
Arnold: Declarative Crowd-Machine Data Integration

Shawn R. Jeffery
Groupon, Inc.

sjeffery@groupon.com

Liwen Sun
UC Berkeley

liwen@cs.berkeley.edu

Matt DeLand
Groupon, Inc.

mdeland@groupon.com
Nick Pendar
Groupon, Inc.

npendar@groupon.com

Rick Barber
Stanford University

barber5@cs.stanford.edu

Andrew Galdi
Stanford University

agaldi@stanford.edu

ABSTRACT
The availability of rich data from sources such as the World
Wide Web, social media, and sensor streams is giving rise to
a range of applications that rely on a clean, consistent, and
integrated database built over these sources. Human input,
or crowd-sourcing, is an effective tool to help produce such
high-quality data. It is infeasible, however, to involve hu-
mans at every step of the data cleaning process for all data.
We have developed a declarative approach to data clean-
ing and integration that balances when and where to apply
crowd-sourcing and machine computation using a new type
of data independence that we term Labor Independence. La-
bor Independence divides the logical operations that should
be performed on each record from the physical implementa-
tions of those operations. Using this layer of independence,
the data cleaning process can choose the physical operator
for each logical operation that yields the highest quality for
the lowest cost. We introduce Arnold, a data cleaning and
integration architecture that utilizes Labor Independence to
efficiently clean and integrate large amounts of data.

1. INTRODUCTION
Our world is becoming increasingly data-driven; vast amounts

of data provide unprecedented insights into our own lives [6],
our connections to others [4], and the world around us [3].
These data, however, suffer from many data quality issues:
they are incorrect, incomplete, and duplicated [24]. Thus,
in order to leverage these data in applications, they need to
be cleaned and integrated to create a correct, complete, and
comprehensive database. Furthermore, applications that use
these data tend to require a high-level of data quality.

Achieving such data quality, however, is a challenge as
there is typically a long-tail of “corner cases”: quality is-
sues in the data that do not easily fit into any pattern, and
as such are not easily handled by existing “good-enough”
data cleaning solutions. For instance, state-of-the-art entity
resolution algorithms have many challenges in determining
duplicates in real-world scenarios [15]. Since humans ex-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

cel at finding and correcting errors in data, manual input,
or crowd-sourcing, can be used to provide the high quality
data required by these applications.

ID Name Address Category

1 SFO San Francisco, CA Airport
2 Washington Park Burlingame, CA Park
3 French Laundry Yountville, CA ———

Table 1: An example geographic location database

As a motivating example, consider a data integration sys-
tem designed to produce a database of geographic locations
such as businesses, parks, and airports. Such a database is
necessary to drive many location-based services. Input data
for this database may come from a variety of sources, includ-
ing licensed datasets [5], governmental sources [26], and user-
generated content. Each data source needs to be individu-
ally cleaned then integrated to create a single database. A
simplified version of such a database is shown in Table 1 that
consists of a set of records, each of which describes a phys-
ical location containing a unique identifier, name, address,
and category. The quality requirements for these databases
are high; for instance, an incorrect address could cause a
user of the database to go to the wrong place. Figure 1
shows a simplified cleaning pipeline necessary to build such
a database. First, the address for each record is cleaned
to correct for spelling errors and formatted in a standard
manner. Second, each record is classified to determine the
category of the location. Finally, each input record is de-
duplicated with existing records in the database.

De-duplicateCategorize
Clean 

Address

Figure 1: An example cleaning pipeline to produce
a location database. Each node represents a clean-
ing operation that the system applies to each input
record.

In this example, the crowd can be a powerful tool to help
produce a high-quality database. For instance, a classifica-
tion algorithm may categorize French Laundry as a laun-
dromat based on the name; however, a human would easily
discover that French Laundry is in fact a restaurant.

Of course, human involvement does not easily scale; it is



expensive to involve humans in the data cleaning process.
Given that it is not feasible to consult the crowd for every
operation and for every record, one must decide when and
how to utilize crowd-sourcing. In a typical data integration
system, the complexity of such a decision is compounded by
a multitude of factors.

Heterogeneous data quality. Since data are integrated
from heterogeneous sources, they arrive with various quality
levels. For the good records, it is often sufficient to process
them with automated algorithms; they would only benefit
to a small degree from crowd-sourcing since the quality is
already high. The bad records are typically not easily han-
dled by automated mechanisms and need to be curated by
a human. For example, an address cleaning algorithm will
fail if the address is very dirty and cannot be parsed.

