
Engagements: Building
Eventually ACiD Business Transactions

Pat Helland
Salesforce.com
1 Market Street

San Francisco, CA 94105
1-415-546-5881

PHelland@Salesforce.com

Don Haderle

Gainfully Retired
and Having Fun

DonHaderle@yahoo.com

ABSTRACT
Business Transactions describe long-running operations that may
span many discrete systems. This has been an area of research for
many years [6],[15]. While these operations involve tasks that
may or may not be transactional in the traditional sense, the
business still wants many of the same Atomic, Consistent,
Isolated, and Durable characteristics that we know and love.
Providing ACID can be difficult in an environment that includes:

• Long-Running Operations: The work may span weeks or days.
• Autonomous Participants: Independent systems may renege on

promises or simply lose their state.
• Schismatic Participants: Sometimes replicas of participants may

independently do the work more than one time.

We propose a new communication and storage mechanism called
engagements. Engagements connect the participants of an
Eventually ACiD Transaction. Participants are autonomous and
may break their commitments. They may also be schismatic and
composed of replicas that take independent and redundant actions.
Engagements offer support for coping with the problems that may
arise. This allows a new perspective on ACID:
• Eventual Atomicity: Schismatic participants may do the work

two or more times. With the help of engagements, this
eventually becomes one operation with the redundant ones
canceled. Autonomous participants may refuse to do what’s
been promised. Engagements ensure these operations are
eventually performed or the breakage is escalated for help.

• Eventual Consistency: The business transaction is eventually
completed. Furthermore, its outcome allows reordering of the
schismatic or alternative redundant work while achieving the
same outcome across all the replicas. The business transaction
will eventually become consistent or an escalation happens.

• Probabilistic Isolation: The promise protocol knits together
the business transaction allowing for far greater commutativity.
Work may ignore side effects at a lower layer of abstraction
(using open-nested transactions). Hence, lower level concerns
are semantically isolated from the business transaction. Still,
while schismatic and autonomous work is eventually cleaned
up, concurrent work may possibly see through the isolation.
Concurrent work may see dirty or stale data from other business
transactions and we don't deal with this problem.

• Eventual Durability: Engagements capture the promises made
by participants as they interact with the rest of the business
transaction. They also allow the participants to record their
state as they chatter. A less-than-durable participant can be
resurrected and fulfill his job when presented with his state
from an ongoing engagement. Eventually, the collection of
participants can repair the temporary loss of some participants.

The views in this paper are those of the authors. They may not
reflect the views of any of their employers, real or imagined.

1. INTRODUCTION
Eventually ACiD Business Transactions are a pattern of long
running work comprising many individual “classic” transactions
spread across many disparate systems. These systems are
independent (autonomous) and are frequently implemented as a
set of replicas that will sometimes give confusing answers.
We will propose a messaging and state management abstraction
called engagements which we argue can lower the challenges
faced in this somewhat chaotic life in the real world.
In this introduction, we first cover the key insights that drive our
proposals. We describe our assumptions about the unreliability
and idiosyncrasies of the participants comprising long-running
business transactions. We talk briefly about engagements and
their implementation (with more to come later in the paper) and
then introduce the notion of speculative execution across replicas.
We describe how an application program is written in this world.
Next, we mention the mechanisms that allow engagements to cope
when a participant simply refuses to keep their earlier
commitments. Finally, we sketch the rest of the paper.

1.1 Key Insights
This paper is based on a number of key insights:
• Business Resources Appear Side-Effect-less: As businesses

manage their resources (e.g. hotel rooms, plane flights, or
delivery of widgets), they make commitments based on the
individual resources. Sometimes, the business itself does work
spanning resources but this is hidden from the higher-level
business transaction receiving the commitment.

• Business Resources Are Leaves of the Tree: The transaction
forms a tree. The leaves of the tree can access shared
resources. The interior nodes are not allowed to directly access
resources from outside the transaction.

• “Schismatic Versions” Isn’t the Same as Different Replicas:
There may be schismatic behavior at first when the replicas are
acting independently. Soon, the replicas hear the news about
their siblings’ different actions. All the replicas will retain all
the possible courses of action until a winner is selected. What’s
important is a predictable winner-selection algorithm that is
uniformly applied by the replicas.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research
(CIDR ’13) January 6-9, 2013, Asilomar, CA, USA.

• Schismatic Versions Are OK as Long as No One Notices: A
collection of schismatic participants can get into a complex
world of possible answers and no one will mind as long as this
settles into a single “truth” by the time anyone notices.

1.2 Business Work when Things Go Wrong
In our experience, there are a couple of ways in which participants
in long-running business transactions can be a pain-in-the-butt:
• Autonomy: The participant in the long-running transaction

may renege when it’s time to finish the work. This may be due
to a lack of durability, overbooking, or some concurrent
problem from related transactions (e.g. a deposit bounced).

• Schisms: Sometimes business operations have replicas that do
the work extra times. This may be due to replication within or
across datacenters, multiple team members doing a workflow
step, or as a person having multiple input devices.

Rather than try to harden systems to avoid these issues (which you
can’t really avoid, anyway), we’re exploring how to make
resilient business transactions while embracing these challenges.
We think this may someday provide more stable solutions.

1.3 Engagements: Tracking Messages & State
We are proposing a new (and non-existent) piece of plumbing
called an engagement manager that will implement a new
programming construct called engagements.

Engagements combine both communication and storage as they
connect the programmatic participants of a long-running business
transaction. Each engagement connects two possibly replicated
participants in the business transaction. As we shall see, the
participants in a business transaction are always arranged as a tree
with the initiating participant as the root of the tree.

Engagements have special mechanisms to support the business
transaction when its participants are schismatic or autonomous.

Engagements provide messaging. Each replica of a participant
processes an incoming message as a classic database transaction,
modifies its internal state, and optionally sends out messages on
its engagements. This happens separately for each replica.

1.4 Speculative Execution
Sometimes, replicas wait passively while one sibling processes
messages. Sometimes, sibling replicas of participants execute in
parallel. Most of the time, this doesn’t matter as the replicas
typically do the same thing and the redundant (but identical) work
may be collapsed. Sometimes, however, the replicas set out in
their own direction and perform completely different work. This
occurs when either the resources accessed return different results
or racing messages in the tree arrive in different order.
Arguably, this is similar to speculative execution [18] inside
processor chips or other environments. The trick is to ensure this
speculative work is cleaned up to result in a single acceptable
answer and that any visible side effects are removed.

Engagements ensure that the precedence rules for selecting the
winning speculative branch are consistent, even in a schismatic
environment. There is no master to pick a winner. Given the
same knowledge, all replicas will agree on the same winner. That
winner’s work will be kept and the work of the other schismatic
replicas will be canceled and reported for reconciliation. As work
is sent back to the initiating root of the transaction, the speculation
is collapsed and a single winning answer is presented.

1.5 Programming an Eventually ACiD Tx
As we shall see, programming for an eventually ACiD transaction
is not that bad. There are two kinds of participants:
Resource Participants interact with physical or logical resources
of a business that may impact stuff outside of this transaction.
Managing shared resources can have its challenges. Using
engagements for a business transaction adds a few considerations.

The interaction over engagements uses messaging. Each
engagement is a portion of a single business transaction.
Sometimes, the resource manager is strongly consistent and not
replicated. In this case, the programmer of the resource need not
worry about its own resources being schismatic. Replicated
resource managers have more complications (discussed below).

Some operations performed by resources are “non-reversible” and
require special consideration. Delivering money to an ATM,
launching a rocket, and sending a dunning notice should not be
taken lightly. We will discuss this more below.

Activity Participants work within the confines of a single
business transaction. They cannot access the outside world
directly and must work by sending messages over engagements.

