance comparison of
various data shuffling algorithms. We discuss related work
in Section 5 and our conclusions in Section 6.

2. NUMA: HARDWARE & OS SUPPORT
Even the most cost-effective database servers today con-

sist of more than one processor socket (e.g., two sockets
for the Facebook Open Compute Platform [21]). Today’s
commercial mid-range and enterprise class servers may con-
tain up to eight processor sockets. Moreover, each socket
accommodates up to ten CPU cores, along with several
memory DIMM modules that are attached to the socket
through different memory channels. An interconnect net-
work among the sockets allows each core to access non-local
memory and maintains the coherency of all caches and mem-
ories. Figure 1 shows different configurations for Intel-based
servers. Though NUMA architectures have been around for
more than two decades, today’s multi-socket processors and
point-to-point interconnect networks (as opposed to shared
buses) make designing high-bandwidth, low-latency solutions
more challenging than ever before. Threads running on dif-
ferent cores but within the same socket have (near-) uni-
form memory access, whereas access to off-socket memory is
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Figure 2: Data access pattern in a 4-socket configu-
ration with 4 QPI links.

slower due to the latencies incurred by the interconnect net-
work. Contention caused by other traffic on the interconnect
can further increase latencies of remote accesses.

Example: 4-socket system with 4 QPI links.Consider
the 4-Socket (b) configuration shown in Figure 1. This
topology is used in a fully populated IBM X Series x3850 X5
system. It contains four 8-core Nehalem-EX X7560 pro-
cessors that are fully connected through six bi-directional
3.2GHz Intel QuickPath Interconnect (QPI) links.

For illustration purposes, we disconnect two QPI links by
removing the two QPI wrapper cards, thus obtaining the 4-
link interconnect depicted in Figure 2. Using socket-local
and socket-remote memory read accesses, we create four
different data flows shown in the figure. Table 1 lists the
measured bandwidth and latency for each flow. Our mea-
surements show that we need at least 12 reader threads per
socket or QPI link to achieve maximum bandwidth. Flow
1 corresponds to a read of the local memory of Socket 0.
The maximum aggregate bandwidth on one socket for this
flow was measured to be 24.7 GB/s using 12 threads and a
sequential read pattern. The latency for data-dependent ran-
dom access 1 is 340 CPU cycles (≈ 150 ns). 2 Adding a hop

1 In a data-dependent access pattern, the memory location
referenced next will be determined by the content of the
memory location that is currently being accessed.

2 The latency numbers are given for data-dependent ran-
dom accesses, where the first word of a cache line is used
to determine the next read location. The latency increases
by 5 cycles if the last word of a cache line is used instead.



over one single QPI link (flow 2 ) decreases the bandwidth
to 10.9 GB/s, which corresponds to the uni-directional band-
width of a single QPI link, and increases the random-access
latency by 80 CPU cycles (≈ 35 ns). A second hop (flow 3 )
adds another 100 CPU cycles (≈ 45 ns) to the random ac-
cess latency. For data-independent accesses, these latencies
can be hidden through pipelining. Hence, adding a second
hop does not further affect the sequential bandwidth.
Cross traffic can lead to contention on the interconnect

links, which lowers the sequential bandwidth for a thread
and increases the access latency. For example, when running
flow 3 concurrently with flow 4 , the aggregate bandwidth
of the 12 reader threads on flow 3 drops to 5.3 GB/s and
the median of the random access latency increases by 10
CPU cycles (≈ 4.4 ns).
In a micro-benchmark in which 12 threads on each socket

simultaneously access data on all three remote sockets (4
threads per remote socket, and hence per QPI link), we
measure an aggregate bandwidth of 61GB/s. The aggregate
bandwidth would be 99GB/s if all threads accessed socket-
local memory. Hence, the measured interconnect bandwidth
corresponds to 60% of the socket-local bandwidth. The
Nehalem-EX architecture measured in this example imple-
ments a Source-based Snooping protocol [13, page 20] to
maintain coherency. These snooping messages (and replies)
are exchanged on the interconnect even when all threads ac-
cess socket-local memory. Therefore, even socket-local mem-
ory access can affect the traffic on the interconnect.
This simple performance evaluation shows that just assign-

