Abstraction without regret in data management systems

Christoph Koch, EPFL DATA Lab
christoph.koch@epfl.ch

1. MOTIVATING ABSTRACTION

The long-term impact of any research community depends
on the timelessness and power of the ideas, concepts, and
techniques developed by it. Research that fails to be suffi-
ciently original and that does not create deep insight is likely
not to have — and arguably does not deserve — substantial
long-term impact.

There are timeless classics among systems papers that
stand as examples of what systems research can be and that
have motivated countless young researchers to have a career
in this field.

But there seems to be a problem in data management
research today, best evidenced by the following observation.
At some point, most researchers and all academics get into
the situation to be asked to recommend a representative set
of classic database papers to researchers in other fields or to
create a reading list of classics for an advanced course. In
that case, we frequently end up with a set of quite old papers
(c.f. e.g. the Red Book [8]). These picks have a tendency to
be co-authored by Jim Gray. If the reading list is for a
broader systems course, we end up struggling to come up
with a set of papers that can stand up against the best
papers from SOSP and SIGCOMM, conferences that seem
to publish fundamental, clean papers more frequently, even
in recent years.! (Researchers in these communities may see
things differently [12].) Most papers do not qualify for such
a selection as they cater to short term fashions or simply do
not aim hard enough at providing definitive solutions.

We sometimes think of our community as one that is not
very good at citing properly and giving credit. In fact, citing
fairly is hard because it is frequently difficult to judge a pa-
per’s merits and novelty as ideas are not sufficiently worked
out and their deep, rather than superficial, relationship to
previous work is not presented in the paper. What is fre-
quently lacking is a conclusive deconstruction of the research
contribution into first principles and fundamental patterns
from which the contribution is composed.

We can hardly blame individual researchers since we, as a

!This is a lesson from the trenches as I currently co-teach
a Principles of Systems course with several systems profes-
sors and have struggled to create such a list. I challenge the
reader to come up with a representative list of papers iso-
lating principles of data management systems in the spirit
of systems papers such as [9, 16].
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community, have made little effort to extract the fundamen-
tal principles underlying our work. We can even see this in
our courses and textbooks. While several of our textbooks
bear Principles and Concepts in their names, they contain
some fundamental concepts (such as transactions), but also
plenty of recipes, which on further analysis easily decom-
pose into more fundamental ideas. I will give an example —
out-of-core algorithms — to illustrate this in the next section.

For comparison, the systems community is ahead of us
here. Systems courses are frequently structured to map
course modules to fundamental principles such as aiming
for abstraction (modularity, layering), virtualization, client-
server, the end-to-end principle, and so on. Frequently, such
courses manage to do completely without recipes lectures.
Textbooks like [17] aim to address systems from such a pure
standpoint.

Just like the publication of Gamma et al.’s Design Pat-
terns book [5] has had great impact in software engineer-
ing, we should look for data management’s own fundamental
patterns and principles. In many cases, they may be simple
compared to the research in which they are currently buried.
I believe this is a necessary exercise, since our community
has not focused enough on identifying its principles in their
full generality so far.

A research community which does not succeed in making a
claim on fundamentals and in exposing its results to the rest
of the world in sufficient clarity risks becoming obsolete, with
its best work being reinvented elsewhere without the original
authors getting credit. Some of this happened recently as
part of the big data revolution (cf. [4]). Aiming to discover
a core of data management beyond our previous efforts is
the best way of protecting the same efforts.

2. EXAMPLE: LOCALITY PRINCIPLES

The ability to turn insights regarding the cost of mov-
ing data (inside the memory hierarchy and across machines)
into high-performance systems and algorithms is a key com-
petence of our research community. Nevertheless, even our
textbooks provide little more than recipes for solving some
concrete technical problems, such as sorting on a hard drive.
But what are the fundamental principles, design patterns,
and methods underlying the construction of efficient systems
and algorithms that are aware of the memory hierarchy and
storage devices? Currently, when researchers face the chal-
lenge of designing a, say, join or sorting algorithm for a new
kind of device, they are completely on their own; there is
not even a methodology to address the problem. I believe
that this is a great field for fundamental research.