Programming activities is easy. They come to life when an
engagement is made that invokes them and they have no state.
Incoming messages define what they should do. Activities may
start outgoing engagements to do more work for the transaction.
Activities must be functionally dependent only on the messages
they receive over their engagements. Nothing else may impact
their behavior including time-of-day and/or machine information.

1.6 Dealing with Autonomous Systems
The tree of participants will do work and then wrap up
commitments in a Phase-1 similar to a classic 2PC (two phase
commit). As a part of Phase-1, each resource manager must also
supply a non-repudiation package. This will flow back to the
other participants (managed by the engagement managers) as a
form of guarantee that the resource will do the promised work. In
the event the resource manager fails to do what it promised, the
non-repudiation package will be presented back to the resource in
an attempt to make it right. We will discuss this more below.

1.7 What’s Coming in the Rest of the Paper
First, we consider business transactions, how business resources
can be shared across them, and the ways in which participants can
misbehave. What does it means to access resources shared across
transactions? How do the business resources present their
business operations to the rest of the business transaction?

Next, we describe the proposed mechanism called engagements,
how it connects participants, and some of its special features. We
see how the work of a transaction may include different outcomes
simultaneously explored in what we call speculative execution.
Lest you think the application programmer’s job is overwhelming,
we explore the constraints imposed on writing a participant in two
sections, programming activities and programming resources.

Next, we look at speculative execution as well as how we can
resolve the loss of autonomous participants. We look at the impact
of engagements across participants and how the business
transaction uses engagements. Finally, we conclude and describe
our thoughts of where these ideas may be of use in the future.
This paper is simply a thought experiment offered by two guys
who’ve worked in this area long enough to lose their hair. Still,
we think that new plumbing can make it easier for applications in
this loosely coupled and scary world.

2. THE BUSINESS TRANSACTION
In this section, we examine the business transaction tree of
participants, how they are started and finished and how they
access shared resources. We examine open-nested transactions, a
theoretical basis for access to business resources while not seeing
any side effects to the business transaction and show an example.
After this, we look at the leaves of the transaction tree, the tree of
activities, and consider schismatic and autonomous participants.

2.1 The Business Transaction Tree
In our model, the Eventually ACiD business transaction is a tree.
Roots start and finish the business transaction. Unlike the other
participants, the root must be strongly consistent. Roots are
neither forgetful (like autonomous participants) nor schismatic.
They may be a single strongly consistent system or employ some
variant of Paxos [11] to achieve their clarity of mind.
Activities are the non-leaf portion of the tree. They never directly
interact with any semantic state outside this business transaction.
Activities exist solely to coordinate the needs of this piece of
work. Anything they need to access from the outside world, they
access by interacting with resources, the leaves of the tree.
Resources are the leaves of the tree. Resources are the connection
to the rest of the world. They provide the ability to allocate, gain
commitments, reserve real-world stuff, and commit or cancel
business operations with the rest of the world. See Figure 1.

2.2 Starting and Finishing Business Txs
The business transaction’s work arrives from a root. The root
uses a single engagement to send and receive messages working
with an engagement manager (described below). The engagement
manger may run on the root’s local system or may run remotely.
All of the engagement’s work flows through the engagement
manager. The business transaction work happens in three phases:
• Setting expectations (Phase-0): This is a full-duplex

messaging session in which the root describes the desired
business outcome and chatters as much as necessary to get the
things it wants to get. An example may be scheduling a ten-
city trip to Europe. The initial request may not be too selective
about the exact timing and order of the visits to the cities. This
may evolve as availability of hotels and flights are considered.

• Getting agreement and picking the outcome (Phase-1): At
some point, the summary of all the proposed work is passed to
the root. It may decide to commit or abort this business
transaction. If it decides to commit, the proposed changes
either commit or abort. This is the commitment of a long-
running business transaction whose steps are classic database
transactions. If it aborts, this will involve compensating the
work of the resources (e.g. canceling reservations at a hotel).

Committing may include performing non-reversible actions like
launching a rocket or dispensing money at an ATM.

• Confirming the work is done (Phase-2): When all the work is
actually done, the Phase-2 confirmation is returned to the root.

Between Phase-1 and Phase-2, an autonomous system may renege
on its commitment. The engagement manager involved attempts
to repair the damage. If this doesn’t succeed the root is notified.

Example Business Transaction (from the Root’s Perspective):
• I need to schedule a trip to Europe. It is important to be in Paris

on August 4th for a business meeting. Side trips to London,
Amsterdam, and Berlin of at least two days each are required. I
need to be home for my wife’s birthday on August 11th.

• Later, a proposed itinerary returns with airline trips, rail trips,
hotels, and car rentals.

• The root requests a better hotel in London and proposes to
rearrange the dates staying in Amsterdam and Berlin.

• Later, a new proposed itinerary comes back. It looks better and
the root says a special command saying: “Let’s Do It!”

• As time goes by, the completion of each participant’s work for
the business transaction is gathered and propagated up the tree.
When everything is completed (and the traveler is home), the
root’s engagement manager has all of the documentation.

2.3 Open Nested Transactions
Open-nested transactions [14] describe the interaction of different
layers of abstraction as work is performed. Lower layers of
abstraction commit changes to their state as a part of entering into
a transaction within higher layer of abstraction. The failure and
undo of the higher layer of abstraction does not undo the lower
layer transaction but frequently performs a different lower layer
transaction to return the higher layer abstraction to its desired state
(where the higher layer sees the transaction gone). It is accepted
that this may yield side effects at the lower layer.
We see this within the implementation of database systems where
the logical undo of a transaction’s record inserts into a BTree does
not undo the block-split caused by the transaction’s work. The
BTree split is a lower layer and the higher layer transaction may
leave side effects when it aborts and that’s OK. [17]

2.4 An Example of Not Showing Side-Effects
Doing work with a resource may, in fact, stimulate other work.
Consider the following:
Long Running Side Effects Example: the Trip to Europe
1) I schedule a trip to Paris and reserve a hotel room,
2) The hotel notices its occupancy crosses a threshold so the

hotel restaurant needs more food,
3) The restaurant increases its order with the grocer,
4) The grocer schedules a delivery with the delivery company,
5) The delivery company realizes its supply of diesel fuel will

be getting low so it schedules more fuel, and
6) I change my mind and cancel my trip to Paris.
At this point, the side effects of my reservation are not canceled.
Each of these business steps has hysteresis. The level to decrease
the supplies will be lower than the level that caused the supplies to
increase or its business operations would be too jittery.
My short-lived plans for a trip to Europe may cause work and
deliveries to happen as a side effect and that’s OK.
Resources may have side effects but that doesn’t concern the
business transaction. The real world has open-nested transactional
behavior. Business transactions only interact with the outside
world through the leaves of their tree. Side effects are at a lower
layer of abstraction. We call the leaves of the tree “resources”.

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
… …

Ac#vity(

Figure(1)((Business(transac#ons(start(from(a(root.((The(root(
interacts(an(ac#vity.((Ac#vi#es(may(interact(with(other(ac#vi#es(
and(form(the(non<leaf(por#on(of(the(tree(of(par#cipants.((Any(
shared(resources(are(the(leaves(of(the(tree.(

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
… …

Ac#vity(

Resources(Resources(Resources(

…"
…"

Transac#on’s(
Root(

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
… …

Ac#vity(

2.5 The Leaves of the Transaction Tree
As mentioned above, any time a business transaction interacts
with something visible across business transactions, either logical
or physical, the business transaction sees this as a leaf.

Resources and their resource managers do not have side effects
visible to the business transaction. They are simply hidden. We
assume that resource managers may be either schismatic (due to
replication) and/or autonomous.

2.6 The Tree of Activities
Activities comprise the middle of the business transaction tree.
The application code for an activity may be defined and named so
that an engagement can connect to it. The state of the activity is
empty until messages arrive and are processed.
Activities must be functionally dependent only on messages
received over their engagements. An activity comes to life when
an incoming engagement arrives and delivers messages. The
activity may, in turn, make outgoing engagements. These connect
it to other activities or to resources.

