
Data Curation at Scale: The Data Tamer System

Michael Stonebraker
MIT

stonebraker@csail.mit.edu

Daniel Bruckner
UC Berkeley

bruckner@cs.berkeley.edu

Ihab F. Ilyas
QCRI

ikaldas@qf.org.qa

George Beskales
QCRI

gbeskales@qf.org.qa

Mitch Cherniack
Brandeis University

mfc@brandeis.edu

Stan Zdonik
Brown University

sbz@cs.brown.edu
Alexander Pagan

MIT
apagan@csail.mit.edu

Shan Xu
Verisk Analytics

sxu@veriskhealth.com

ABSTRACT
Data curation is the act of discovering a data source(s) of in-
terest, cleaning and transforming the new data, semantically
integrating it with other local data sources, and deduplicat-
ing the resulting composite. There has been much research
on the various components of curation (especially data inte-
gration and deduplication). However, there has been little
work on collecting all of the curation components into an
integrated end-to-end system.

In addition, most of the previous work will not scale to the
sizes of problems that we are finding in the field. For exam-
ple, one web aggregator requires the curation of 80,000 URLs
and a second biotech company has the problem of curating
8000 spreadsheets. At this scale, data curation cannot be
a manual (human) effort, but must entail machine learning
approaches with a human assist only when necessary.

This paper describes Data Tamer, an end-to-end curation
system we have built at M.I.T. Brandeis, and Qatar Com-
puting Research Institute (QCRI). It expects as input a se-
quence of data sources to add to a composite being con-
structed over time. A new source is subjected to ma-
chine learning algorithms to perform attribute identification,
grouping of attributes into tables, transformation of incom-
ing data and deduplication. When necessary, a human can
be asked for guidance. Also, Data Tamer includes a data
visualization component so a human can examine a data
source at will and specify manual transformations.

We have run Data Tamer on three real world enterprise cura-
tion problems, and it has been shown to lower curation cost
by about 90%, relative to the currently deployed production
software.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

1. INTRODUCTION
There has been considerable work on data integration, es-
pecially in Extract, Transform and Load (ETL) systems [4,
5], data federators [2, 3], data cleaning [12, 18], schema in-
tegration [10, 16] and entity deduplication [9, 11]. However,
there are four characteristics, typically absent in current ap-
proaches that we believe future system will require. These
are:

• Scalability through automation. The size of the
integration problems we are encountering precludes a
human-centric solution. Next generation systems will
have to move to automated algorithms with human
help only when necessary. In addition, advances in ma-
chine learning and the application of statistical tech-
niques can be used to make many of the easier decisions
automatically.

• Data cleaning. Enterprise data sources are in-
evitably quite dirty. Attribute data may be incorrect,
inaccurate or missing. Again, the scale of future prob-
lems requires an automated solution with human help
only when necessary.

• Non-programmer orientation. Current Extract,
Transform and Load (ETL) systems have scripting lan-
guages that are appropriate for professional program-
mers. The scale of next generation problems requires
that less skilled employees be able to perform integra-
tion tasks.

• Incremental. New data sources must be integrated
incrementally as they are uncovered. There is never a
notion of the integration task being finished.

These four issues should be addressed in a single coherent
architecture, which we call a data curation system. The pur-
pose of this paper is to describe Data Tamer, a data curation
system motivated by these requirements. In Section 2, we
begin with a brief description of three example data curation
problems, which Data Tamer is designed to solve. Then, Sec-
tion 3 continues with the semantic model that Data Tamer
implements, followed in Section 4 by a description of the
main components of the system. Lastly, Section 5 presents

a collection of experiments on real world curation problems.
We conclude in Section 6 with a collection of possible future
enhancements.

2. EXAMPLE APPLICATIONS
2.1 A Web Aggregator
This aggregator integrates about 80,000 URLs, collecting
information on “things to do” and events. Events include
lectures, concerts, and live music at bars. “Things to do”
means hiking trails, balloon rides, snowmobile rentals, etc.
A category hierarchy of concepts is used to organize this
space, and all information is placed somewhere in this hier-
archy.

The decision to collect the data from a specific URL is made
with a combination of manual and automatic processes that
are not relevant to this paper. Once decided, an offshore
“wrapper foundry” writes code to extract data from the
URL. For each entity that it finds at a given URL, the wrap-
per outputs a collection of key-value pairs, e.g., (key1-name,
value-1), (key2-name, value-2), . . . , (keyK-name, value-

K). Unfortunately, the source data is rarely web tables, but is
usually in pull-down menus, text fields and the like. Hence,
site wrappers are non-trivial.

