Mirror mirror on the wall,
which query’s fairest of them all?

Georgia Koutrika

Alkis Simitsis

HP Labs
Palo Alto, USA

firsthame.lasthame@hp.com

ABSTRACT

Scientists heavily use database technologies to store and an-
alyze massive amounts of experimental data. However these
tasks require (sometimes, advanced) knowledge of a query
language, which is not necessarily amongst the normal skills
of a scientist. Database experts may help in the initial con-
struction of such queries, which are then stored in a repos-
itory. Afterwards, instead of writing queries from scratch,
stored queries can be re-used with few or no changes by
people in the same or a different research group. However,
as much as this is a desired reality, we are actually step-
ping into dreamland. Searching a pool of database queries
for those that fit in a certain analysis is not easy even for
experienced database users. One solution could be to pro-
vide a description for each query and then, use a keyword
search technique to identify queries of interest. But doing
this manually is time consuming, and its success relies on the
uniformity of the descriptions provided —which is extremely
hard when many query writers are involved in this effort as
typically happens. In this paper, we envision a system that
can understand the problems past queries solve, the compu-
tations they involve and their significance, and can help the
user compose the queries required for the task at hand using
this knowledge from past queries.

1. THE SNOW WHITE

The fairy tale. Nick, an astronomer, analyzes photo-
metric data for stars and galaxies using a database that is
accessed by several people and research groups. Here is how
Nick could interact with the system.

Nick: “How to compute a list of moving objects consistent
with an asteroid?”

System: “Here is a query I have seen that computes that:”

SELECT TOP 10 objID, ra, dec,
sqrt(power(rowv,2) + power(colv, 2)) as velocity
FROM PhotoObj

WHERE (power(rowv,2) 4 power(colv, 2)) > 50
AND rowv !=-9999 and colv !=-9999

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.

6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

Nick changes the value for rowv and executes the query.
The interaction with the system continues below.

Nick: “How to find stars that pass a certain standard of
clean photometry?”

System: “I have seen a similar query that selects galaxies
based on photometry values. ”

Nick: “Let me see and edit this query.”

In the interaction above, the system uses its memory of
past queries to help Nick with his task. It understands what
past queries do but also what individual parts within a single
query perform. Given a description of a desired computa-
tion or query from Nick, the system is able to figure out the
computations required, and by comparing to past queries, it
can find those that achieve the same or similar tasks. For
example, for the second request from Nick, the system finds
a query that involves some photometry computation but on
different objects (i.e., galaxies). If no matching queries exist,
the system can suggest a group of queries, each query cover-
ing some part of the computations required, and a new query
could be composed by combining parts of these queries. In
addition, the system can provide explanation of the recom-
mended computations or queries to Nick.

The reality. Scientists like Nick heavily use database
technologies to store and analyze massive amounts of exper-
imental data. Such data analysis requires (sometimes, ad-
vanced) knowledge of a query language, which is not neces-
sarily amongst the normal skills of a scientist. Often, database
experts may help in the initial construction of such queries.
Instead of writing queries every time from scratch, queries
built once can be stored in a repository and can be re-used
with few or no changes by people in the same or a different
research group.

However, searching a pool of queries for those that fit in
a certain analysis is not easy, even for experienced users.
Modern DBMSs offer a primitive way to search for stored
queries or procedures based only on their definition. For
instance, one could search for stored procedures that refer
the same column using a SQL query like this one:

SELECT OBJECT_NAME(M.object_id), M.* FROM sys.sql_modules M
JOIN sys.procedures P ON M.object_id = P.object_id
WHERE M.definition LIKE ’\Y%thiscolumn\’’