Compare activities to paper-form-driven work. Historically, an
enterprise’s work flows through its departments over paper forms
and multi-colored replicas. As the work progressed through the
departments, more annotations were made and one of the colored
papers was torn from the back and stuffed into a file cabinet
organized by a sequence number. See Figure 2.

In the classic paper-driven enterprise, each form (with its
multicolored replicas) moves around accreting knowledge. Each
removed colored sheets has a subset of this knowledge. The form
experiences a linear history where additional knowledge is
appended to the remaining multicolor master form.

Similarly, activities see one message at a time. They are added to
what it’s seen. These messages then stimulate outgoing messages.

2.7 Schismatic and Autonomous Participants
Activities and/or resources may be schismatic. This happens
when they are implemented as replicas and the replicas process
messages in a fashion that results in different results. As we shall
see, engagements allow for the resolution of these differences.

Similarly, activities and/or resources may be autonomous. This
means they do what they want and may disregard their
commitments. Before the two phases to commit the business
transaction, an autonomous participant may result in the failure of
the business transaction. The real challenges come when reneging
happens between Phase-1 and Phase-2.

Engagements and their engagement managers will keep non-
repudiation material that proves the promises for work made by
the participant. In many cases, the work can be resurrected. In all
cases, evidence of the failure can be reported and acted upon.

3. ACCESSING SHARED RESOURCES
This section looks at a set of issues with resource managers and
the resources under their control. First, we discuss the business
operations that define the interaction with the resources. Next, we
discuss how these business operations take the shape of promises
and offer isolation to the long-running operations via promises
and the predicates describing them.

Following this, we move on to look at the theory behind open-
nested transactions and how this lets us provide different layers of
abstraction for business operations. These layers of abstraction
isolate the business work from its unintended consequences. The
rippling effects through logically unrelated things can be ignored
and the business transaction can ignore the side effects.

Finally, we examine how non-repudiation offers a mechanism to
either clean up the damage caused by an autonomous system
reneging from its promises or escalate the damage to the root.

3.1 Resources: Doing Business Operations
As a business transaction executes, it establishes engagements to
acquire what it needs to complete its job. The work performed
across the engagements describes business operations and these
operations deal with the semantic resources of the business.

The message flow over the engagements may include some back-
and-forth about the desired results, examining possibilities and
making compromises as necessary.

Consider a Trip to San Francisco:
à I need a hotel near One Market St, SF. I prefer at least 4-star.
ß You can have a 3-star across the street or a 4-star a mile away.
à I’ll take the 4-star one and walk a mile.
Note that the interaction is not about read and write of records! It
is rather about the business work being accomplished by this
small portion of the business transaction.

3.2 Resources: Leaves of a Transaction Tree
Each resource within the transaction is accessed separately.
Imagine a transaction in which you schedule a trip to Europe with
two stops in Munich a week apart. If the scheduling of those
separate stops was handed to two different activities, there are two
different activities talking to the same hotel for two different
reservations. The hotel may not see these as correlated and the
business transaction sees the separate hotel reservations as
different leaves of the same tree. All access to resources affecting
stuff across business transactions is seen as the leaves of the tree!

3.3 Isolation via Promises
A promise is an agreement between a client application and a
service. In [8] and [10] these are called the promise client and the
promise maker. These promises are created using a promise
protocol that creates an obligation on the part of the promise
maker so that the promise client can construct a larger operation.

The promise is an agreement. Typically, the promise maker
agrees that the promise client may pick one of a set of possible
outcomes. For example, the promise maker may reserve a hotel
room for late arrival. As a part of the promise, the promise client
has supplied a credit card and agreed to be charged for the first
night unless a cancellation occurs with 72 hours notice.

Promise agreements may take different forms and are left abstract.
This looseness allows its flexibility. Hotels expose room
reservations. Retailers expose products, SKUs, and delivery
guarantees. Different promise makers define their own promises.

Part 1

Part 2

Part 3
…

Part 1

Part 2

Part 3
…

Part 1

Part 2

Part 3
…

Part 1

Part 2

Part 3
…

In an Activity, the
workflow is represented

in the data filled out in the
parts of the form

Information is appended to the
form as parts are filled out

Figure'2)''An'ac.vity'is'similar'to'a'classic'paper'form'that'
traverses'departments'within'(and'some.mes'across)'
enterprises.''As'work'is'done,'it'is'added'to'the'form.''Each'
par.cipant'keeps'a'record'of'the'work'they’ve'seen.''

The same promise maker may use different predicate constraints
for different promises. As noted in [8], different resources can
fulfill different overlapping promises. For example, room 512
may satisfy both a request for a 5th floor room and another request
for a king sized city-view room. The promise maker can (and
should) reassign promised resources if that allows more promises.
Room 512 may be reassigned to the 5th floor promise and room
620 used to keep the promise for a king sized city view.
We see this in airline seat assignment. The early seat assignments
specify an exact seat. Later ones may commit to an aisle seat.
Still later, the promise is: “We’ll get you on the plane” as the
airline happily stuffs you into any seat left open by a no-show
traveler. Of course, these promises are not firm as the airline will
overbook the travelers and occasionally, you’re “out of luck”!

We could express airline seat reservations by their characteristics
rather than by specific seat numbers. I’d like a promise that I can
have a seat next to my wife, sitting by the aisle, in a seat with lots
of legroom. Different seats on the plane may fulfill this promise.

Promises and Isolation: When can the promise maker allow
multiple requests with independent predicates to coexist? How
can it assign the resources so that all the promises may be kept?

For now, we assume a centralized and reliable promise maker.
Below, we will explore schismatic and autonomous ones. The
promise maker defines rules for its promise predicates and makes
new promises that can coexist with previous ones.

Promises may be refined using the promise protocol. The
promise protocol allows promise clients to request promises from
their promise maker. These can be renegotiated to increase,
decrease, or change the scope of the promise. See Figure 3.

Promises can be bi-directional. While clearly one side of the
promise-protocol starts the work, each side can demand promises
of the other side to get in a useful result. The protocol completes
by committing or aborting the work.

3.4 Open-Nested Transactions
Open-nested transactions extend the classic transaction model in a
number of ways. First, there may be nested transactions that are
allowed to fail without necessarily failing the parent transaction.
Second, when they are open-nested transactions, they may operate
at different levels of abstraction within the nested children.

A classic transaction is a bunch of operations that appear to
execute simultaneously from the perspective of other transactions.
The seminal work of Gray and Reuter [7] is a must read.
Nested transactions allow a parent to have one or more children
transactions. These children may abort, having their effects
semantically undone while the parent transaction survives.

Open nested transactions are nested transactions in which the
children operate at a completely different level of abstraction.
ACID guarantees are provided at the parent’s level of abstraction
and show up as multiple independent operations at the child’s
level. When the parent’s level aborts, this may result in the use of
different transactions at the child’s level to provide the semantic
effect of aborting the parent. At the child’s level of abstraction,
two or more independent operations have occurred. [14][17].

Note that with open nesting of transactions, isolation and
consistency occur at various levels of abstraction. An attempt to
do a transaction at a higher level of abstraction may not appear
isolated at the lower levels of abstraction.

3.5 Business Layers of Abstraction
Businesses are complex. Just about every operation performed
weaves in and out of many departments and spheres of control.
Many times, the business operation driving the change only sees
the work from its perspective (i.e. its layer of abstraction).

Levels of Abstraction within My Trip to Europe:
My travel agent deals with airplane tickets and hotel reservations.
This is a different level of abstraction than the hotel’s concerns
about its occupancy and its restaurant’s food. My travel agent’s
work is captured in many discrete “classic” transactions that move
the pieces of my trip forward or backwards.