This aggregator needs to federate these 80,000 data sources
into a semantically cohesive collection of facts. The 80,000
data sources contain approximately 13M local records with
about 200K local attribute names. In addition, local in-
formation may be inconsistent, overlapping and sometimes
incorrect. Hence, this aggregator faces a difficult data cura-
tion problem, which they solve using a collection of ad-hoc
and human-centric techniques. The purpose of Data Tamer
is to do a better job on this sort of problem than the cur-
rently deployed solution at substantially lower cost.

2.2 A Biology Application
A major drug company has 8,000 bench biologists and
chemists doing lab experiments. Each maintains a“lab note-
book”, typically as a spreadsheet where he records his data
and observations. Most of the scientists are using differ-
ent techniques and collecting experiment-specific data such
as concentration and density. However, some of these 8000
scientists might well be studying the same reaction or be
starting with the same molecule. There is great value to
integrating these 8000 sources, so scientists can get a better
picture of the reactions they are studying.

Unfortunately, there are no standards for attribute names,
no standards for measurement units, and not even a stan-
dard for the language for text (English, German, etc...)

These 8000 spreadsheets contain about 1M rows, with a total
of 100K attribute names. Again, the scale of the problem
makes current data integration tools prohibitively expensive.
The goal of Data Tamer is to do a better job at lower cost
than current software.

2.3 A Health Services Application
Verisk Health does data integration for the claims records for
a collection of 300 insurance carriers. They have manually

constructed a global schema for these sources, and are look-
ing to replace their manual processes with more automated
ones. In addition, their integrated database contains 20M
records, and they wish to consolidate claims data by medical
provider. In other words, they want to aggregate all of the
claims records, group by provider. In effect, they want to
dedup their database, using a subset of the fields. They are
currently doing this task with a lot of manual intervention,
and looking for a lower cost, more automated solution. The
purpose of Data Tamer is better results at lower cost than
their current solution.

3. DATA TAMER SEMANTIC MODEL
3.1 Human Roles
Data Tamer assigns roles for the following humans:

• A Data Tamer administrator (DTA). This role
is analogous to a traditional database administrator.
Hence, the DTA is in charge of assigning roles to the
other humans and in deciding what actions to take dur-
ing the curation process. Specifically, the DTA spec-
ifies the collection of data sources that Data Tamer
must try to curate.

• One or more Domain Experts (DE). These are hu-
man domain experts that can be called on to answer
questions that arise during the curation process. Each
DE has one or more areas of expertise and they are
organized into an innovation crowd-sourcing organiza-
tion as will be explained in Section 4.3.

3.2 Sites and Schemas
Data Tamer assumes that the DTA specifies sites, indicated
by a URL or file name. Each site is assumed to be a collec-
tion of records, each containing one or more key-value pairs.
An upstream wrapper may be required to construct this for-
mat from what the site actually stores. At the present time,
Data Tamer is not focused on lowering the cost of such wrap-
pers.

Data Tamer assumes each local data source has informa-
tion about one entity. Hence, if a source is multi-faceted,
then two or more wrappers must be used to ensure that
each source contains data about only one entity. If every
site describes a different entity, then there is no integra-
tion problem. Hence, the goal of Data Tamer is to group
local sites into classes, which describe the same entity. In
Version 1, there has been no effort to identify relationships
between entities (such as might be present in foreign keys
in an RDBMS) or to deal with other integrity constraints.
These extensions are left for future research.

For each class of entity, there are three possible levels of
information available. These depend on whether curation
is proceeding in a top-down fashion or a bottom-up fashion.
In a top-down model the DTA has information about the
schema he is trying to achieve. Hence, the goal is partially
or completely specified. In a bottom-up model, such global
knowledge is missing and the global schema is pieced to-
gether from the local data sources, with perhaps hints avail-
able from the DTA. The fact that either model may be used
for a given class leads to the following three levels of infor-
mation.

• Level 3: Complete knowledge. In this case, the
complete global schema for a given class of entities has
been specified by the DTA using a top-down method-
ology. Generally, the DTA also maps each local data
source to a specific class. However, if not done, Data
Tamer includes algorithms to perform this task auto-
matically. Although this level of knowledge is available
in the Verisk application, we have found level 3 to be
quite rare in practice.