The systems research community is somewhat ahead of
us in that it identifies exploiting locality as fundamental to
performance [17] but equates it with the caching principle



[3]. It appears that there are other principles underlying
data locality than caching; for example, the GRACE hash
join employs partitioning to make more focussed use of main
memory. Many parallel systems employ partitioning to move
the computation closer to the data and perform divide-and-
conquer in parallel. Join and sorting algorithms on hard
drives optimize for sequential rather than random access.
An argument for optimizing access to collocated data can
be made for other forms of storage such as flash as well, and
even main memory (because of block transfers and transla-
tion lookaside buffers). None of these ideas are subsumed
by caching (although TLBs themselves are caches).

On a high level, we can easily identify three principles:
(1) caching, (2) partitioning, and (3) respecting co-locality
of storage in data transfers between levels of the memory
hierarchy (one implementation of the latter is sequential ac-
cess to hard drives). There are probably more, and some of
the above (partitioning?) should not be treated as just one.

We can turn principles into basic design patterns. For
example, a pattern that combines the first and the third
principle is: turning a scan of a collection of data on one
level of the memory hierarchy into a hierarchical scan that
employs a block of memory on the next higher level of the
memory hierarchy (smaller but faster) as a buffer, transfer-
ring collocated data at the granularity of blocks.

The key out-of-core algorithms such as a block-nested loop
join or a GRACE hash join, which we consider fundamental
contributions of our community, are compositions of more
fundamental ideas. It is striking that our textbooks report
such recipes, but do not attempt to deconstruct them into
the fundamental constituents that they are composed of.

For instance, the block-nested loops (BNL) join can be
obtained as the result of the composition of the naive nested
loops join

for each tuple r of relation R {
seek r; transfer r;
for each tuple s of relation S {
seek s; transfer s;
if cond(r, s) then output (r,s) I}

with the hierarchical scan pattern (twice), which results in

for each block BR of relation R {
seek begin of BR; transfer BR;
for each tuple r of BR {
for each block BS of relation S {
seek begin of BS; transfer BS;
for each tuple s of BS {
if cond(r, s) then output (r,s) i3

and then moving the second for-loop (looping over individual
tuples r of block BR) in.

The reader can verify the author’s intuition that most if
not all of the proposed join algorithms in the literature are,
assuming suitable formalism, compositions of much simpler
algorithms on a random-access memory model with quite
orthogonal ideas that relate closely to the storage device or
memory hierarchy. The latter are often the same for other
out-of-core algorithms on the same storage device/memory
hierarchy. Thus there are in the product more out-of-core al-
gorithms than there are basic algorithmic ideas and device
models. These could be put into a library that is poten-
tially much smaller and simpler than the literature on the
topic! Also, as a new device (such as, recently, flash) comes
along, we have a methodical and productive way of getting
good out-of-core algorithms for the device: by composing
the (memory-hierarchy oblivious) basic algorithm with spe-
cific patterns that capture the peculiarities of the device.

It should be possible to perform this form of composition
automatically.

3. COMPOSING SYSTEMS

The goal of this paper is not to give a polemic about re-
search in our community but to discuss a vision of perform-
ing research and building systems more abstractly, without
regret (= a performance penalty).

I argue that much of our past research work has effectively
— sometimes unknowingly — performed manual composition
of more fundamental ideas and patterns.

At a recent major database conference, a keynote on ad-
vice for young researchers suggested that there are num-
ber of data models times number of technical challenges in
databases many database papers to be written, and when-
ever a new data model arrives, we can write plenty more
papers. I believe that many of us tap into this source of
paper topics. This lends support to my claim that much
published research is the composition of more fundamental
ideas. Taking the argument in reverse, there should be a
relatively small core of fundamentals to much of our work.