Side effects may exist across the levels of abstraction. Even if we
undo work at the higher level of abstraction, the lower level may
clearly have consequences remaining.

3.6 You Can’t Undo All the Ripples
It is normal in business work for things to fail. It is also normal
that the side effects performed at a different abstraction layer to
remain after the higher-level operation fails.

3.7 Transactions Don’t See Side-Effects
As described above, the business transaction and its operations do
not see the many consequences and side effects caused by their
work. I may want a hotel reservation and really am unaware of its
impact on the restaurant, much less the delivery of diesel fuel to
the shipping company for the grocer. This is exactly the same as a
classic database transaction. When a transaction aborts, the BTree
splits caused by the transaction are not undone. [17].

3.8 Non-Repudiation
Now, we shift to discussing how to cope with resource managers
that are autonomous and occasionally renege on their promises.

As a part of the work to commit a business transaction, a resource
supplies a collection of data defining its commitments. This is the
non-repudiation data. As the Phase-1 acknowledgements
propagate over engagements up the business transaction tree, the
non-repudiation data is propagated, too. When non-repudiation
data passes through an engagement manager for an activity and, in
turn, up the tree to the parents, it is encrypted by the activity. In
this way, by the time the Phase-1 reaches the root, it contains all
of the information needed to confirm all of the promises by all of
the resource managers for the entire tree.

3.9 Autonomous Resource Managers
A resource manager may flake out and decide not to follow
through on its promises. The resource manager may also have
legitimate reasons for reneging like learning your credit card was
stolen since first supplied. To cope, we keep non-repudiation data
that offers a proof of the promises made. Re-presenting this may
get the work honored. If that doesn’t help, we escalate the issue.

Prom
ise(M

aker(

Prom
ise(Client(

Promise(Me(You(
Will(Do(“X”(

OK,(I(Promise(If(
You’ll(Do(“Y”,(too(

It’s(a(Deal…(

OK…(We’re(On!(

Commit!'

Commit!'
Figure(3.(Promise(protocols(go(through(a(phase(in(which(
promises(are(accumulate((perhaps(in(both(direcJons).((Later,(the(
work(is(either(commiMed(or(aborted.(

Promise(Accumula.on(Phase(

4. INTRODUCING ENGAGEMENTS
The business transaction tree of participants (activities and
resources) is created starting at the root of the tree. Activities are
spawned to manage “per-transaction” portions of the work and
resources are contacted to gain access to the rest of the world.
Engagements are the means for communication across the tree
and connecting to other activities and resources.
This section discusses engagements, participants, and the work
with their replicas. We discuss how causal consistency [1] within
a single engagement or arc of the tree offers a framework for
dealing with schismatic replicas of a participant. Next, we sketch
the challenges faced by the plumbing that we call the engagement
manager. Finally, we address the storage within an engagement
of non-repudiation data as its participants communicate.

4.1 Engagements Connect the Participants
As mentioned above, eventually ACiD business transactions
comprise a tree of participants. An engagement connects two of
the participants in the tree. If there are N participants in the tree,
there will be N-1 engagements. See Figure 4.

4.2 Engagements Connect the Replicas, Too
Now, each of these participants may comprise many replicas. The
replicas may run at different datacenters or even on different
personal devices like your iPhone, iPad, or laptop.

As an engagement connects two participants, it also connects the
replicas of the participants. Each message is delivered to each
replica. When one replica of a participant sends a message, the
other replicas see it across the engagement, too. Non-repudiation
data is shared across the replicas, too. See Figure 5.

When we say that a replica receives the message, we mean that
the engagement manager for the replica receives the message.
Below, we will discuss the perspective of the activity or resource
application and show how this application code is shielded from
the complexity of these messages and their delivery order.

4.3 Sending Messages using Engagements
A message is sent by a single replica and will be received by each
replica on the engagement. Every message on the engagement is
available to be seen by every replica (either in the same
participant or the other participant). Different replicas may send
messages at the same time and these may travel past each other.

In addition to messages, a replica may write its non-repudiation
data. The messages and non-repudiation data should be identical
for all the replicas if they are not schismatic.

4.4 Causal Consistency and Schisms
Engagements offer a special form of causal consistency:

If you can see a message at a replica, you can see all the
messages visible to the replica that sent the message.
All replicas sharing the engagement (either from the same
participant or the other participant sharing that engagement) can
see and remember the messages flowing over the shared
engagement. Consider the following:

• Message-X is sent by Replica-Y at Time-T1.
• Message-X is read by Replica-Z at Time-T2.

When Replica-Z reads Message-X, it also sees every message on
the engagement visible to Replica-Y at Time-T1. The history of
this shared engagement is visible to everyone on the engagement.
Not every replica sees everything at the same time. There is not a
single view of history. What is guaranteed is that if you can see a
message you can see the history visible to the author of the
message at the time the message was written.
Engagement managers coordinate the version history of the
communicating replicas. By tracking when replicas send the same
messages in response to the same stimuli, redundant stuttering of
twin replicas can be detected and the duplicate messages removed.

While this is a form of causal consistency [1], it is in one way
trivial and, in another way interesting. Simply looking at a tree of
non- schismatic participants, the communication’s causal nature is
trivial as work moves down the tree. If you consider schismatic
participants, it becomes interesting to look at their messaging as
speculative work propagates across engagement managers. Each
participant’s engagement manager sees the flow of messages for
all the possible schismatic replicas.

Each engagement manager at its replica sees all the different
permutations of speculative state and the causal flow of messages
is seen as a directed acyclic graph. The propagation of actual
messages between engagement managers is causally consistent as
a DAG of possibilities. Each speculative replica of a participant’s
application sees its world with a perspective of causal delivery
over a tree. That makes it easy for the application developer.

4.5 Replicas and Engagement Managers
Each participant’s machine has an engagement manager. The
engagement manager sees all the messaging and non-repudiation
data for all the engagements known to the participant. This
includes incoming and outgoing engagements for an activity. The
engagement manager has a pretty good idea of the replicas for this
participant but that is allowed to be in flux as some replicas may
fail and new ones may jump into the fray. See figure 6.

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
… …

Ac#vity(

Figure(4)(Engagements(connect(the(par#cipants(in(the(business(
transac#on.((They(capture(messages(and(non<repudia#on(info(
relevant(to(the(rela#onship(between(the(two(par#cipants.(

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
… …

Ac#vity(

Resources(Resources(Resources(

…"
…"

Transac#on’s(
Root(

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
3 …

Part
1 Part
2 Part
… …

Ac#vity(

Engagements"

Figure'5)''An'engagement'connects'two'par3cipants'of'a''
business'transac3on.''Each'of'par3cipants'may,'in'turn,'comprise'
a'set'of'replicas'running'on'different'machines'each'sending'and'
receiving'messages'and'state'independently.'

A"Business"Transac-on"
"Comprises"Par-cipants""

Connected""by"
"Engagements"

Par3cipant'
(Resource)'

Par3cipant'
(Ac3vity)'

Mul*ple,Replicas,
Compose,a,Par*cipant,

Root'

An,Engagement,
Connects,Par*cipants,
and,Their,Replicas,

Engagement Managers for Activities: As the first incoming
engagement arrives at an activity, the engagement manager is
responsible for hooking up a new replica of the activity (which
knows nothing other than the messages arriving over that
engagement). As messages are received, they are forwarded to
the other replicas of this activity. As messages are sent, they are
also forwarded to the replicas of the same activity.

When a replica shares its outgoing messages with a replica, it also
shares the messages it has received over any of the activity’s
engagements. So, the engagement manager for a replica handles
all of the engagements seen by this replica for the activity.
Sometimes, the different replicas have different opinions of the
engagements known to the activity. This is eventually shared and
all the replicas eventually get the same opinion of the set of
engagements, the messages sent and received over them.