Non-uniform quality requirements. There is typi-
cally a wide variance in the importance to the application of
the records and attributes in the database. For example, the
address attribute is critical to power location-based applica-
tions, while the category attribute is merely a helpful guide.
Similarly, SFO (San Francisco Airport) is a popular loca-
tion in the San Francisco Bay Area, while Washington Park
is only known to a small community. For these more impor-
tant records or attributes, applications desire high-quality
data and thus more resources should be invested in cleaning
them.

Multiple cleaning operations. A typical data integra-
tion system consists of tens to hundreds of cleaning opera-
tions. For each task, the system must decide how and when
to use human input.

Different expertise. Human and machines excel at dif-
ferent tasks. Machine algorithms are good at executing rou-
tine tasks efficiently and scalably. Humans, on the other
hand, are able to utilize external data or infer patterns
through human judgement that may not be evident in the
data.

Different costs. Machines, in general, are inexpensive,
while human involvement is expensive. Furthermore, the re-
sponse time of machine algorithms is generally much faster
than that of the crowd. However, the converse may be true.
For some complex machine learning tasks, it may take large
amounts of computing resources and time to train and ex-
ecute a model while a human could perform the task easily
and cheaply.

Multiple crowds. While generally crowd-sourcing has
referred to a single amorphous crowd, in reality there are
typically many different crowds. Basic crowds range from
the general-purpose crowds (e.g., Mechanical Turk [20]) to
more full-featured crowd platforms [2]. For specialized tasks,
crowds can be highly-trained workers, such as an internal
editorial staff, or groups designed for certain purposes (e.g.,
physical data collection [10]). Each of these crowds has a
different level and type of expertise. Workers with domain
knowledge of data (e.g., an editorial staff) are more expen-
sive to use but can provide better results. The system must
decide between different crowds and expertise.

In general, applications desire a high-quality, integrated
database with minimal cost; they do not want to under-
stand the complex trade-offs presented by each of the fac-
tors above. To this end, we have developed a declarative ap-
proach to data cleaning and integration that balances when
and where to apply crowd-sourcing and machine computa-
tion. The primary mechanism we use to drive our system

is a new type of data independence we term Labor Indepen-
dence. Labor Independence provides a high-level declarative
interface that allows applications to define the quality and
cost requirements of the database, without needing to spec-
ify how that database is produced.

While declarative approaches to crowd-sourcing have been
extensively studied in the literature (e.g., [8, 19, 23]), Labor
Independence is the first approach that hides all details of
the underlying crowd-sourcing mechanisms from the applica-
tion. Existing approaches apply declarative principles at the
operator, task, or crowd level, but still force the application
to specify some portion of the crowd-based execution. For
example, in order to use CrowdDB’s crowd-sourcing func-
tionality, an application must speficy crowd-sourcing opera-
tions in the DDL and DML [8], requiring intimate knowledge
of the operations that the crowd is capable of perfoming and
their efficacy. When utilizing crowd-sourcing at large scale,
however, such knowledge is largely inaccessible to an appli-
cation developer. In contrast, Labor Independence provides
to applications an interface in which they only need to spec-
ify the data they want, the quality they desire, and how
much they are willing to pay, without any knowledge of the
crowd-sourcing mechanisms that produced those data. In
fact, such a system could not utilize crowd-sourcing at all
as long as it met the application’s desires, all without inter-
vention from the application developer. As a result, systems
can seamlessly integrate crowd-sourcing without having to
understand the details of the crowd(s).

Beneath that interface, Labor Independence abstracts data
cleaning tasks such that they can be performed by machines
or the crowd. It does this by dividing logical operations
that should be performed on each record from the physi-
cal implementations of that operation. Using this layer of
independence, the data integration system can choose the
physical operator for each logical operation that yields the
highest quality for the lowest cost.

In order to realize Labor Independence, we define a unified
mechanism for expressing and tracking quality and cost in a
data integration system. Our quality model is based on the
intuition that the closer the database matches the reality it
represents, the better quality it is. Using this intuition, we
derive a multi-granularity quality model that quantifies the
closeness to reality at the attribute, record, and database
levels. We also define a cost function that distills all costs,
including time and resources, into a single monetary cost.

We present Arnold, a system that utilizes Labor Inde-
pendence to clean and integrate data in an efficient man-
ner. Arnold processes streams of input records from multiple
sources through set of logical operations, each implemented
by one or more physical operators. In order to drive its
optimization, Arnold continuously estimates the quality of
the data it is processing as well as the quality and cost of
its physical operators. Using these estimates, Arnold opti-
mizes the selection of physical operators for each record and
operation to maximize quality or minimize cost.