These fundamental building blocks should be identified,
consolidated, and collected for two reasons. First, along the
lines discussed above, the consolidation may guide our fu-
ture research and steer our activities towards creative orig-
inal work — it will be much simpler to tell which work is
incremental. It will allow us to better understand our con-
tributions in their full generality, and how they interact in
generality with other fundamental patterns. This is ulti-
mately key to allowing for our work to remain relevant in
the face of change.

But in addition to this, if we put these core building blocks
into a software library, we can resort to it to perform such
composition automatically in the future. The desired com-
position can be achieved by implementing a system in a
high-level programming language, using this library. The
composition is specified using constructs of modern object-
oriented programming languages such as association, aggre-
gation, genericity, and composition through multiple subtyp-
ing (of e.g. Java interfaces or mix-in composition using Scala
traits) and various more advanced patterns of composition
that can be defined in such languages [5]. The composition
is then performed by a compiler.

This clashes with the received wisdom in systems con-
struction, which dictates that while modern compilers have
freed us from the need to write assembly code in most scenar-
ios, they are not good enough to allow for truly high-level
programming without incurring a substantial performance
penalty. Systems programming, with a few exceptions, has
remained the domain of the C language.

Programmers continue to perform manual code inlining
on a large scale, with all the productivity issues this entails.
For instance, in Postgres, there are tens of slightly divergent
copies of the code corresponding to the abstractions of pages
and B-trees, as a way of achieving performance, not as a
certificate of disorganized growth. The main commercial
RDBMS systems consist of millions of lines of code each,
which suggests that similar inlining is happening there.

The received wisdom is also that the concurrency con-
trol/buffer management/storage and indexing subsystem of
a DBMS is notoriously monolithic, heavily interdependent,
and thus a great challenge to build and get right (cf. [10]).
Of course we could build the three components generically
and individually, with clean interfaces, and then employ an
optimizing compiler to aggressively inline them. It would
be worth understanding whether automatic composition by



modern compilers is still not good enough to follow such a
path today, and what would need to be improved.

There are many cases where automatic composition of
clean, simple, and generic components by an optimizing
compiler may lead to systems that are just as fast or bet-
ter than those where this composition is done by humans;
in addition, there is a very substantial argument for letting
the compiler do the work; we may cite productivity and our
wish to do work that is future-proof (the composition can be
automatically done by the compiler again in a changed en-
vironment where the mix of input components is different).

A classical success story in this space is Singularity [7], an
operating system entirely written in a high-level language
and run as managed code (in a virtual machine). Singular-
ity is more efficient at many key OS tasks than any of the
mainstream OS, and does not rely on the compiler to per-
form magic: instead, it exploits insights obtained by static
analysis to avoid doing some work at runtime. Clearly, it
would be worth attempting to build database systems along
these lines.

In the remainder of this paper, I will take another path.
I will argue that modern extensible, staged compilers in-
formed by our intervention will allow to perform automatic
composition without performance penalty, achieving abstrac-
tion without regret. This concerns contributions of relatively
small (such as join algorithms) to very large complexity
(such as complete database systems).

A successful example of this already exists in the form
of SPIRAL, a synthesis tool for generating extremely effi-
cient code (at least as good as the code human experts can
realistically write) from high-level programs in the domain
of signal processing [13]. It is based on extending compilers
by domain-specific optimization ideas. Somewhat similar ef-
forts have been made in the context of query optimization
[6], though with arguably more moderate success. The rea-
son why I think the time is ripe to reconsider this path is
that now we are getting help from the PL and compilers
communities. Efforts are underway [15, 2] to build extensi-
ble compilers of complete high-level programming languages
as libraries that large communities of developers will lead to
maturity, lowering the challenge for us to make composition
fast in our domain.