As we will see below, sometimes this set of engagements as well
as the sent and received messages will represent alternate views of
the execution (which we describe below as speculative execution).
The engagement managers for the replicas see all of these realities
as they are shared across the replicas. They are not necessarily
made visible to the application code for the activity.
Engagement Manager(s) for the Root: The root of the
transaction must be strongly consistent and doesn’t have
speculative versions. Each root has a single engagement to an
activity (which may have schismatic replicas and autonomous
proclivities). The root’s engagement manager(s) must be strongly
consistent either by being centralized or via some form of
Paxos[11]. All messages sent to the root over its engagement do
not have any perception of the schism that may have occurred in
the rest of the participants of the business transaction.

Engagement Managers for Resources: Each resource replica
has an engagement manager. Unlike activities, resources have
exactly one engagement coming into them. Another difference is
that resources may also share business state across engagements,
across business transactions, and in a manner that is transparent to
the business transaction. Because there is exactly one engagement
for each resource within the transaction, there are ways in which
we see fewer ordering complexities within the engagement
manager for resources. Yet, the interaction with business
resources adds its own challenges. We will discuss this more in
the section on speculative execution.

4.6 Non-Repudiation Data and Autonomy
Participants may add non-repudiation data to an engagement.
Typically, this is encrypted so only systems implementing replicas
of the same participant can crack it. This has two uses:

• Checkpointing to My Replicas: If I’ve done some work as a
replica, the other replicas may need to know about it. This is a
classic checkpoint but with causal ordering. Related messages
and non-repudiation data are ordered in their arrival.

• Non-Repudiation and Resurrection: Encryption can ensure
the non-repudiation data was sent by one of the participant’s
replicas. This data indicates the stage of the work and functions
like a receipt at the dry cleaning store. It cannot be repudiated.
This can function as a form of durability if the autonomous
system has decided to have “less than durable durability”.

Hopefully, by capturing non-repudiation data, the implementation
of replicated participants is easier. It provides the means to repair
an autonomous participant that doesn’t live up to its promises in a
business transaction.

4.7 Active versus Passive Replicas
Some engagement managers and their applications may chose to
actively process messages at every replica. This means the
application runs, consumes the incoming messages, and generates
the outgoing messages that are then coalesced when they are
identical. Active replicas have the advantage of being more
responsive and the disadvantages that they consume more
computation and occasionally become schismatic.
Passive replicas don’t even execute the application but rather
have the incoming and outgoing messages recorded and kept
ready to replay if necessary to recreate a running replica. They
don’t go schismatic and don’t chew up computation but may take
longer to warm up as the messages are replayed.

Active and passive are really somewhat vague concepts. Consider
three sibling replicas where one is running at full speed
processing, the next is running at 10% the speed, and the third at
1% of the speed. Normally, the third will see its siblings output
before it gets around to processing its input. It is (mostly) passive.

The non-repudiation information supplied by an active resource as
it does work can mean that the passive replica can catch right up if
necessary and continue supporting the same allocation of the same
business stuff promised by his big-brother-active replica.

5. SPECULATIVE EXECUTION
In this section, we will discuss the behavior of schismatic
participants as they proceed down alternate paths because their
replicas do work that diverges in its behavior.

First, we will discuss the ambiguity of whether replicas fire and
do schismatic work. Next, we look at some simple cases in which
identical work is coalesced. This leads us to looking at the
difference between different physical replicas taking different
courses of action while separated and the bringing together of the
set of messages and state that have diverged.
Next, we look at how we can have a precedence ordering of
schismatic work done by resource managers. We look at
precedence of work done by activities. How can different replicas
in different orders pick the same precedence? With these, we can
come up with a single view of the world that resolves the schisms.
All that is left is to clean up the effects of the speculative work.

5.1 Firing Up One or More Replicas
This proposal for engagements and engagement managers is
agnostic about when and where a participant’s replicas fire up and
process work. It is fine to have some means to select one active
replica and only do the work a single time. It is also fine to have
all the replicas fire away and do redundant identical work. Part of

Figure'6.''Replicas'talk'to'their'local'engagement'manager.''
Messaging'between'the'par9cipants'and'their'replicas'flows'
over'engagements'implemented'by'engagement'managers.'

Par9cipant'
(Resource'@'R)'

Par9cipant'
(Ac9vity'@'A)'

A1' A2'

A3' A4'
R2'

R1'
R3'

EM'
(A1)'

A1'

EM'
(A2)'

A2'

EM'
(A3)'

A3'

EM'
(A4)'

A4'

EM'
(R1)'

R1'

EM'
(R2)'

R2'

EM'
(R3)'

R3'

the proposal includes mechanism for the engagement manager to
coalesce identical work that has produced identical messages.

As we shall see, the real fun begins when we fire up multiple
replicas of the participants and they end up taking different paths.

5.2 Coalescing Identical Work
The engagement manager recognizes that multiple replicas may
fire at roughly the same time and perform identical work. Being
replicas of the same participant is a special relationship. They
may do redundant and identical work. This results in the same
messages being sent (from the sibling replicas). This is also true
for non-repudiation data; identical data is coalesced into one.

When identical messages are sent or identical non-repudiation
data is put into the engagement, the engagement manager
coalesces these. It verifies that the participating replicas emitted
them in the same order. They must have the same history leading
up to sending the messages and non-repudiation information.

Identical messages that have been coalesced will only be
delivered once to the rest of the engagement.

5.3 Replicating Schismatic Work
Much has been written about replication and eventual consistency
[16]. We like looking at this the way Amazon’s Dynamo [5] does.
Dynamo selects availability over consistency as a business choice.
This can support schismatic participants.

Dynamo is an always-writable store. If any part of the store can
accept the write, it will. When a record is read, Dynamo finds the
best version it can reasonably locate. This is not necessarily the
latest version. In fact, there’s no notion of “the latest version”.

The arrival of a message into a replica is similar to an always-
writable store. If the message arrived, we remember it. If the
message is a duplicate of one we’ve seen then there’s nothing new
to do. If a message is arriving and we have not yet seen it at this
replica, we should do something with it! This scheme is designed
to provide availability over consistency even in the face of
network partitions. See the CAP Theorem [4], [12].

5.4 Defining Precedence of Resource Answers
Sometimes a schismatic resource manager will give two different
answers to the same question. This is natural since the resource
managers have to deal with real-world state and the schismatic
replicas may have had different real-world state and different
experiences before receiving the incoming request for a promise.

To build a self-settling replicated system, it is essential that any
engagement manager in the business transaction be able look at
two schismatic answers and pick the same one all the time. This
means the rules for precedence should be functionally dependent
only on the messages themselves, not the specific participant or
replica at which the engagement manager is picking a winner.

A proposed set of rules for picking between two answers:

• Did one resource request succeed and the other fail? If so, keep
the successful answer.

• Is there an application-defined preference for one answer?
E.g. I’ll take a room with a queen-sized bed and a view over a
room with a king-sized bed but no view.

• Pick some arbitrary aspect of the answers (e.g. their sequence
number) and select the lower sequence number.

It is essential to always yield the same result independent of the
location or replica that decides on the precedence.

5.5 Defining Precedence of Activities
When an activity is first created, it comes to life because of an
incoming engagement. Until it creates outgoing engagements, the
only data it receives is from its incoming engagement. So, for a
specific activity (or its specific speculative existence), we can
order the outgoing engagements by their order of creation.

Activities may diverge from their replicas due to different
message delivery order from different engagements. Sometimes,
different replicas of an activity will receive two messages each
(one per engagement) but the messages arrive in different order.
When this occurs, we give precedence to the message received
over the first outgoing engagement. Differing speculative
execution histories are given precedence in a predictable fashion.

It is essential that this always yield the same result independent
of the location or replica deciding on the precedence.