This paper is organized as follows. In Section 2 we present
Labor Independence. We provide an overview of Labor Inde-
pendence’s quality and cost models in Section 3. In Section 4
we outline the Arnold Architecture that instantiates Labor
Independence. Section 5 describes the optimization algo-
rithms that enable Arnold to efficiently blend machine and
human labor. Finally, we highlight related work in Section 6
and conclude in Section 7.



2. LABOR INDEPENDENCE
In this section we describe Labor Independence, the fun-

damental mechanism we use to seamlessly blend machine
and human labor.

In this work, we consider large-scale, pay-as-you-go data
cleaning and integration systems [7, 17]. In such systems,
streams of input records are cleaned and integrated into a
single database using multiple cleaning operations. These
cleaning operations are expressed as a pipeline of potentially
hundreds of fine-grained operations that successively process
input records to produce an integrated database. Such a
database is a constantly evolving collection of records, each
of which is represented by a set of attribute-value pairs. The
number of sources in these scenarios typically number in
the hundreds or thousands and have high variance in cor-
rectness, completeness, and sparsity. In total, such a sys-
tem may process billions of records. A prerequisite for any
data-driven application built on top of these systems is a
high-quality, integrated database.

2.1 Overview
Here we present a new type of data independence, Labor

Independence, that provides applications with a high-level
declarative interface to specify the quality requirements of
the data and the cost the application is willing to pay. Be-
neath that interface, Labor Independence separates logical
cleaning operations from the physical mechanisms that per-
form those tasks. A system implementing Labor Indepen-
dence has a set of one or more physical operators for each
logical operation, each of which has different cost and qual-
ity. Utilizing this layer of independence, the system is then
free to choose, for each logical operation and for each record,
the appropriate physical operator.

Regex

USPS API

Classifier

Mechanical Turk

Algorithmic 

Matching

Mechanical Turk

Editorial Staff

Logical Layer

Physical Layer

De-duplicateCategorize
Clean 

Address

Figure 2: The logical and physical layers of Labor
Independence for a location data cleaning pipeline.

We illustrate Labor Independence in Figure 2 as applied
to the location database example. In this example, we rep-
resent each of the cleaning tasks (Clean Address, Categorize,
and De-duplicate) as a logical operation; that is, it specifies
the action that should occur for each record, not how to per-
form that action. For each of these operations, there is one
or more physical operators. For example, the Categorize log-
ical operation could be carried out by either an algorithmic
classifier or by asking the crowd. Note that there may be
multiple algorithmic or crowd-based operators for a single
logical operation. For example, Clean Address could be car-

ried out using a regular expression or by utilizing an external
service [29], whereas de-duplication could be done either al-
gorithmically or by two different crowd-based mechanisms.

We now describe the fundamental components of Labor
Independence in more detail.

2.2 Declarative Interface
An application interacts with a system implementing La-

bor Independence through a declarative interface using two
parameters, quality and cost. Quality is quantified as a nu-
merical score in [0, 1]. Cost is a single number that unifies
all types of costs, including money, time, and resources, into
a monetary cost. In Section 3, we will discuss the quality
and cost models in detail. Using the quality and cost pa-
rameters, an application can specify the level of quality it
needs and the amount of money it is willing to pay. In some
instantiations of Labor Independence, an application may
only specify one of the two parameters, in which case the
system will minimize or maximize the other. For example,
a user may request that the system maximize the quality of
the data utilizing less than $1.00 per record.

2.3 Logical Layer
The primary abstraction at the logical layer is a logical

operation, which defines a semantic operation that is to be
performed on an input record. Each logical operation is
specified via the input, output, and the set attributes of a
record can be mutated by this operation. For example, the
CleanAddress operation takes as input a record, outputs a
record, and mutates the address attribute but not others.
Importantly, a logical operation does not specify how that
operation is to be implemented.

Logical operations are combined into a logical operation
graph that defines the order in which logical operations should
be applied to input records. This ordering may be a fixed
ordering of logical operations, or a dependency graph where
each logical operation depends on zero or more other logical
operations.

2.4 Physical Layer
At the physical layer, each logical operation has one or

more corresponding physical operators: a concrete imple-
mentation that specifies how to carry out the logical oper-
ation. A physical operator may utilize algorithmic mecha-
nisms or crowd-sourcing techniques, but it must conform to
the specifications of the logical operation that it implements.
Each physical operator has an associated quality and cost:
the expected quality of data produced by the operator and
the monetary cost of executing it.