4. LMS: THE COMPILER AS A LIBRARY

With the latest generation of programming languages, lan-
guage virtualization and powerful features for software com-
position have come of age. These features allow us to offer
optimizing compilers as extensible libraries. EPFL’s LMS
[15] and Stanford’s Delite [2] are examples of such libraries.
By their extensibility, they add a further quality to the offer-
ings of optimizing (just-in-time) compilers such as those of
LLVM and Java Hotspot. By their generality — supporting
all of a general-purpose language (Scala) — they can be used
to compile and optimize both entire data management sys-
tems and queries processed by those in one uniform frame-
work. For comparison, extensible optimizers such as Star-
burst [6] can only handle the latter. The attractive promise
of extensible compilers is that they may eliminate all the ad-
verse effects of programming in the abstract by automatic
composition, aggressive inlining, loop unrolling, and fusion;
this has been referred to as abstraction without regret.

Such compilers-as-libraries are an interesting resource for
constructing and composing (data management) systems.
With relatively little effort, we are able to build systems on
a higher level and in a radically simpler way than in the
past, without neglecting performance.

Garbage-collected memory management, functional pro-
gramming, and object orientation in modern programming
languages create many potential inefficiencies such as un-
necessary object creation, data (structure) copying, and, in
consequence, suboptimal data locality. Compilers need to
eliminate as many of these as possible for performance. Re-
cently, just-in-time compilation and adaptive optimization
in the virtual machine have been employed to push the state
of the art, for example in LLVM and Java Hotspot.

Lightweight Modular Staging (LMS) is a library built in
Scala that performs many of the typical optimizations imple-
mented in these systems on an abstract syntax tree (AST)
of Scala. This AST is part of the LMS library, and, using
language virtualization, LMS is also able to lift Scala code
to an AST representation. That is, it does not require, or
implement, a separate Scala parser: A Scala program com-
piled with LMS will execute with a redefined “semantics of
Scala” that, rather than evaluating the Scala code, turns it
into an AST. Of course, a Scala program can employ a con-
trolled mix of Scala code that is processed in the normal way
and code that will be turned into an AST for processing by
LMS.

The optimizations currently implemented in LMS include
duplicate expression elimination, loop fusion, also for higher-
order functions such as map and filter on collection types,
loop and recursion unfolding, and turning code into admin-
istrative normal form, which makes it easy to generate im-
perative code from functional programs. (Similarly, LLVM
creates static single assignment form code representations).

Compared to LLVM and Hotspot, the advantage of LMS
is its easy extensibility — any optimization can be overridden
or refined using mix-in composition. Moreover, the result of
a set of optimizations is a Scala AST, which can be inter-
preted, for which code can be generated in Scala or other
languages (such as C), or which can be further optimized
in another stage of LMS. This allows to build static and
just-in-time compilers with various flavors of adaptivity.

The extensibility of LMS in a sense guarantees that ab-
straction without regret is achievable: if we find that the
optimizing compiler does not produce good enough code in
a scenario, the library allows us to override or refine its op-
timizations at an arbitrarily fine-grained level. Not just can
we replace optimizations at the level of types, but we can
catch and override individual (conditional) cases of pattern
matching of the AST.

S. STAGED COMPILATION OF SYSTEMS

Staged compilation is not new to databases: Since the
earliest times of System R, database queries have been just-
in-time (JIT) compiled, at query time, from the SQL virtual
machine to executable machine code. A number of recent
papers have returned to this idea [14, 1, 11]. Using LMS, we
can perform staged compilation of the entire system’s code,
rather then just the queries, which allows us to do substan-
tially more. Specifically, we can write the entire system in
high-level code, and rely on the compilation framework to
create code at the level of efficiency achieved by en experi-
enced systems programmer using a low-level language.

Meta-levels, and bridging them. In query engines, we
usually process queries in multiple stages, each with their
own distinct internal representations. An RDBMS usually
has distinct intermediate representations (IRs) for SQL, aug-
mented SQL, the query algebra, and query plans. The above
query JIT compilers have additional stages for low-level code
representations.