5.6 Precedence, Reordering, and Coalescence
There may be many schismatic and speculative views of this
business transaction’s work. Different replicas will see different
permutations of the choices and independently select the best of
what they’ve seen so far. By working its way up the separate sets
of choices, the best of the best should rise to the top.

We need to know that we have consistent rules and that applying
part of the work in one replica and another part of the work
elsewhere will still resolve to a single choice across the possible
speculative universes. Given the same set of speculations visible
to a set of replicas, exactly one choice will dominate independent
of the location of processing the subsets as we find a winner.
Alvaro et al [2] define logically monotonic computation as one
that produces the correct answer independent of the order of the
inputs. Helland and Campbell [9] define the “New ACID” as
“Associative, Commutative, Idempotent, and Distributed”. This
allows work to be done at least once, anywhere, and in any order.
Both papers are describing the same characteristics. These are the
characteristics needed to resolve speculation to a single winner
even when the resolution is spread widely across many replicas.

5.7 Resolving to a Single World View
During the life of a running business transaction, the engagement
managers will notice schismatic work and dynamically resolve it.
Schisms occur for either of two reasons:
• Different answers from a resource promise, or
• Different orderings of message processing in an activity.

When schismatic resource responses are noticed, we calculate the
precedence and pick a winner. When schisms are noticed due to
message orderings into activities, any engagement manager can
prune the loser and all of its descendants. The precedence can be
calculated independently anywhere and yield the same outcome.
Engagement managers will be constantly pruning speculative
paths that are losers compared to some new speculative path.
Given any set of possible executions, exactly one will win.

As we package up any message to the root of the business
transaction, we will examine a set of alternate histories. Of those,
the dominant history is presented to the root for consideration.

It is possible that another speculative history is rattling around
some replicas and isn’t visible to the engagement manager
presenting the message to the root. Of the histories that are
visible, the dominant one will be selected as the winner.
Anything else will be pruned and its work discarded.

5.8 Cleaning Up Speculative Work
When pruning work, it is easy for an engagement manager to
discard a losing version of an activity. The dominant version can
continue forward and hopefully commit the business transaction.

On the other hand, cleaning up the losing work for a resource and
its promises may be a bit more complex. The resource’s
engagement manager contacts the resource’s application code to
cancel or compensate for the promised work. This will hopefully
restore the business state to something comparable to what it
would have been had the resource never been allocated.

The over-allocation of business resources (e.g. reserving hotel
rooms that were not really needed) can clearly impact a business.
This is why we believe that the eventually ACiD transaction is not
perfectly isolated as it performs long-running work.

All messages seen by the root should resolve to a single view of
the world. By Phase-1, we have also selected exactly the set of
resources we hope to commit to the business transaction.

6. PROGRAMMING ACTIVITIES
This section describes the issues faced by an application
programmer writing the application code for one of the activities
within the long-running business transaction.

We first talk about constraining the behavior to being dependent
on incoming messages and their order. Next, we consider the
incoming engagement that starts the activity within the business
transaction. This takes us to the creation of outgoing activities
and how each replica labels its outgoing activities. Next, we talk
about how schismatic activities are unaware of their evil twins.
Finally, we consider one piece of advice to reduce (but certainly
not eliminate) some of the causes behind schismatic activities.

6.1 Activities as Functional Computation
Each activity and its programmatic behavior must be functionally
dependent only on the messages that come into it. The application
programmer for the activity has no worries about concurrency,
speculation, or any other crazy behavior. It simply must follow
the constraint that it never looks at anything other than the
messages coming over the engagements for this activity.

6.2 Activities: the Incoming Engagement
An activity is always started by exactly one incoming
engagement. Since the activity’s behavior and outgoing messages
are functionally dependent on only the incoming messages, we see
the replicas of the activity starting out running as identical replicas
consuming and emitting the same messages.

6.3 Activities: Outgoing Engagements
When an activity creates an outgoing engagement, it gives the
engagement an Engagement-ID. This Engagement-ID must be
functionally dependent only on incoming messages. You can’t
consider time-of-day or ask the operating system for a unique-id.

As long as the replicas are working on the same messages in the
same order, the outgoing engagements created by this activity will
have the same Engagement-ID. When two replicas make
engagements with the same Engagement-ID, the engagement
manager can coalesce them into the same engagement.

By coalescing the outgoing engagements from different replicas
into the same engagement, identical messages sent over those
outgoing engagements can be coalesced and the speculative
alternate universes brought back into a single outcome.

6.4 Living in Your Own Happy World
Different replicas can diverge in their behavior. There are two
reasons this can occur. First, messages from different
engagements may be processed in different orders due to racing of
the message delivery to the replicas. Second, different requests to
resources may get different answers. Usually, two requests to get
a hotel room will result in the same answer (e.g. two separate
reservations for a king-sized non-smoking room) but sometimes,
you just get unlucky and get different answers. Schisms only
occur when the participant is actively processing the messages
(and generating output). Passive participants just wait for both
input and output messages and, hence, don’t cause trouble.
Eventually, all the engagement managers for the different replicas
will notice the divergent message orderings. There may be
divergent incoming messages (because the other participant went
schismatic) or divergent outgoing messages (because the ordering
of the incoming messages processed was different). Either way,
different paths though the universe may accumulate at an
engagement manager. The engagement manager will show the
application exactly one history and present messages for that. The
programmer for the activity’s application won’t give a darn about
the divergence but will, instead, blithely continue on unaware that
there alternate universes either actively or passively present.

6.5 Reducing Schism
Activities may send messages on many different engagements
without waiting for replies. The answers to outgoing messages
may race and come back at different times. Different replicas of
an activity may receive message responses in different orders.

Without care, this could cause different behavior from the
different replicas. The different order can cause different work to
be initiated and the replicas can diverge unfettered.

When a replica issues parallel requests on different engagements,
the application programmer should consider waiting until all the
responses have been received before listening to any response.
This can reduce the permutations by which the replicas diverge.
Of course, this is not always practical.

7. PROGRAMMING RESOURCES
This section describes the challenges faced by the application
programmer that develops a resource manager capable of
providing resources to a business transaction.

First, we look at how resources perceive their incoming
engagements. Next, we consider some of the challenges seen by
replicated resources, especially when they take independent and
potentially schismatic action. We look at stuttering engagements
with different forms of schisms and how they affect the allocation
of resources and these are resolved. The next portion looks at
probabilistically allocating resources, over-booking versus over-
provisioning, and the cost of selective consistency. All of these
real-world problems inject themselves into our world of long-
running business transactions. Next, we present a discussion of
how to predictably coalesce resource schisms. Finally, we
conclude the section on programming resources by considering
Phase-1 notifications and then Phase-2 notifications and how they
interact with non-repudiation and autonomous resources.

7.1 Resources and Incoming Engagements
When a business transaction (or more precisely an activity within
a business transaction) needs to interact with the business itself,
the activity creates an engagement to a resource that controls what
is needed. When creating the engagement, the activity may
specify stuff that narrows down the desired resource.

I’d like to book a room at the Hyatt Regency San Francisco.
The engagement created by the activity may very well connect to
the resource manager for the Hyatt Hotels but adds information
routing it to the California division of the reservation system.
When the incoming engagement fires up the resource, it is aware
of the stuff narrowing the needs (e.g. a California Hyatt) as well
as incoming messages from the activity that started the resource.

Unlike activities, the resource participants are tapped into state
that is shared within the business as it works to accomplish this
single business transaction. Each incoming engagement will set
out to negotiate the allocation of some resource, work, or
commitment that impacts the business. If a single business
transaction issues two engagements to access resources, they
appear as two separate operations to the resource manager and,
from the standpoint of the business transaction, are independent.

7.2 Replicated Resources
Sometimes, the implementation of a resource participant is, itself,
replicated and potentially schismatic. This presents different
challenges than a replicated activity.