3. QUALITY AND COST
In order to make informed decisions about when and where

to apply manual input, Labor Independence depends an un-
derstanding of the quality and cost of the records it pro-
cesses. In this section we detail our quality and cost models.

3.1 Quality Model
The intuition underlying our quality model is that appli-

cations need data that closely represents reality; thus, we
quantify data quality by the degree to which the database
matches the reality it represents. We describe the salient
features of our quality model here and defer a detailed dis-
cussion to future work.



The primary building block of our quality model is a dis-
sonance function, that measures the difference between an
attribute value and the reality it represents.

Definition 1 (Dissonance Function). Let r be a record
in our database and r.a be an attribute a of record r. A disso-
nance function for attribute a, denoted as za, takes as input
the record r and the true value of r.a, T (r.a), and returns
a numerical score za ∈ [0, 1] that quantifies the distance be-
tween r.a and T (r.a).

The smaller the value for za, the closer the value r.a is to
reality. If r.a has a missing value, then za = 1. For each
attribute a in an application, the system must define a dis-
sonance function. The implementation of these dissonance
functions are application-specific. For example, we can de-
fine dissonance functions for the example location database:
zname is the normalized string edit distance between the
name string and the true name string, and zaddress is the
normalized euclidean distance between the address and the
true address.

We assert that defining a dissonance function for every
attribute is a tractable problem because the number of at-
tributes is at human scale for any given application (e.g.,
in the tens to hundreds). Furthermore, since a dissonance
function is at the granularity of a single attribute value, it
is easy for a human to reason about and derive a dissonance
function.

In order to compute a dissonance function, we need to
know the true value for the attribute T (r.a). Thus, we rely
on an oracle that is capable of providing the value of T (r.a).
An oracle may be a trained domain expert or a sophisticated
crowd-sourcing algorithm designed to attain high-fidelity an-
swers (e.g., [25]). Given r.a and the oracle-provided T (r.a),
computing a dissonance function is trivial (e.g., compute the
edit distance between r.a and T (r.a)).

Using the dissonance value za, we define the quality of an
attribute value a as:

qa = 1− za

Furthermore, using the quality definition for a single at-
tribute value, we can derive aggregate quality scores for
coarser-granularity objects such as an entire record and the
entire database by simply using an average of the single qual-
ity scores. For instance, the quality of a record is the average
of its individual attribute qualities, and the quality of the
entire database is the average quality of all records.

Of course, querying the oracle to discover the true value of
an attribute is expensive. For example, if we want to assess
the average quality of an attribute (e.g., address) in the en-
tire database, we cannot afford to send all the records to the
oracle. Instead, we use sampling estimation. First, we draw
some uniform samples from the database. For each record
r in the sample, we send it to the oracle that provides the
true value of its address T (r.address). We then compute a
quality score for r.address using the appropriate dissonance
function. Given the quality scores of all the samples, we use
their average to infer the average quality of the entire pop-
ulation. The inaccuracy of this estimation is be bounded by
standard error [16].

3.1.1 Missing and Duplicate Records
In any data integration system, both missing and dupli-

cate records are a common challenge. We can extend our

quality model to capture both missing and duplicate records
at the aggregate-level. Conceptually, a missing record has
a quality of 0. Of course, it is unknown what records are
missing from a database. Therefore, we can use standard
population estimation techniques or even crowd-based esti-
mation [28] to estimate the number of missing records.

Similarly, for duplicates we assign a uniqueness score to a
set of records corresponding to the percentage of duplicates
in that set. The set may be the entire database or subsets of
the records (e.g., the records in each postal code). Unique-
ness scores can also be estimated using sampling techniques
(e.g., [12]).

3.1.2 Weighted Quality
In most data-driven applications, there is a wide variance

in the importance of different attributes and records: some
data is queried more frequently, more valuable to a business,
or drives critical application features. This observation can
help realize further efficiency in our data cleaning efforts by
focusing on the important data. To quantify importance, we
define importance weights at both the attribute and record
level. We define for each attribute and record in an applica-
tion an importance weight in [0, 1] that denotes the relative
importance of the attribute or record to the application.
Since there are typically a large number of records, record
weights can be set at an aggregate level. For instance, in the
location database example record weights can be set based
on postal code. Importance weights are normalized across
all attributes or records. We use these weights to compute a
weighted average of quality at the record and database level.

3.1.3 Quality of a Physical Operator
In order to choose physical operators based on quality, a

system implementing Labor Independence needs to under-
stand the quality of each physical operator. We define the
quality of a physical operator as the average quality score of
its output records. By definition, this quality is a numerical
score in [0, 1]. We discuss in the next section how we track
quality for physical operators.