ing threads to cores and exploiting socket locality in mem-
ory accesses is insufficient. If the data accesses are carefully
orchestrated, performance can be improved by reducing con-
tention on the interconnect. These NUMA effects have to be
considered, particularly for latency-critical applications such
as transaction processing, as shown in [24] . Systems such

as DORA [22] avoid uncoordinated data accesses common
in OLTP systems by binding threads (cores) to data.

Operating systems are aware of NUMA architectures. Linux
partitions memory into NUMA zones, one for each socket.
For each NUMA zone, the kernel maintains separate man-
agement data structures. Unless explicitly bound to a spec-
ified socket (NUMA zone) through the mbind() system call,
the Linux kernel allocates memory on the socket of the core
that executes the current thread. More precisely, the allo-
cation to the NUMA zone will only happen after the first
write access to the memory, which then causes a page fault.
The kernel tries to satisfy the memory allocation from the
current zone. If there is not enough memory available in
that zone, the kernel allocates memory from the next zone
with memory available.

The operating system scheduler tries to minimize thread
migration to other cores. Under certain conditions, such as
under-utilization of other cores, the scheduler may decide
to migrate a thread to a core in another zone. The kernel
does not automatically migrate the associated memory pages
along with the thread. Instead, Page Migration can be per-
formed through the mbind() system call, either manually or
automatically by a user-space daemon process.

3. THE CASE OF SHUFFLING IN NUMA
Shuffling data among data partitions is a ubiquitous build-

ing block of most distributed data management operations.

Table 1: Bandwidth and Latency of a 4-socket
Nehalem-EX system with 4 QPI links

Bandwidth seq. Latency data-
memory access dependent random
(12 threads) accesses (1 thread)

local memory 24.7GB/s 340 cycles/access
access 1 (≈ 150 ns/access)

remote memory 10.9GB/s 420 cycles/access
1 hop 2 (≈ 185 ns/access)

remote memory 10.9GB/s 520 cycles/access
2 hops 3 (≈ 230 ns/access)

remote memory 5.3GB/s 530 cycles/access
2 hops 3 with (≈ 235 ns/access)
cross traffic 4

For example, in relational systems, partitioning-based join
and aggregation algorithms have a step in which each thread
in the system partitions data based on a global partitioning
function. Then either each producer thread needs to push
portions of the data to its corresponding consumer thread,
or each consumer needs to pull the data it needs on demand.
Obviously, data shuffling is a fundamental operation in the
MapReduce framework, as well.

In this paper, we focus on efficient data shuffling algo-
rithms for NUMA machines. In particular, the problem we
consider is the efficient transmission of data between threads
in a machine composed of multiple multi-core sockets that
are statically connected by links having finite but possibly
different bandwidths. Let S denote the number of sockets in
the machine and si denote the ith socket (0 ≤ i < S). Each
thread is bound to a core on a socket. Let si.pj denote the
jth thread running on socket si. Suppose that we have P
threads running on each socket, and thus we have a total of
N = SP threads. Thread si.pj produces some data, denoted
as si.dj , that needs to be consumed by the corresponding
thread. For every pair of thread si1.pj1 and data si2.dj2, in
a shuffle operation involving N threads (N = SP ), a data
transmission between si2 and si1 occurs when thread si1.pj1
accesses the data si2.pj2. Each transfer has a unique source
and destination buffers, which means that there is no need
for the threads to synchronize because they the do not mod-
ify any shared data structure. The goal is to minimize the
overall time of this procedure. Note that this data shuffling
problem is very similar to the data consumption problem, in
which all the cores of a machine need to consume a buffer of
data produced from all N cores of the machine. As a matter
of fact, we use this formulation of the problem for the rest
of the discussion and experimentation.