Searching based only on the structures the queries touch
is not helpful. Ideally, we want to search queries based on
their intent, functionality and output. One possibility could
be to provide a set of query templates to guide users in writ-
ing their own queries. SkyServer is a website that presents
data from the Sloan Digital Sky Survey, a project to make

a map of the universe. The website offers a page with “sam-
ple queries designed to serve as templates for writing your
own SQL queries. ... (these template queries are) written
to solve real scientific problems submitted by astronomers.
Those queries are divided by scientific topic.” One example
template query is shown in Figure 1 describing bluer galax-
ies, and it has three parts: a short title, a description of the
query in natural language, and the SQL query itself.
Providing query templates can help users. But it is a man-
ual process and does not automatically scale to any data or
queries. Furthermore, users can relatively easily browse a
handful of queries; trying to do so with hundreds of queries
that may be provided by other scientists is not possible.
The vision. In this paper, we envision a system that can
understand the semantics of queries and of the individual
computations within a query, and can help a user build the
queries for a problem at hand. The system enables users
to search for queries based on query purpose, output, and
semantics. It digs into the system ‘memory’ of queries, and
it returns queries ranked according to how well they match
the user search criteria. The system can also provide a set
of queries that partially achieve the user’s goal but can be
combined or partially re-used to formulate the desired query.
Although a human-like interaction with the system (like
the one taking place between Nick and the imaginary sys-
tem) is nice, here we do not envision an AI system that can
perform intelligent dialogues. There are also other ways this
interaction could be performed, for example through a col-
laborative GUI (as in [1]) or based on simple patterns that
could build some primitive dialogues. However, this inter-
esting but orthogonal topic is not the focus of this paper.
The challenges here lie in transforming a database system
from an efficient but passive query execution engine to an
intelligent collaborative system that can help people using
search to identify or build queries based on the queries previ-
ously seen by the system. Starting from a simple approach,
we explain the main challenges, then we outline possible so-
lutions, and research directions.

2. THE SEVEN DWARFS

One possible approach to implementing this system would
be an NLP system that starts from a problem description
and builds a query that when executed over the underlying
database generates the desired results. However, such a sys-
tem has been the holy grail of NLP for decades [4]. NLP
techniques need very fine tuning and even then, ambiguities
may still exist. In this paper, we follow a different approach
trying to exploit the structure and semantics of queries and
thus, to solve the problem by reducing the need for a pure
NLP approach. We describe a system that comprises seven
components (dwarfs) and we discuss how to approach each
component (see Figure 2).

Query Writer. A query interface allows users to write their
own SQL queries over the underlying data. Queries issued
to the system can be stored and become available to other
people. The query interface may allow a query writer to
choose the queries that will be stored in the system. This
may be desired for a number of reasons. A query may be re-
formulated several times before getting finalized. Storing all
intermediate variations may not be useful. Another reason
may be that a person may choose not to share a query.

"http://skyserver.sdss3.org/dr9/en/help/docs/realquery.asp

Galaxies with bluer centers, by Michael Strauss.

For all galaxies with r Petro < 18, not saturated, not bright, and not edge,
give me those with centers appreciably bluer than their outer parts,

i.e., define the center color as: u psf - g psf, and

define the outer color as: u model - g model;

give me all objs which have (u model - g model) - (u psf - g psf) <-0.4

SELECT TOP 1000

modelMag_u, modelMag_g, objID

FROM Galaxy

WHERE

(Flags & (dbo.fPhotoFlags(”SATURATED”) +
dbo.fPhotoFlags(’BRIGHT”) + dbo.fPhotoFlags(’EDGE”))) = O
and petroRad_r < 18

and ((modelMag_u - modelMag_g) - (psfMag_u - psfMag_g)) < -0.4

Figure 1: A sample query from the Sky Survey site

Query Translator. For a new query g to be stored in the
system repository, we need to provide a textual description d
that explains what the query does. For this purpose, here,
we describe the following options.

Query writer as translator. The query writer provides the
description d, as happens with the query in Figure 1. In
fact, that particular person has provided a title (short de-
scription) and a more detailed explanation for the query.

Crowdsourcing. Instead of relying on one user to provide
a single description for a query, we can outsource the task
to a large group of people in the form of an open call. One
advantage of this approach is that we may have more than
one translation per query and in this way, we may be able to
capture different ways people would follow to describe and,
hence, to search for such a query.

Automatic Query Translation. Another option for query
translation is to use a system like Logos [2] that provides nat-
ural language translations for relational queries expressed in
SQL. Logos represents various forms of structured queries
as directed graphs and annotates the graph edges with tem-
plate labels that are used by the translation mechanism.