3.2 Cost Model
Similar to quality, Labor Independence needs a unified

mechanism for tracking the cost of each record as well as
each physical operator. Costs can come in many forms: time
for an operation to complete, monetary cost for hardware to
run algorithms, and payment to crowd workers. We reduce
all of these costs to a single monetary cost.

3.2.1 Cost of a Physical Operator
Each physical operator incurs a cost when it is executed.

The primary challenge in tracking the cost of physical opera-
tors is that the cost may not be known a priori, especially for
crowd-based operators. For example, the completion time of
finding missing data can vary widely. As described in the
next section, we monitor the cost of each operator and use
average cost to predict future costs.

4. THE ARNOLD ARCHITECTURE
In this section, we describe the Arnold Architecture that

instantiates Labor Independence to provide holistic crowd-
machine data integration. Figure 3 shows the components
of Arnold.



Operator Optimizer

Declarative Interface

Physical Operator Library

Quality and Cost Assessor (QCA)

Logical Operation Manager

Crowd-sourcing Platform

Input 

Data

Output 

Data

Execution Engine

Quality and Cost 
Budget Manager

Logical Operation Graph
Quality and Cost Constraints,
Attribute and Record Weights

Figure 3: The Arnold Architecture

Declarative Interface. A user interacts with Arnold
through a declarative interface. As per Labor Independence,
the user specifies cost and quality constraints for each record
processed by Arnold. Additionally, a user can define impor-
tance weights for attributes or records. If unspecified, every
attribute and record is treated uniformly.

The user also specifies the logical operations that should
occur for each record and in what order. The domain of
logical operations is defined as part of system set-up, as well
as the corresponding set of physical operators (stored in the
Physical Operator Library).

These specifications are stored in a Budget Manager and a
Logical Operation Manager, respectively, that are consulted
as the system runs to ensure it is meeting the user’s require-
ments.

Execution Engine. This component is responsible for
processing records given the user’s declaration. We describe
the operation of the Execution Engine in Algorithm 1. As
records stream in from input sources, they are placed on a
processing queue. The Execution Engine consumes records
from this queue and consults the Operator Optimizer to de-
termine the next physical operator for each record. After
a record is processed by a physical operator, the Execution
Engine passes it to the Quality and Cost Assessor module
to assess the quality of the record. Finally, the engine asks
the Budget Manager if the record has met the user’s cost
and quality constraints. If so (or if the record has been pro-
cessed by all logical operations), the engine sends the record
to the output data stream. If the record does not meet the
constraints, the engine enqueues the record back on to the
queue for further processing.

Operator Optimizer. This component determines the
appropriate next physical operator to process a record. After
checking which logical operations have already been applied
to the record, the optimizer consults the Logical Operation
Manager to determine which are the possible next logical
operations. It then runs an optimization algorithm given
the set of physical operators available for the possible logical
operations as well as the the current and desired quality and
cost of the record. We discuss the optimization algorithms

Algorithm 1 Execution Engine’s algorithm for processing
records
Precondition: input records enqueued into processQueue
1: while “monkey” 6= “banana” do
2: record← processQueue.dequeue()
3: op← operatorOptimizer.bestOperator(record)
4: record← op.process(record)
5: qca.updateQualityAndCost(record)
6: if budgetManager.meetsConstraints(record) then
7: outputQueue.enqueue(record)
8: else
9: processQueue.enqueue(record)

10: end if
11: end while

used by the Operator Optimizer in Section 5.

Operator Attribute Quality

Regex Cleanup Address 0.73 (± 0.10)
USPS API Address 0.87 (± 0.05)
Category Classifier Category 0.81 (± 0.07)
M. Turk Classifier Category 0.92 (± 0.02)
... ... ...

Table 2: Example quality estimates tracked by the
QCA

Quality and Cost Assessor (QCA). This module is
responsible for continuously tracking the quality and cost of
each record. As described in Algorithm 1, the QCA receives
records after they have been processed by each operator (and
the actual cost to process that record by that operator, if
known). It is then responsible for assessing and updating the
quality and cost for that record. To do so, the QCA tracks,
for every operator and for every attribute, an estimate of the
quality (and error bound) that can be expected from that
operator for that attribute. It continuously monitors the
quality of the record stream output by the operator using
reservoir sampling [30].