3.1 Naive vs. coordinated shuffling

3.1.1 Naive shuffling
The naive shuffling method does not consider the NUMA

characteristics of the machine. In the naive shuffling algo-
rithm, each thread pulls data generated by all other threads
starting from partition s0.d0 to sS−1.dP−1. This leads to an
implementation using two nested loops, as shown below:

1: for i← 0 . . . S − 1 do
2: for j ← 0 . . . P − 1 do
3: pull si.dj
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Figure 3: The uncoordinated, naive shuffling method (first three steps).
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Figure 4: The NUMA-aware, coordinated, ring shuffling method (first three steps).

However, this naive, uncoordinated method may cause
various bottlenecks. Either one of the QPI links or one of
the local memory controllers may become over-subscribed,
causing delays. It is difficult for a developer to predict such
delays, because they are dependent on the hardware charac-
teristics such as the interconnect topology.

Figure 3 illustrates the access pattern and QPI activity
of the naive shuffling method for a 4-socket, fully-connected
NUMA machine. In this example, suppose that we run 16
threads (4 threads / socket) for the naive shuffling method.
As it can be seen in Figure 3(a) , all threads pull data from
the same partition in each step. The QPI activity of the
naive shuffling method is shown in Figure 3(b). The data
is pulled from the memory banks attached to Socket 0, and
then is transmitted to the other three sockets through three
QPI links. Consequently, the naive method underutilizes
the available bandwidth: it only uses 1/4 of the available
memory channels and three of the twelve QPI links.

3.1.2 Coordinated shuffling
The coordinated shuffling method coordinates the usage

of the bandwidth of the QPI links across all threads in
the system. The basic idea behind the coordinated shuf-
fling method is illustrated in Figure 5. There are two rings
in the figure: the ring members of the inner ring repre-
sent partitions s0.d0, . . . , sS−1.dP−1, while the ring members
of the outer ring identify the threads s0.p0, . . . , sS−1.pP−1.
All data partitions are ordered in the inner ring first by
thread number on a socket and then by socket number, i.e.,
s0.d0, s1.d0, s2.d0, . . . , sS−1.d0, s0.d1, s1.d1, . . . In contrast, in
the outer ring, the threads are ordered first by socket num-
ber and then by thread number, i.e., s0.p0, s0.p1, s0.p2, . . . ,
s0.pP−1, s1.p0, s1.p1, . . .
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Figure 5: Ring shuffling, an example of a coordi-
nated data shuffling policy.

During the coordinated shuffling, the inner ring remains
fixed while the outer ring is rotating clockwise. At each step,
all threads access the partition they point to. For instance,
as shown in Figure 5, thread s0.p0 accesses the partition
s0.d0, thread s0.p1 accesses the partition s1.d0, and so forth.
Once the step is complete, all ring members of the outer ring
are rotated clockwise to the positions of their immediately
next ring members. The rotation continues until the outer
ring completes a full cycle.



We briefly explain why this coordinated method achieves
high bandwidth utilization on the NUMA machine. First, it
is straightforward that a given thread will have accessed all
partitions once the outer ring completes a full cycle. Second,
consider the segment in the outer ring that spans over all
threads in a given socket si, i.e., si.p0, . . . , si.pP−1. It is clear
that these partitions pointed to by the segment are always
evenly located on all sockets, because partitions on various
sockets are organized in an interleaved fashion. This means
that there are the same number of data transfers over all
links from other sockets to the socket si, i.e., all links have
up to ⌈P/S⌉ data transfers.
Given that during a shuffling operation, for a given QPI

link between socket si and socket sj , there is a total of
P × P = P 2 transmissions through the QPI link (each
of the P threads on sj transmits a data partition from
each of the P partitions on si). Since the shuffling oper-
ation runs in N = PS steps, each QPI link has at least
⌈

P2

/PS

⌉

= ⌈P/S⌉ transmissions in each step. If the machine
has a fully-connected topology, i.e., there is a QPI link for
each transmission path, the coordinated shuffling method
matches the lower bound on the number of transmissions.