With the help of the query writer and translator, we can
get pairs <q,d> and store them in the system repository.
Now each stored query gq is represented by its description d.
Hence, in order to find ¢ we need to match d. Viewing d as a
document, our problem becomes a document search problem
that could be solved using an IR approach. A user with a
particular analytical task in mind provides a textual descrip-
tion ds of the desired query or computation. We can retrieve
all d’s that overlap with ds and return a list of pairs, <q, d>,
ranked according to how well d matches ds. The ¢ with the
highest ranked d should be the query that is described by d.

Following this approach, the remaining components of the
system architecture are as follows.

Indexer. For searching stored queries based on their de-
scriptions, the indexer generates and indexes a representa-
tion for each d. First, common stopwords, such as preposi-
tions and frequent words (such as “find”, “compute”, “define”,
etc.), are removed. Stemming can be used to create a stan-
dard representation for different word forms with similar
meaning (e.g., ‘search’; ‘searching’). Finally, the resulting
words are used to represent d, for example as a term vector.

System Repository. The system repository stores the
queries and their descriptions. Inverted files are used to store
how terms are found inside query descriptions and allow for
higher efficiency during retrieval. We need two such files:
one for mapping terms to descriptions, t — d, and one for
mapping descriptions to queries, d — gq.

Query Query
Writer Searcher
<g>
1 Y
{<q,d>,r>}
Query
Translator
<qg,d>
<d>
Y
Indexer [« Repository Analyzer <> Ranker
S

&

Figure 2: Seven dwarfs to the rescue

Query Searcher. A query interface allows people to
search for queries stored in the system. A user provides
a description ds for the desired query. ds may be a set of
keywords or it may be a more free-text description. The
system returns a list {<q,d>,r} such that d of ¢ matches
ds and r is the matching score. The interface can show the
parts of each d that match ds. The user can select one of the
proposed queries and use it as it is or modify it and execute
it. Or if not yet satisfied with the returned queries, she could
change her desired query description ds and search again.

The system generates the list {<gq, d>,r} with the help of
two components, the analyzer and the ranker.

Analyzer. The query analyzer is responsible for taking
the description ds and transforming it to a representation
that can be matched against the stored information. For
example, we could represent ds as a term vector.

Ranker. The ranker uses the index ¢ — d to retrieve all
descriptions d that contain common terms with ds and then
computes the similarity between d and ds using a similarity
function, such as the cosine. The result is a list {<q,d>,r}
ranked according to how well d matches ds.

This approach to our problem seems reasonable. However,
the seven dwarfs can save Snow White if no Evil Queen ex-
ists. In what follows, we discuss some of the challenges that
complicate the process.

3. THE EVIL QUEEN

Challenges come with the query translation and the inter-
pretation of SQL semantics and query computation.

Different query translations (NL Gap). When hu-
mans are involved in providing the explanation of queries,
this has the advantage that they will potentially describe the
query in a very natural, user-friendly way that other people
can understand. However, it does not mean that human-
provided query descriptions will be ‘informative’ enough for
the system. Let’s take the example query in Figure 1. The
writer has provided two different descriptions each one going
at a different level of abstraction and hence both being very
important. However, the short description alone does not
capture the query computations involved while the longer
one alone is too detailed and does not easily convey the
query intent, that is to find bluer galaxies.

On the other hand, an automated solution guarantees that
query translations are machine-useful, but it may not be able
to cover all possible queries in a good way. For example,
there are queries that in SQL look very complicated (for ex-
ample, queries with nested parts or several joins) and hence,
an automated system may also generate a complicated de-
scription, whereas a person may be able to summarize the
query intent in a more concise and meaningful way.

ql Find galaxies and their distances for galaxies with g magnitudes between 18 and 19.

SELECT TOP 10 objID, distance FROM Galaxy
WHERE cModelMag_g between 18 and 19

g2 Find galaxies and their g magnitudes for galaxies with distances between 0.05 and 0.07.

SELECT TOP 10 objID, cModelMag_g FROM Galaxy
WHERE distance between 0.05 and 0.07

Figure 3: Similar-looking queries with different se-
mantics from the Sky Survey site

Finally, the query searcher may issue a query description
that does not match the description kept in the system.