Replicated resources are somewhat easier in that they are only
concerned about a single engagement for the business transaction.
That means that they don’t need to worry about messages coming
in an out of different engagements. On the other hand, resources
have additional problems that are perhaps more challenging.
Unfortunately, the allocation of stuff shared by other business
transactions requires interaction with that shared stuff. If the
participants implementing resources were not replicated, they
could have something like a shared database against which they
could look to see what is available to commit and make an
allocation for this engagement. That would be relatively simple.

In this more complicated world, the incoming engagements have
messages that may hit the separate replicas of the resource
managers independently. Either they coordinate across the
replicas (essentially providing strong consistency) or they act
independently and attempt to make promises based solely on the
business stuff known to the separate replicas.

7.3 Stuttering Engagements and Resources
Engagements between activities and resources may be complex.
Consider the following possibilities:

• The activity starting the engagement has a simple schism.
Two engagements are started with identical Engagement-IDs.
The sending activities are walking through the same path in the
universe and will send identical messages. They will remain
identical unless they receive divergent messages into them.
The engagements (and the messages across them) will be
coalesced by every engagement manager that sees the matching
Engagement-IDs. This will happen at each replica of the
resource (when it sees the stutter) and also at the replicas of the
activities (when they see the stutter).
When this occurs, the resource manager (and its engagement
managers) will attempt to process this as one request for one
business operation. Of course, as discussed below, the resource
manager itself may be schismatic.

• The starting activities have a complex schism. This happens
when flow of schismatic work has happened in a way where
truly different behavior (rather than repeats of the same
behavior) has happened. In this case, the resource manager will
treat the business operations as completely separate requests
and attempt to fulfill them all.

• An arriving engagement hits multiple resource replicas.
When this happens, we have a number of possibilities. The
resource replicas could be active and passive. This means that
usually, we allocate just the needed business resource for the
business operation arriving on the engagement.
Sometimes, we have more than one active resource manager
replica. As the incoming engagement and its promise requests
are processed, we may over-allocate business resources in our
zeal to avoid coordination across replicas. Sometimes one
replica succeeds in allocating resources and another fails. As
the replicas exchange knowledge through their engagement
managers, any difference should be reconciled by calling into
application code for the resource application. This is an
additional complexity for resource manager applications.
Note that this is inherent in loosely coupled resource managers.
Because they both manage shared stuff (e.g. inventory) and
may fire independently to process the same request for
promises, they will need to reconcile conflicts in their answers.

7.4 Probabilistically Allocating Resources
Consider a participant managing an enterprise’s physical (or
logical) resources. Since this participant may be schismatic, we
allow for the resources to be allocated with partial knowledge of
what its replicas have done. This takes a risk that allows faster
responsiveness and higher availability. Alternatively, we must be
overly conservative in parceling out the resources.

7.5 Over-Booking vs. Over-Provisioning
If an independent replica of the resource manager is allowed to
promise business-resources, it must have a set of rules and a
bunch of allocated business-resources to promise. The resource
manager (i.e. the replicas managing the business-resources) may:

• Over-Book: This happens when a business-resource is
promised without certainty that it is available. “Last time I
heard from my replicas, there were plenty of widgets… This
should be OK”. If there are 3 replicas and 6000 widgets, each
may allocate up to 6000 if it really wants to do so.

• Over-Provision: There’re 3 replicas and 6000 widgets. Each
may allocate up to 2000 without coordinating. This will
ensure conservatism in the promises. It may also mean we fail
to accomplish work by being too safe.

This assumes independent replicas. While we are exploring this
independence, there are also options for selective consistency.

7.6 Selective Consistency… What’s the Cost?
Resource managers may have a sliding scale of consistency.
Sometimes, a replica takes independent actions. Other times,
tighter coordination is needed.

When you deposit your brother-in-law’s check for $100 into your
branch, there is no hold placed on the check. When you deposit
his check for $20,000, either there will be a hold or your branch
with coordinate over the phone to ensure the funds are available.
The consistency rules depend on the size of the check!
A replica may have business-resources that it can allocate and
promise unilaterally. If it has insufficient business-resources to
fulfill the promise, it can coordinate with its replicas to see if the
resources are available anywhere in the combined set of replicas.
Don’t deny a promise request without trying to coordinate:
If a single resource-manager replica cannot find what it needs in
its own pool, it may check with other replicas. This is an OK
business strategy but may mean the promise-request takes a long
time to satisfy. This is a consistency versus availability choice.

7.7 Predictable Resource Coalescence
Sometimes, multiple replicas will allocate resources for the same
promise request. When this happens, the working state for the
two promise-responses will be different. All of the schismatic
replicas receive information about their siblings’ working state.

As we coalesce two promises, the same winner and loser must be
chosen. This is essential to ensure the selection of the winner is
idempotent. If two replicas look at the redundant resource and
each cancels a different resource, we’d get a mess.
This provides eventual consistency. Eventually, it’s the same!

The algorithm for picking the winner or loser may depend on the
actual resources promised. For example, “I’ll keep the aisle seat
and cancel the window seat”. In the absence of resource specific
criterion, the winner must depend on some other artifact of the
working state that offers the same result wherever it is calculated.

7.8 Non-Repudiation and Phase-1
Whenever a resource promises to do something, we expect that
the promise will be accompanied by a special collection of data
known as non-repudiation data. Engagements have special
provisions for this data to be supplied and it is not a message in
the classic sense. Typically, the non-repudiation data is encrypted
in a fashion that makes it easily cracked by other replicas of the
same resource manager even later in time.

When a promise is made, the non-repudiation data should be
supplied. By the time we consider a Phase-1 for the long-running
business transaction, all promised resources should have this.

If a resource manager decides to renege on its promise, the non-
repudiation data is wrapped up in multiple layers of encryption
but is available to the root. Each layer of the business transaction
tree has wrapped up and encrypted all the promises made below it.

If needed, the business transaction can reincarnate any part of the
business transaction activities need to re-drive the work.
Remember, an activity is just code and a sequence of messages
fed to it. Interim state for the activity can be captured when it
choses to (or not to) supply non-repudiation data as an activity.
By encrypting at each level, we don’t violate any encapsulation
needed in a loosely coupled distrusting collection of machines.
Eventually, all the state of the business transaction is smashed
together and held at the root’s engagement manager.

7.9 Non-Repudiation and Phase-2
The business transaction (as knit together with engagements) may
live a long time. If I schedule a trip to Europe and book the trip in
March but take the trip in September, Phase-2 of the business
transaction will gradually occur in September as I complete my
various hotel stays and airline trips. In the meantime, the
engagements, activities, and resources allocated live in a
collection of records in various databases spread across
independent and autonomous systems.

Until I actually stay in the hotel in Paris, my non-repudiation data
is pretty important to me. While there may have been
intermediate booking agencies that prepared the reservations, I
want and need the ability to cry foul if there’s no record of my
stay when I arrive at the hotel lobby. The long-lived nature of this
business transaction, the ability to nest promises under activities,
and eventually complete the work (or present non-repudiation
data) are very important. Only after the work itself has happened
(and Phase-2 messages are sent over the engagements) does the
business transaction complete.

8. SOME MISCELLANEOUS THOUGHTS
Engagements offer a somewhat different way of thinking about
long-running work and how it can be delivered. We are arguing
that an approach that this allows for better service and SLAs with
crappier servers and components.

In this section, we first look at how the relationship between
active and passive replicas can provide a soft real-time behavior
providing a higher chance of meeting a deadline. Next, we
consider the consequences of non-repudiation and message
storage as it allows a participant to be very forgetful by depending
on the rest of the business transaction tree.

Following this, we look at the implications of high-failure rates
across schismatic participants. Because we can cope with failures
and schisms, we can function well with unreliable servers. It’s
better to have more cheap servers than a few reliable ones!