Figure 4 illustrates the access pattern and resulting QPI
activity of the coordinated shuffling method. Unlike the
naive method, each partition is accessed by only one thread
at each step. The coordinated method uses all QPI links
as well as all memory channels in each step, as shown in
Figure 4(b). Consequently, the coordinated method increases
the utilization of the QPI bandwidth and provides higher
performance than the naive one. Note that for the coordi-
nated shuffling policy to perform as expected, the developer
needs to control on which socket each thread is running and
where the buffers are allocated. Furthermore, the developer
must know the interconnect topology of the machine; to
achieve the higher transmission bandwidth the interconnect
network should be fully connected or, at least, symmetric.

3.2 Shuffling vs. thread migration
An alternative method to data shuffling is thread migra-

tion, in which the process and its working set moves across
the sockets, rather than the data. In each step of shuffling
operation, we can rebind each thread to a different core on
another socket to migrate the thread to other sockets. The
working sets of the threads also need to be moved to the
target socket through QPI links. Essentially, thread migra-
tion can be viewed as a dual approach to data shuffling: in
thread migration, data accesses go to local memory while
thread state accesses potentially go through the intercon-
nect network, whereas in data shuffling, data is explicitly
moved through the interconnect network while the thread-
state references remain local.
When the data size is larger than the working set of the

threads, thread migration is potentially more efficient than
shuffling. The trade-off depends on the ratio between data
size and working set, and it is discussed in Section 4.3.
Note that the choice between shuffling and thread migra-

tion is orthogonal to the uncoordinated/coordinated meth-
ods described in Section 3.1 and, hence both, the naive (un-
coordinated) and coordinated methods can also be applied
in thread migration for moving the working sets. With the
coordinated method, thread migration achieves higher band-
width utilization for transmitting the working sets.

4. EVALUATION
We use two IBM X Series x3850 servers for our experi-

ments. The first is a quad-socket with four X7560 Nehalem-
EX 8-core sockets and 512GB of main memory (128GB per
socket), in a fully-connected QPI topology. The second con-
nects two 4-socket x3850 chassis to form one single 8-socket
system with eight 8-core X7560 Nehalem-EX sockets and
1TB main memory (128GB per socket). The 4-socket server
runs RedHat Enterprise Linux 6.1, whereas the 8-socket runs
SuSE Enterprise Linux 11 SP1.

In this section, we first study in detail the performance
of various shuffling methods in Section 4.1. Then we show
the usefulness of data shuffling for implementing sort-merge
joins in Section 4.2. Finally, in Section 4.3, we analyze the
trade-offs of shuffling versus thread migration in a typical
group-by database operation with aggregation.

4.1 Shuffling for NUMA
We start with a simple experiment, using shuffling meth-

ods to shuffle 1.6 billion 64-bit integers. We have N threads,
each of which has 1/N th of the data partitioned intoN pieces
(and stored in its local memory). The ith thread accesses the
ith piece of data on all threads’ partitions and computes the
mean of all integers on the piece of data.

4.1.1 Comparison of various policies
Figure 6 compares the maximum bandwidth achieved for

the shuffling task using various shuffling methods, on both
the four-socket and the eight-socket machines. We repeat
each experiment 10 times and plot the mean. The vertical
error bars show the min/max of the 10 runs for each exper-
iment.

In this experiment, we evaluate the four methods described
earlier; naive shuffling (Section 3.1.1), ring shuffling (Section 3.1.2),
and thread migration (Section 3.2), as well as coordinated
random shuffling. In the latter method, each thread ran-
domly chooses the partition to access next. In addition, we
also analyze two different implementation variants for the
coordinated shuffling and thread migration methods; one in
which threads are synchronized and operate in lock step from
one step in the shuffling process to the next. We call those
implementations “tight”. We remove this synchronization
barrier between steps in the second implementation variant,
such that threads independently move to the next step. We
refer to this implementation as “loose”. The idea of synchro-
nization is that it potentially avoids interference caused by
diverging threads, i.e., threads that end up in different steps.
The flip side of synchronization, however, is the extra cost
of the synchronization itself.