These estimates are stored in a quality estimate table.
For example, Table 2 shows a truncated estimate table for
the location database scenario. For each physical operator
from Figure 2 and for each attribute in the application (e.g.,
Name, Address, Category), there is an entry in the table
with the estimated quality that that operator can produce
for that attribute. Using the estimation, the QCA updates
the quality of each of the attributes in the record given the
previous operator. Of course, if a record was selected as
a sample to learn the true quality, it will be assigned that
quality.

The QCA is also responsible for tracking the cost of pro-
cessing each record by each operator. Similar to quality
tracking, the QCA utilizes the cost estimate or the exact cost
from the operator to update the record’s remaining budget.

Crowd-Sourcing Platform. Crowd-sourcing may be
utilized by many physical operators as well as by the QCA.
Thus, Arnold includes a crowd-sourcing platform that in-
terfaces with one or more crowds and hides the details of
the crowd from the rest of the system. The details of this
platform are outside the scope of this paper.

5. ADAPTIVE OPERATOR OPTIMIZATION



Having outlined Arnold’s overall functionality, we now ad-
dress how Arnold optimizes the set of operators to apply to
a given record and in what order.

There are many questions to consider when approaching
this problem. We first outline the scope of design consid-
erations, and then propose a solution to one version of the
problem.

Choice of Objective Function. There are a range of
objective functions for which the system can be designed
to optimize. On one hand, the system can be given a cost
budget (a strict limit) and try to maximize the quality of
data it produces. Conversely, it could be given a quality
threshold it must meet and then try to minimize cost. For
ease of exposition, we focus on maximizing quality given a
fixed budget, but these two problems are essentially duals of
each other and our solutions are equally effective for both.

Fixed vs. Dynamic Budget. As discussed above, each
record gets a fixed budget upon entering the system and each
operator subtracts from that budget. This budget could be
set once at the start of processing, or it could be dynami-
cally adjusted as the system processes the record. Such an
adjustment could occur as the system gains a deeper un-
derstanding of the data in the record. For example, if after
cleaning a record’s address the system learns that the record
refers to a location in a popular area (e.g., downtown San
Francisco), then the system may increase that record’s bud-
get.

Ordering of Operations. We have presented the log-
ical operator graph as a set of logical operations occurring
in a fixed order, e.g., Clean Address followed by Categorize
followed by De-duplicate. An alternative is to choose any
logical operator at any time, given that a set of prerequisites
is met. For example, the system can apply Clean Address or
Categorize in either order, but Clean Address is a prerequi-
site for De-duplicate, which relies on accurate addresses. If
we allow alternate orderings, it transforms the linear graph
into a directed acyclic graph. Working with this additional
complexity guarantees at least as good and possibly bet-
ter quality, but the resulting optimization problem becomes
more difficult.

Repetition or Omission of Logical Operators. So
far, we have discussed the system applying each logical op-
eration once and only once to each record. However, it may
be beneficial to allow the system to re-execute some logical
operations with costlier physical operators. For example, if
a record that had its address cleaned using a low-cost and
low-quality operator was later discovered to have high im-
portance, it may be desirable to re-clean its address using a
higher-quality address cleaning operator. Conversely, some
operators may not be necessary for some records and can be
omitted to save costs. For example, if a record comes from
a source that is known to have high-quality addresses, the
address cleanup can be skipped.

Different choices for these design considerations raise dif-
ferent questions as to how to allow a record to move through
the graph. We now formalize one variant of the problem and
present a solution. Other variants of the problem will be ad-
dressed in future research.

5.1 Optimization on a Linear Operator Graph
We focus on a linear operator graph, where operators are

statically ordered in a path. Thus, the primary challenge

Categorize
De-

duplicate
Clean 

Address
Output

USPS API

Regex

Editorial 

Staff

Mechanical 

Turk

Mechanical 

Turk

Classifier
Algorithmic 

Matching

Input

Figure 4: Visualization of a linear operator graph

is to chose which physical operator to employ for each log-
ical operation. In order to solve this problem, we create a
combined graph with each logical operation represented as
a node in the graph and each physical operator represented
as a directed edge connecting two nodes. An example of this
graph is depicted in Figure 4. The problem now becomes one
of dynamically choosing the best path through this graph for
any given record that maximizes quality subject to budget
constraints.

The simplest solution to the problem would be to enumer-
ate all possible paths with their associated cost and quality,
and at any given point in the graph, choose the path which
maximizes quality according to the currently available bud-
get. This method, though effective for small graphs, will
quickly become unreasonable as more operators are added.
Next, we present a more efficient solution based on dynamic
programming.