Missing SQL Semantics. If we follow an IR approach
and represent query descriptions as bags or vectors of words,
we end up missing the intended semantics of the SQL query.
As an example, consider the queries ¢ and g2 shown in
Figure 3. Both of them can be represented with the bag of
words {galaxy, distance, g_magnitude}. Then, when we store
q1 and ¢z in the system, we have no way to tell them apart.
If the user provides a description ds targeting any of the
two queries, the query analyzer would convert ds to a term
representation, and finally both ¢1 and g2 would be ranked
as equally relevant to ds. Even worse, say the system only
knows of g2 but the user is looking for ¢;. Then, the system
will provide g2 as relevant, which is not correct at all.

In our example above, it may be relatively simple for the
user to see that the returned query is not what she was
looking for and how it can be fixed. However, for more real-
istic queries, which involve more attributes, joins or nested
parts, returning a different query or set of queries that are
all ranked the same is not only incorrect, but also confusing.

Understanding Query Computations. Comparing
queries using their term representations can tell us how sim-
ilar their query descriptions are. However, it does not neces-
sarily capture how similar computations the queries perform.
The user may be looking for a query involving computations
that are partially contained in some stored queries but no
single query covers them all. Let’s use our example from
Figure 1. This query contains two main computations: (a)
galaxies not saturated, not bright, and not edge, which is
represented by this query construct:

(Flags & (dbo.fPhotoFlags(‘SATURATED’)
+ dbo.fPhotoFlags (‘BRIGHT’)
+ dbo.fPhotoFlags(‘EDGE’))) = 0

(b) galaxies with difference between outer color and cen-
ter color less than -0.4, which is described by this piece of
SQL:

((modelMag_u-modelMag_g) - (psfMag_u-psfMag_g))< -0.4

Say the user is searching for a query that contains one of
the above computations and also the computation on dis-
tance of query ¢z from Figure 3. Ideally, the system would
suggest both queries and highlight in each query the part
that performs the desired computation. The user could then
compose the two queries into one that performs the desired
computations.

4. THE SEVEN DWARVES AGAIN

Such challenges indicate that we need to take into account
both the semantics of the queries stored in the query pool
and also, the hidden semantics in the description provided
by the query searcher. We also need to be able to decompose
queries and descriptions into smaller meaningful components
that can be searched, matched, and combined.

Having humans in the loop annotating not just a query as
a whole but also parts of it cannot help much due to the com-
plexity of this task. Hence, we consider using an automatic
query translation method, like Logos [2], as an intrinsic part
of the system. The input to the query translator is a query,
which can be represented as a query graph (i.e., a DAG).
This query targets a database, whose schema can be repre-
sented as a database graph (i.e., another DAG). The edges
of the database graph are connections among database con-
structs, for example, tables to tables (e.g., through joins or
keys) or tables to attributes (e.g., through projections or
selections). These edges can be annotated with labels cap-
turing the semantics of edges in natural language; e.g., a join
edge connecting the tables galaxies and stars may have a
label ‘stars that belong to galaxies’. For more generic and
extensible labels, we can use a template language to write
labels. In doing so, we essentially decompose a query to
smaller pieces accompanied with a template and a respec-
tive description. Thus, as we parse a query graph, we can
create sentences by composing the template labels according
to the query structure. Then the translation problem can
be seen as an effort to maximize the query coverage with the
smallest number of templates [3].

Query semantics. Using an automatic query transla-
tion method as an intrinsic part of our architecture enables
some additional features. When a query ¢ is issued, then the
translator decomposes it into a set of query constructs, say
{¢:}, and using the library of predefined templates over the
database schema, finds those templates {¢;} that match {¢;}
best. Thus, instead of indexing only the query descriptions,
we can also index the query structure at the granularity of
the templates composing the query ¢. In particular, we in-
dex both abstract templates and their instantiated values.
For example, assuming that a query g contains a predicate:
dbo . fPhotoFlags (‘BRIGHT’)=0, an abstract template c cov-
ering this would be: ‘dbo.fPhotoFlags(’ + val + ¢)=0’,
which can produce the sentence: ‘galaxies that are not ’
+ val. The latter can be instantiated with val=BRIGHT and
produce a description d:‘galaxies that are not bright.
We keep both the template ¢ and the description d in our
index scheme. The former, as we explain below, helps in
finding query patterns that may fit in the description ds
posed by the query searcher based on the computation they
capture, and the latter can be used for textual search.