We first discuss the left side of Figure 6, which shows the
performance on the four-socket machine. The naive method
performs poorly, achieving only a bandwidth of 22GB/s. In
this method, all threads pull data from the memory of one
single socket (as shown in Figure 3(b)), and therefore are
significantly limited by the local memory bandwidth of that
single socket (24.7GB/s).

The random shuffling method (labeled “Coord random
(tight)” in Figure 6) achieves better performance than the
naive policy, but is still inferior to the other methods. In
addition, the random shuffling experiences a higher variance
in bandwidth compared to the other methods (as shown by
the error bars). The relatively low performance of random
shuffling indicates that a simple random permutation of the
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Figure 6: Data shuffling bandwidth achieved by various shuffling policies. Policies that consider the underlying
QPI topology achieve up to 3× higher bandwidth than the naive approaches. Thread migration may achieve
even higher bandwidth.

producer-consumer pairs without taking the hardware topol-
ogy into consideration is not sufficient.
The ring shuffling method tries to maximize the QPI uti-

lization and achieves 3× higher bandwidth than the naive
method on the four-socket machine. The synchronized im-
plementation (“Ring (tight)” in Figure 6) is slightly faster
than the unsynchronized version (“Ring (loose)”). The 70GB/s
bandwidth achieved by the ring shuffling method is still
lower than the aggregate bandwidth of all memory chan-
nels (4 × 24.7GB/s = 98.8GB/s) or all QPI links (12 ×
10.9GB/s = 130.8GB/s). The gap is mainly due to the
transmissions of snooping messages (and replies) that are
exchanged on the interconnects for the system’s coherency
protocol.
Thread migration achieves even higher bandwidth than

the ring shuffling. The synchronized implementation of the
migration method achieves a bandwidth of 94GB/s, which
is close to the theoretical maximum bandwidth on that ma-
chine (4× 24.7GB/s = 98.8GB/s). Here, all threads access
data through the memory channel to their local memory, so
only snooping messages are exchanged on the interconnect,
and the number and size of these messages are small enough
that they do not saturate the interconnect. The unsynchro-
nized version of the migration method on a system with a
fully populated interconnection network exhibits lower per-
formance and has significantly higher variability. The reason
is that, at any point in time, threads may end up on the same
core, forming convoys. Note that each thread in this exper-
iment has almost no state information. This represents the
best use case for the thread migration method. We further
evaluate the potential of thread migration in Section 4.3.
The right side of Figure 6 shows the bandwidths of these

methods on our eight-socket machine. This system achieves
similar bandwidths as the four-socket machine. Surprisingly,
the bandwidths of the ring shuffling and migration meth-
ods do not increase on the eight-socket machine with dou-
ble the local memory bandwidth. Instead, thread migration
achieves similar performance on both machines, whereas the
ring shuffling method performs even worse on eight sock-
ets. The reasons for this are the non-uniform QPI links and
the coherency traffic. It turns out that four of the twelve
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QPI links in the eight-socket system have a lower bandwidth
(7.8GB/s vs. 10.9GB/s) and become the bottleneck on the
overall performance. Furthermore, more snooping messages
(and replies) are exchanged in the interconnect in the case of
the eight-socket configuration. Those messages not only con-
sume more bandwidth of the interconnect but also increase
the latencies of the memory requests.