5.1.1 The Optimization Problem
We formulate this problem as an optimization problem

where the input is a linear operator graph G, record R, and
budget b; and the objective is to choose a path P that passes
through every node of G according to

maximize
P

Quality(P )

subject to Cost(P ) ≤ b

The resulting optimization problem requires us to be able
to choose the best bath from any node given any budget.
If we assume that the per record budget is an integer that
is not very large and has a known maximum value B, the
problem can be efficiently solved offline using dynamic pro-
gramming. Working backwards from the output node of the
graph, at each node and for any given budget, choose the
highest quality path that can be afforded. If n is the num-
ber of nodes, the problem can be solved in O(nB) time and
space. Note that this algorithm runs only once and material-
izes an optimal path for each possible budget value at every
step. When a record with a budget b enters the system, we
simply lookup the optimal path for budget b. If the budget
changes during execution of the chosen path, an additional
lookup is needed to pick the optimal path moving forward.

The design choices described above conform to the most
common practical requirements that we have seen in the
real-world. More flexibility of operator selection may lead to
better results, but increases the complexity of the optimiza-
tion. For example, if a record can go through the logical
operators in arbitrary order, the optimization problem re-
quires a O(2nB) dynamic programming algorithm. We will
explore such complexity in future work.

6. RELATED WORK



There has been much recent interest in crowd-sourcing
applied to data management and data cleaning. At the
systems-level, many groups propose a declarative approach
to utilizing crowd-sourcing in a database [8, 19, 23]. Labor
Independence and Arnold are closely related to these sys-
tems; similar to these systems, Labor Independence hides
the details of where and how crowd-sourcing is used. How-
ever, a primary distinction is that the declarative interface
of Labor Independence is at the application-level rather than
at the operator-level; that is, applications specify the level
of quality they want for their data overall (and the price
they are willing to pay), rather than specifying constraints
at the individual operator level. On the other hand, the
granularity of optimization in Arnold is on a per-record ba-
sis, similar to Eddies [1] for optimizing relational queries.
Arnold is focused specifically on providing high-quality data
cleaning instead performance optimization of general data
processing scenarios.

At a more detailed level, there is a wealth of work on how
to use the crowd to accomplish individual tasks including fil-
tering [22], graph search [21], max discovery [11], sorting and
joining [18], and entity resolution [31]. These approaches
could be incorporated into the Arnold architecture as phys-
ical operators. Roomba [14] is a precursor to our work in
that it is focused on optimizing how and when to apply hu-
man involvement in an individual task; Arnold extends that
work to optimize human input across multiple tasks.

Data cleaning and integration is a well-studied problem [13,
24]. The work closest to ours is the AJAX system [9], which
separates the logical and physical operations for data clean-
ing. Due to the incorporation of crowdsourcing, our work is
different than AJAX in several ways. First, we incorporate
both quality and cost as a first-class elements of our model
and define our declarative interface using these parameters.
Second, we consider a much broader range of logical and
physical operations, which can be algorithmic or crowd-
based. Finally, our optimization problem involves a mul-
titude of new factors that were not present in AJAX, such
as the trade-off between crowds and machine algorithms.

7. CONCLUSION
As applications come to depend on data to a greater de-

gree, so too does their expectation of the quality of those
data. While traditional data cleaning and integration sys-
tems are capable of producing “good” data, human input,
or crowd-sourcing, is required in order to deal with the
long-tail of quality issues in large-scale data integration sys-
tems. However, human involvement is expensive, and the
choice of how utilize humans is non-trivial. Fundamentally,
a data-driven application desires high-quality data, and does
not want to be concerned with the complexities of crowd-
sourcing.

In this work, we developed Labor Independence, a declar-
ative approach to data cleaning and integration that enables
applications to specify their quality and cost requirements
for their data without needing to understand how that data
are produced. We have described Arnold, a system that im-
plements Labor Independence to clean and integrate large
numbers of input records while holistically using machine
and crowd labor.

Arnold provides a rich test-bed for us to further research
the union of machines and humans. In the future, we intend
to explore the cost and quality trade-offs provided by La-

bor Independence in more detail, and develop more sophis-
ticated optimization algorithms. We also look to provide
more insight into the real-world data integration challenges
we face at Groupon and demonstrate Arnold’s effectiveness
at addressing these issues.

8. REFERENCES
[1] Avnur, R., and Hellerstein, J. M. Eddies:

continuously adaptive query processing. In Proc. of
ACM SIGMOD 2000, pp. 261–272.

[2] Crowdflower. http://www.crowdflower.com.
[3] Culler, D., Estrin, D., and Srivastava, M.