NL semantics. We also need to elaborate on the part
of our architecture that analyzes a requested description d.
Treating ds as a single keyword query may return a very
large hit list depending on the size of the query pool. In-
stead, we decompose ds into a set of phrases {p;}, which we
use to create a set of phrasal queries. We create two kinds
of phrases: {p;}={p;}U{p}}. First, the analyzer using an
entity resolution module determines which part of ds corre-
sponds to what query construct (e.g., predicate, selection)
and keeps these results as a set of phrases {p;} For exam-
ple, for the query g1 shown in Figure 3, in the following sub-
set of its description ‘find distances for galaxies’, two
possible p;- would be: ‘find distances’ and ‘for galax-
ies’; the former is a projection and the latter identifies the
table name. Second, the analyzer performs a join of a slid-
ing window over ds; with the abstract templates stored in
the index (these are kept in the inner loop of the join). In
doing so, it identifies query patterns that may be hidden
in ds and stores them as a set of pattern phrases {p;’}.

The same example extract from g1 matches an abstract
template ‘find <> for <>’ that gives a query template like
‘select <> from <>’ and thus, this template can be used as
a pattern phrase pf.

Next, we probe the index with {p;}. The constraint that
p;’s correspond to specific query constructs prunes the search
space. The result of this task is to get a set of query con-
structs {g;} corresponding to the phrases {p;}.

Composition. As anext step, the analyzer creates groups
of query constructs (e.g., subqueries) that can be combined
together for producing larger queries, say {qr}. The search
space is large, but it can be pruned with heuristics that halt
the creation of queries not needed (e.g., by using the query
patterns found from ds). For each query gi, we also have its
translation di. Thus, we measure the similarity: sim(ds,dx)
and use it for ranking the results.

5. HAPPY ENDING (?)

Fairy tales should have a happy ending. We believe that
this can be the case with our story too. Here, we described
a system that allows users to search into a query pool using
textual descriptions for queries previously posed that could
be useful for their tasks. If a single query cannot be found,
then we help users write a new query by composing parts
from queries that only partially fit the user search. But, this
is only a first step as several challenges remain unanswered.

For example, for some queries it is hard or even impossible
to provide good or meaningful translations [5]. A hard case
would be a deeply nested query. On the other hand, a large
query may produce a large and convoluted translation; this
is not useful either. In such cases, we need a laconic query
translation, which can be given by the person that wrote the
query or with the help of the crowd (e.g., Mechanical Turk).

In our analysis, we have assumed that the persons us-
ing the query writer and the query searcher have access to
the same database (e.g., they belong to the same research
group or research facility). Open problems exist even in
such a setting; for example a database may have evolved
over time. Going beyond, we envision a global community
of users that share their queries and then, use them in their
local environments, which may involve different databases
with possibly different schemata. In this setting, additional
challenges arise. Schema mapping techniques may help, as-
suming that the users also share their schemata. But we
believe that a more practical approach would be to attack
this problem with a generalized indexer in synergy with a
domain ontology. For example, if a query maps to a star, we
can also connect it to the galaxy to which this query belongs
to. Similarly, we can deal with naming issues, for example
when two database constructs in two different databases re-
fer to the same concept but have different names.

?1' REFERENCES

] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu. A Case for A Collaborative Query
Management System. In CIDR, 2011.

[2] A. Kokkalis et al. Logos: a system for translating queries
into narratives. In SIGMOD, 2012.

[3] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Explaining
structured queries in natural language. In JCDE, 2010.

[4] M. Minock. C-Phrase: A system for building robust natural
language interfaces to databases. DKE, 69(3):290-302, 2010.

[5] A. Simitsis and Y. E. Ioannidis. DBMSs Should Talk Back
Too. In CIDR, 2009.