The results indicate that the source-based snooping pro-
tocol used for cache coherency in our Nehalem-EX systems
does not seem to scale well for eight sockets. In fact, Intel
notes [18, p. 72] that“[the source-snoop protocol] works well
for small systems with up to four or so processors that are
likely to be fully connected by Intel QPI links. However,
a better choice exists for systems with a large number of
processors . . . The home snoop behavior is better suited for
these systems where link bandwidth is at a premium and the
goal is to carefully manage system traffic for the best overall
performance.” Unfortunately, we have not found this second
protocol implemented in any system available to us.
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4.1.2 Scalability
Figure 7 shows the bandwidth achieved (in GB/sec) as

the number of threads increases when shuffling data among
a four-socket system. As can be seen in Figure 7, all the
three shuffling methods achieve nearly linear speed-ups be-
fore their bandwidths approach the bandwidth bottlenecks.
The three methods have similar bandwidths when using less
than 4 threads. However, the scaling stops at about 12
threads and 22GB/s, because the memory bandwidth of a
single socket becomes the bottleneck. The ring shuffling
method achieves a linear speed-up for up to 20 threads, at
which point the interconnect network becomes saturated by
both the data and snooping messages. Among the three
methods, thread migration scales the best as the number
of threads increases. It shows linear speedup close to opti-
mal, except for 32 threads, where the capacity limit of the
memory channels is reached.

4.2 Shuffling as a primitive
An efficient, platform-optimized implementation of the

shuffling primitive can be used as a primitive or as a build-
ing block in the construction of database systems. As an
example, we integrate the synchronized (“tight”) implemen-
tation of the ring shuffling method in the sort-merge-based
join algorithm described by Albutiu et al. [1] . Their Range-
partitioned Massively Parallel Sort-Merge (MPSM) join, called
P-MPSM, is optimized for NUMA machines by trying to re-
duce the amount of data transferred among sockets.
The P-MPSM join has four phases: (1) The fact table is

split into chunks and sorted locally. This implicitly parti-
tions each chunk into a set of fact runs. (2) The dimension
table is similarly split into dimension chunks, which are then
range partitioned. (3) Each thread collects all associated
partitions from all dimension chunks and sorts them locally
into dimension runs. (4) Finally, each worker thread merges
a dimension run with all corresponding fact runs. We inte-
grated the ring shuffling algorithm into the fourth phase to
read the dimension runs from remote sockets.

In this experiment, we analyze the resulting performance
gain when using the ring shuffling primitive in the P-MPSM
join. We join 1.6B tuples with 16M tuples, where each
tuple contains a 64-bit key and a 64-bit value. Figure 8
shows the scalability of this approach as the speed-up over a
single-threaded implementation. At first, the disappointing
observation is that the use of the primitive can only slightly
increase the overall scalability of the R-MPSM join from
25.0× to 26.2×. The reason is that the execution time is
not dominated by the merge phase (4).

The time breakdown for the P-MPSM join in Figure 9
shows that sorting the fact table chunks in phase (1) over-
whelmingly dominates the execution time. Since the shuf-
fling primitive is only used in the merge phase (4), we plot
the scalability of this phase separately in Figure 8. For the
merge phase alone, our more efficient implementation of the
ring shuffling is able to increase the scalability from 9.4× to
16.3×, and hence, almost doubles the scalability.

The left-hand side of Figure 9 depicts the time breakdown
for the naive shuffling implementation, and the right-hand
side for the synchronized ring shuffling. It can be seen that
the already small fraction of the merge phase is further re-
duced by the ring shuffling. The difference in the merge
phase between the two implementations becomes noticeable
when using more than 8 threads, i.e., when the number of
threads in a single socket is exceeded, so inter-socket com-
munication is required.

Although sorting the fact table is currently the dominat-
ing phase in this case, the merge phase is likely to dominate
as the number of threads increases. Furthermore, since the
time spent for sorting is likely to be reduced by hardware
accelerators or by exploiting more cache-efficient algorithms,
and future systems are likely to increase their number of
cores significantly, it is quite probable that the performance
of the join will increasingly depend on the efficiency of the
data shuffling.