Overview of Sensor Networks. Computer 37, 8 (Aug.
2004), 41–49.

[4] Facebook. http://www.facebook.com.
[5] Factual. http://www.factual.com.
[6] Fitbit. http://www.fitbit.com.
[7] Franklin, M., Halevy, A., and Maier, D. From

databases to dataspaces: a new abstraction for
information management. SIGMOD Rec. 34, 4 (Dec.
2005), 27–33.

[8] Franklin, M. J., Kossmann, D., Kraska, T.,
Ramesh, S., and Xin, R. CrowdDB: Answering
Queries with Crowdsourcing. In Proc. of ACM
SIGMOD 2011.

[9] Galhardas, H., Florescu, D., Shasha, D., Simon,
E., and Saita, C.-A. Declarative Data Cleaning:
Language, Model, and Algorithms. In Proc. of VLDB
2001.

[10] Gigwalk. http://gigwalk.com/.
[11] Guo, S., Parameswaran, A., and Garcia-Molina,

H. So Who Won? Dynamic Max Discovery with the
Crowd. In Proc. of ACM SIGMOD 2012, pp. 385–396.

[12] Haas, P. J., Naughton, J. F., Seshadri, S., and
Stokes, L. Sampling-based estimation of the number
of distinct values of an attribute. In VLDB (1995),
pp. 311–322.

[13] Hellerstein, J. M. Quantitative Data Cleaning for
Large Databases. United Nations Economic
Commission for Europe (UNECE), 2008.

[14] Jeffery, S. R., Franklin, M. J., and Halevy,
A. Y. Pay-as-you-go User Feedback for Dataspace
Systems. In Proc. of ACM SIGMOD 2008.

[15] Köpcke, H., Thor, A., and Rahm, E. Evaluation of
entity resolution approaches on real-world match
problems. PVLDB 3, 1 (2010), 484–493.

[16] Lohr, S. Sampling: Design and Analysis. Advanced
Series. Brooks/Cole, 2009.

[17] Madhavan, J., Jeffery, S., Cohen, S., Dong, X.,
Ko, D., Yu, G., and Halevy, A. Web-scale Data
Integration: You can only afford to Pay As You Go.
In CIDR 2007.

[18] Marcus, A., Wu, E., Karger, D., Madden, S.,
and Miller, R. Human-powered Sorts and Joins.
Proc. of VLDB Endow. 5, 1 (Sept. 2011), 13–24.

[19] Marcus, A., Wu, E., Madden, S., and Miller,
R. C. Crowdsourced Databases: Query Processing
with People. In CIDR 2011.

[20] Mechanical Turk. https://www.mturk.com/.
[21] Parameswaran, A., Sarma, A. D.,

Garcia-Molina, H., Polyzotis, N., and Widom,
J. Human-Assisted Graph Search: It’s Okay to Ask
Questions. Proc. of VLDB Endow. 4, 5 (Feb. 2011),
267–278.

[22] Parameswaran, A. G., Garcia-Molina, H., Park,
H., Polyzotis, N., Ramesh, A., and Widom, J.
Crowdscreen: Algorithms for Filtering Data with
Humans. In Proc. of ACM SIGMOD 2012,
pp. 361–372.



[23] Park, H., Pang, R., Parameswaran, A.,
Garcia-Molina, H., Polyzotis, N., and Widom,
J. Deco: A System for Declarative Crowdsourcing. In
Proc. of VLDB 2012.

[24] Rahm, E., and Do, H. H. Data Cleaning: Problems
and Current Approaches. IEEE D. E. Bull. 23, 4
(2000), 3–13.

[25] Ramesh, A., Parameswaran, A., Garcia-Molina,
H., and Polyzotis, N. Identifying Reliable Workers
Swiftly. Technical report, Stanford University, 2012.

[26] San Francisco Data. data.sfgov.org.
[27] Sarawagi, S., and Bhamidipaty, A. Interactive

Deduplication Using Active Learning. In Proc. of

ACM SIGKDD 2002 (New York, NY, USA),
pp. 269–278.

[28] Trushkowsky, B., Kraska, T., Franklin, M. J.,
and Sarkar, P. Getting it all from the crowd. CoRR
abs/1202.2335 (2012).

[29] USPS. www.usps.com.
[30] Vitter, J. S. Random sampling with a reservoir.

ACM Trans. Math. Softw. 11, 1 (Mar. 1985), 37–57.
[31] Wang, J., Franklin, M., and Kraska, T.

CrowdER: Crowdsourcing entity resolution. PVLDB
5, 11 (2012).