Finally, we consider what it means to integrate legacy servers
with all their strengths and weaknesses into a business transaction.

8.1 Timeliness, Timers, and Redundancy
Engagement managers deliver engagements and messages to
replicas of a participant. This can be used to manage SLAs
(Service Level Agreements) in a soft real time fashion.

Normally, the active replica does its work within an acceptable
window of time and its passive siblings replicas see the results of
the work at the same time as they see the request for the work.
When this works, we avoid any speculative execution with its
costs of redundant work and over allocation of resources.

When the active replica takes too long, an engagement manager
can speculate and find another replica to get the work done in the
agreed upon time frame. In this fashion, the probability of
meeting the deadline can be significantly improved while
engagements provide the framework for cleaning up the mess.

8.2 Taking the Low-Road on Durability
There’s nothing wrong with an activity participant implementing
its state in a fashion that may get destroyed in a system failure.
While it may not be the best performing choice (as contrasted
with keeping its state in a local database), it should be correct.

This is not as obvious an option for a resource participant since
they will typically have their own shared business state that will
not be captured in the non-repudiation data.

8.3 Taking the Low-Road on Clusters
Similarly, the systems implementing activities may take a casual
attitude towards the individual servers’ availability. By having a
bunch of servers (each with mediocre availability), we can have
high aggregate availability. When used for activities, this will be
just fine since the engagement mechanism copes with a replica
failing as well as schismatic behavior.

When implementing resource managers over a cluster of flakey
servers, that’s OK, too. You can choose to have a Dynamo-esque
[5] replication that ensures a sufficient number of replicas exist
for a resource manager at the risk of slight ambiguity in the
correctness of the results of the promise operations. This is just
like the classic over-booking ambiguities for many systems.

8.4 Dealing with Legacy Servers
Suppose we have a legacy application server on a mainframe or
some other server. How can it work with eventual ACiDity?

It is viable to implement an engagement manager that runs on the
legacy system. It may also run on another server sitting next to
the legacy system. The legacy server takes on the role of a

participant in the loosely coupled transaction. The specific role
(i.e. activity or resource) depends on the application running on
the server. Messages into and out of the legacy server are captured
and the sent to the application. It is presumed that messages may
be retried and, hence, the application is idempotent. To nest the
legacy system, we may need a compensating transaction, if indeed
the legacy system does not allow itself to be subservient.

9. CONCLUSION
This paper is a thought experiment. We believe that fundamental
changes have happened in distributed systems:
• Business transactions are getting more complex: They span

more disparate and autonomous computers than ever before.
Previously, complex business work moved from computer to
human to computer, etc. The intervening humans resolved a lot
of irregular behavior.

• Autonomous systems are normal: Nobody wants to trust
someone else’s computer tying up their resources. Surely, not
their locked records! Business resources (e.g. inventory) may
be held for a while but only to make a business deal work.

• Schismatic replication is a fact of life: People do work across
occasionally connected devices (e.g. phones). Teams have
many people advancing workflows in schismatic directions.
Cloud-based computation now runs across many datacenters.
Businesses may choose availability over consistency [4].

These fundamental changes call for new forms of work.

We propose a perspective on business work called eventually
ACiD business transactions. This is a type of long running work
with open nested transactions, the use of the promise protocol
with promise-based isolation, and a tree structure. Shared
resources are constrained to the leaves of the tree.

This paper also proposes a new communication mechanism called
engagements. With an engagement, any member may write
anything it wants. The other members see it eventually.
Engagements offer the following guarantees:

• Subjective history: As you see a partner’s message, you see the
partner’s view of the engagement when it wrote the message.

• Justification to replicas: Encrypted evidence may be sent to
replicas to privately explain what happened.

• Non-repudiation: Evidence written by a participant may be
tossed in its face if an autonomous system bails out.

• I’m flakey… Remember for me! Encrypted evidence may be a
form of durability. A participant may pass stuff it needs for
“durability” to other engagement members.

Using these proposed mechanisms, we have suggested some
possible improvements to the bleak picture we’ve painted:

• Eventual Atomicity: We may have missing parts of the
business transaction due to the flakiness of autonomous
participants. We may have extra work done due to schisms.
Eventually, the missing pieces are replaced (or the system
escalates the problem). Eventually, extra work is coalesced.

• Eventual Consistency: Once all the work is done, the business
rules are met and all the replicas agree (or an escalation occurs).

• Probabilistic Isolation: Since autonomous behavior can cause
repairs late in the transaction, we cannot guarantee two-phase-
locking [3][7]. Hence, we cannot guarantee isolation.
However, the use of open nesting to semantically isolate side
effects and the promises protocol to allow predicate-based
locking will dramatically reduce conflicts.

• Eventual Durability: While participants may be autonomous
and just toss durability out the window, a tree shaped
transaction based on engagements can catch evidence along the
way (at the partner systems) and be used to re-drive the work.
Either we will get the parts of the transaction to durably stick or
we will complain and escalate (potentially to humans).

Hopefully, we can use some of these techniques to broaden our
coordination of useful business work while lowering the demands
and expectations on the participants.

10. ACKNOWLEDGMENTS
We thank Jeremy Horwitz, Shel Finkelstein, Joe Hellerstein,
Ian Varley, and our anonymous reviewers for their great input.

11. REFERENCES
[1] Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.

(1995), Causal Memory: Definitions, Implementation, and
Programming. Distributed Computing, 9(1).

[2] Alvaro, P., Conway, N., Hellerstein, J., Marczak, W., (2011)
Consistency Analysis in Bloom: a CALM and Collected
Approach. CIDR 2011.

[3] Bernstein, P.A., Hadzilacos, V., Goodman, N. (1987)
Concurrency Control and Recovery in Database Systems.
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

[4] Brewer, E. A. (2000). Towards Robust Distributed Systems
(abstract). ACM Symp on Principles of Distributed Comp.

[5] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., Vogels, W. (2007). Dynamo: Amazon's Highly Available
Key-Value Store. Proc. of the 21st ACM SOSP

[6] Garcia-Molina, H., Salem, K., (1987). Sagas. SIGMOD.
[7] Gray, J., Reuter, A. 1992. Transaction Processing: Concepts

and Techniques. Morgan Kaufman
[8] Greenfield, P. Fekete, A. Jang, J., Kuo, D. Nepal, S. (2007)

Isolation Support for Service-Based Applications: a Position
Paper. CIDR 2007.

[9] Helland, P., Campbell, D. (2009) Building on Quicksand..
CIDR 2009.

[10] Jang, J., Fekete, A., and Greenfield, P. (2006). Delivering
Promises for Web Service Applications. Univ of Sydney
School of Information Technology. TR-605. Dec 2006.

[11] Lamport, Leslie (2001). Paxos Made Simple ACM SIGACT
News (Distributed Computing Column)

[12] Lynch, N., Gilbert, S. (2002). Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant Web
Services. ACM SIGACT News, Vol. 33, Issue 2, pg. 51-59.

[13] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz,
P. ARIES: a Transaction Recovery Method Supporting Fine-
Grained Locking and Partial Rollbacks using Write-Ahead

[14] Moss, J.E.B (2006), Open Nested Transactions: Semantics
and Support. Workshop on Memory Performance Issues.
http://www.cs.utexas.edu/users/speedway/DaCapo/papers/w
mpi-posters-1-Moss.pdf

[15] Reuter, A., Wachter, H. (1991) The ConTract Model. IEEE
Data Eng. Bull. 14(1)

[16] Vogels, W. Eventually Consistent. 2008 ACM Queue.
[17] Weikum, G.; Schek, H. 1992. Concepts and Applications of

Multilevel Transactions and Open Nested Transactions.
Database Transaction Models for Advanced Applications

[18] Wikipedia. Speculative Execution.