LMS admits a subtle but fundamental deviation from this:



The IRs of the various stages are all instances of the Scala
AST, with different IR-specific data types. For example, in a
relational algebra stage, we are not dealing with a separate
relational algebra language but with Scala objects from a
relational algebra operator class hierarchy.

Traditionally, we do not take such an approach because it
would require us to write an optimizer for a much larger lan-
guage (than we traditionally feel necessary). With LMS, we
are provided with a complete optimizing compilation frame-
work for Scala, so this is not a worry.

This has a number of interesting consequences. Tradition-
ally, we are forced to a certain sequence of compiler stages
because we switch IRs between them. Now, using the same
IR throughout compilation, we are free to choose stages ei-
ther for modularity — for handling code complexity — or to
defer parts of compilation to a later time (e.g. for just-in-
time compilation).

More fundamentally, this allows us to deal with multiple
meta-levels in the same compiler and even to bridge these
levels: Observe that, above, we have been quite carelessly
mixing two meta-levels in our discussion of compilation. We
called for the application of optimizing compilation both to
queries — as work such as [14, 1, 11] does — and to the
database systems themselves, that is, both to a classical
database system’s source code and to the query plans that
they maintain and interpret, at runtime, in data structures.
Our approach here allows us to do more than just (indepen-
dently) compile at several meta-levels at once: It allows us to
bridge meta-levels, allowing us to do unusual and interesting
things within the compilation framework. Two examples:

Breaking the meta-wall 1: code generation and
algorithm synthesis. Consider the kind of synthesis of
out-of-core algorithms that was described in Section 2 —
from simple abstract algorithms, descriptions of the ma-
chine/memory hierarchy, and simple memory-hierarchy re-
lated optimization patterns. If we consider for instance an
index-nested loops join, the choice to use an index results
from optimization, and is part of the query plan meta-level;
at the same time, the join operator code lives in the query en-
gine. Keeping a strict separation between meta-levels (and
not staging the compilation of all of the code involved), the
kind of synthesis we have suggested would not be possible.

For comparison, a classical query compiler would trans-
form and optimize a query plan; in the final stage, it would
perform code generation for the optimized plan. The result-
ing code lives on the lower meta-level, but is not available
for further optimization within the framework.

Breaking the meta-wall 2: synthesizing cost func-
tions. The availability of the AST of the DBMS’s entire
codebase, if we want it, also allows us to implement inter-
esting transformers and interpreters with unusual semantics.
For example, we can write — and should make part of the
library — a form of interpreter for cost function synthesis:
This one simply traverses the AST and coarsens it to a cost
function. For an expression e of the form “loop 500 times {
e’ }”, we can coarsen to cost(e) = 500 x cost(e’); the cost of
certain nodes in the AST will be zero, while others, such as
a system call accessing a disk, will weigh in. Costing recur-
sive functions will involve solving recurrences, which in the
case of most DBMS primarily applies to traversing B-trees
and plan trees (and here the recurrences are simple). Cost
function synthesis involves two meta-levels: part of the code
that we coarsen to a cost function is from the database sys-
tem, but the cost function is for (part of) a query plan, and
can be used in a query engine that interprets that plan.

6. SUMMARY

This paper has argued for us to work at a greater level
of abstraction, both in our research and in the systems that
we build. There is a need to revisit data management re-
search with an aim to identify fundamental principles and
patterns. I have illustrated that this is a low hanging fruit
even in the space of exploiting data locality, which appears
well explored and central to all performance considerations
in data management. I have argued that understanding the
fundamentals of our area is central to protecting our past
investment and to doing better research in the future. It
will also increase our productivity in systems development
without necessarily causing a performance penalty. To this
end, I have motivated a number of research directions, from
the automatic synthesis of out-of-core algorithms over work
in the spirit of the Singularity operating system to using
extensible compiler frameworks such as LMS for systems
development.
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