4.3 Data shuffling vs. thread migration
Data shuffling is not a panacea and, as we saw earlier in

Section 4.1.1, there is potential for moving the computation
to the data rather than shuffling the data around. Migrat-
ing threads makes sense, especially when the accompanying
working set of the migrating thread is relatively small. In
this section, we try to evaluate the trade-off between data
shuffling (moving the data) and thread migration (moving
the computation) further. In order to do that, we devised a
simple benchmark that models the following group-by oper-
ation traditionally found in database systems:

SELECT key, SUM(value) FROM table GROUP BY key

We measure the bandwidth at which a large number of key-
value pairs can be grouped by their key and the values with
the same key summed up. The implementation uses parti-
tioning by the key. The size of both the key and the value
is 8 bytes.

Figure 10 shows the aggregation bandwidth, as the num-
ber of distinct keys per partition increases. The number of
partitions is equal to the number of processing cores each
machine has. That is, there are 32 partitions for the four-
socket system and 64 partitions for the eight-socket sys-
tem. We compare the performance of four implementations.
The first two are based on shuffling — one using the naive
method, the other with ring shuffling. We also evaluate two
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thread migration-based implementations. In the first one,
the threads do not copy their state (aggregated data) along
when they migrate to the socket containing the partition
they need to aggregate next. This implies that the first mem-
ory request to each thread’s aggregation state will cause a
cache miss and a resulting remote memory access over the
interconnect. We label this implementation as Migration
in Figure 10. The last implementation avoids these remote
accesses during the processing of the aggregation by explic-
itly copying over each thread’s aggregation state to its new
socket before migrating the threads themselves, i.e., each
migrating thread copies its aggregation state from its local
memory to the memory location of the soon-to-be consumed
partition. We call this implementation Migration & copy in
Figure 10.
Figure 10 shows that the performance of migration is sig-

nificantly higher than shuffling if the number of distinct
groups per partition (i.e., the state of each migrating thread)
is less than 256k keys. In particular, if the partitions contain
less than 32k keys and so each thread’s aggregation state fits
into L2 cache, the difference between the performance of the
shuffling and migrating methods corresponds to the band-
width difference we observed in Figure 6. As the thread
state grows, i.e., the number of distinct keys per partition in-
creases, we observe a crossover point at which the optimized

shuffling implementation is more efficient. The crossover
point is at about 512k keys per partition. That means that
when the total number of distinct groups in an aggregation
query is larger than 16M or 32M keys for the four-socket ma-
chine — and 32M or 64M keys for the eight-socket machine
— the shuffling-based implementation should be preferred
over the migration-based one. A query optimizer capable of
predicting the expected number of distinct keys may then
choose the appropriate aggregation implementation.

In order to analyze the impact of the individual approaches
on the overall bandwidth, a time breakdown is given in
Figure 11 for the four-socket system. We classify the oper-
ations that are performed during the aggregation into three
categories and report the total time spent for each category.
The first contains accesses to the unaggregated data (labeled
as Read partitions in Figure 11). The second category in-
cludes operations to perform the actual aggregation, i.e., ac-
cesses and updates to the aggregation state with the newly
added data (labeled Upd. hash table). The third category is
only applicable for Migration & copy. It represents the cost
to transfer the intermediate aggregation result from the local
memory into the memory that contains the next partition
to be aggregated (labeled Copy state in Figure 11).

Several observations can be made from Figure 11. First,
the naive method is bottlenecked by the access to the un-
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aggregated data (scans). It takes as much as 3 times more
to access the data, which is consistent with the results pre-
sented in Section 4.1.1 . Second, the thread migration poli-
cies access the unaggregated data 25% faster than the ring
shuffling method, but as the size of the local aggregation re-
sult (and thus thread state) increases, the execution time is
dominated by the time it takes to access the local aggrega-
tion result. The crossover point is between 1M and 2M dis-
tinct groups. Finally, the method that migrates the thread
and copies over the local aggregation result is much slower
on large result sizes, because of the overhead of copying over
the local aggregation result.

5. RELATED WORK
Exchanging partitioned data among parallel processes, par-

ticularly to do joins, has a long history in the database lit-
erature (e.g., [5, 10, 11]). Most of this work simply tried to
minimize the aggregate amount of data transmitted, rather
than concern itself with differing limits on the capacity of
the individual links between nodes, and did not try to orches-
trate the timing or routing of these transmissions between
nodes. More recent papers have focussed on multi-core ef-
ficiency (e.g., [7, 12, 14]), but assumed that any core could
access the memory of another core in about the same time
as their own. The architecture community has also studied
many aspects of DBMS performance from a perspective of
efficiency on parallel hardware (e.g., [16, 25]). Much of this
work has focused on symmetric multiprocessors (SMPs) or
clusters; multi-socket multi-core systems are still fairly new,
and relatively less studied.
The memory performance of NUMA machines has been

evaluated e.g., in [19, 20] . These studies as complementary
to the NUMA memory bandwidths reported in Section 2.
Recently, Neumann et al. presented a NUMA-aware dis-

tributed sort-merge join implementation [1] . This algorithm
did not focus on the data shuffling step of the algorithm, but
our NUMA-aware data shuffling algorithm was able to speed
up their algorithm by up to 8% compared to a naive shuffle,
as shown in the previous section.
On the other hand, on-line transaction processing (OLTP)

is a primarily latency-bound application, since synchroniza-

tion is latency-bound. Thus, the NUMA effect is even more
profound in OLTP. Porobic et al. [24] describe how perfor-
mance of OLTP systems is sensitive to the latency variations
arising in NUMA systems, proposing that in many cases the
NUMA hardware should be treated as a cluster of indepen-
dent nodes. [15] presents a NUMA-aware variation of an
efficient log buffer insert protocol.

In this paper we present evidence for the potential of
thread migration instead of data shuffling. Moving the com-
putation to where the data resides seems to be especially
beneficial when the working set of the thread is small. Anal-
ogous execution models have been proposed for both busi-
ness intelligence (e.g., the DataPath system [2]) as well as
transaction processing (e.g., the data-oriented transaction
execution model of [22, 23]).

Data shuffling has been studied extensively in the MapRe-
duce framework. Orchestra [6] was proposed as a global con-
trol architecture to manage transfer activities, such as broad-
cast and shuffle, in cloud environments. Similar to our work,
the scheduling in Orchestra is topology-aware. For a shuffle
operation, each node simultaneously transfers multiple trans-
missions to various destination nodes. Orchestra coordinates
the speeds of each transmission to achieve the global optimal
performance. In contrast, in our method, each thread only
accesses one target data at one time. The NUMA-aware
shuffling method coordinates the order of transmissions to
various destinations.

Recently, the applicability of the MapReduce model was
evaluated on NUMA machines [27] . Phoenix++ [26] is a
revision of the Phoenix framework that applies the MapRe-
duce model on NUMA machines. Our work provides an op-
portunity to optimize the shuffling operations in the MapRe-
duce model on NUMA machines.

The NUMA architecture also impacts on the design of op-
erating systems. A new OS architecture, called multi kernel,
was proposed to meet the networked nature of the NUMA
machines [4] . The multikernel treats a NUMA machine as
a small distributed system of processes that communicate
via message-passing. In contrast, our work proposes to pro-
vide an efficient shuffling primitive on NUMA macines that
is used for building data management systems.



6. CONCLUSIONS
The days when software performance automatically im-

proved with each new hardware version are long gone. Now,
transistor counts continue to grow, but one has to carefully
design software to eke out every bit of performance from the
hardware.
However, over-engineering software for each supported hard-

ware configuration further complicates already complex DBMS
systems. So we argue instead that it is crucial to iden-
tify core, performance-critical DBMS primitives that can be
tuned to specific hardware and provided as hardware-specific
libraries (as done, for example in BLAS 3), while keeping the
remaining DBMS code fairly generic.
In this paper, we have used the common data management

primitive of data shuffling to illustrate the significant ben-
efit of optimizing algorithms for NUMA hardware. Going
forward, we expect many other such primitives to be sim-
ilarly investigated, and to be hardware-optimized or even
co-designed with new hardware configurations and technolo-
gies, to realize major performance gains.
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