• Level 1: No knowledge available. In this case,
nothing is known about the structure of the classes of
information, and a bottom-up integration is utilized.
This level of detail might be true, for example, about
random HTML tables that were scraped from the web.
This is the world of systems like Web tables [8]. Al-
though, this is the level of knowledge in the biology
application, we believe it is also uncommon in prac-
tice.

• Level 2: Partial information available. Using ei-
ther a top-down or bottom-up methodology, there may
be partial information available. There may be specific
attributes that are known to be present for some class
of entities. This is the case for the Web aggregator,
as it requires specific attributes to be present for each
node in its classification hierarchy. Alternately, there
may be templates available. A template is a collection
of attributes that are likely to appear together in one
of more classes of entities. For example, a template
for a US address might be (number, street, city, state,
ZIP code). Note that a template is simply a compound
type, i.e., a collection of attributes that usually appear
together. Templates may be specified by the DTA as a
“hint” or they may be identified via machine learning
as noted in Section 4.

3.3 Other Information
In addition, in many domains, there are standard dictionar-
ies, which should be used by Data Tamer. A dictionary is a
list of data values of some data type that can populate an
attribute in some data source. For example, there are 50
states in the United States, about 30,000 cities in the USA,
etc. A dictionary is used to specify the name and legal val-
ues of such attributes. There are as many dictionaries as the
DTA wishes to specify.

Dictionaries are generalized to authoritative tables. These
are auxiliary data tables that are known to have correct
information. For example, a list of (city-name, airport-
name, airport-code) could be an authoritative table with
three columns.

Furthermore, Data Tamer accommodates synonyms of the
form XXX is a YYY. For example, “wages” is a “salary” or
“town” is a “city”. In future versions, we may extend this
capability into more general ontologies.

3.4 Management Console and Data Tamer
Actions

Sites, categories, templates, dictionaries, authoritative ta-
bles, and synonyms can be specified through a DTA man-
agement console, which is a fairly traditional-looking GUI.

A portion of this console is dedicated to allowing the DTA
to specify actions for Data Tamer to take. These actions
are:

• Ingest a new data source, and store the incoming data
in a Postgres database. In the current version of Data
Tamer, this database exists at a single node; however,
it is straight-forward to partition this database onto
multiple nodes and parallelize the algorithms to be de-
scribed.

• Perform attribute identification on data source-i,
as discussed in Section 4.1.

• Perform entity consolidation on data source-i, as
discussed in Section 4.2

At any time during attribute identification or entity consol-
idation, Data Tamer may request human assistance from a
DE, as discussed in Section 4.3. Lastly, as noted in Sec-
tion 4.4, any human may visualize any data set currently
using a Data Tamer specific interface. We may switch to
the more sophisticated Data Wrangler visualization system
[1], thereby supporting the manual transformations possible
in that system. This issue is further discussed in Section 4.4.

At any time, the DTA may request that attribute identi-
fication and/or entity consolidation be redone on all sites.
Obviously, this becomes a time consuming task as more sites
are present in the Data Tamer system. However, better de-
cisions may be available based on the greater amount of
information present. Hence, if source-i or source-j are not
specified above, then Data Tamer should run the algorithms
to be described on all data sources.

Lastly, Data Tamer keeps a history of all operations per-
formed, and the DTA may “snap” the curation process back-
wards to any past historical point. This is implemented us-
ing a no-overwrite update strategy.

3.5 Training Data
In our conversations with people who have enterprise data
curation problems, we have seen two very different scenarios
for Data Tamer use. The first one is appropriate for cases
with minimal or no advance knowledge (i.e., levels 1 and 2
above). In this case, Data Tamer simply commences oper-
ation. Initially it is quite dumb and must ask a human for
assistance regularly. As it gets smarter, it asks less often.
Moreover, with the benefit of added knowledge, it will of-
ten makes sense to go back and run attribute identification
and entity resolution again on already processed sites, pre-
sumably making better decisions with the benefit of added
knowledge. As such, training data is simply accumulated
over time by the crowd-sourcing component of Data Tamer.

The second scenario deals with applications where more in-
formation is known (level 3 above). In this case, we have
observed that real-world applications often have training
data available. Specifically, they have collections of enti-
ties and/or attributes that are “known duplicates”. In other
words, they have a collection of pairs of local identifiers that
are known to match. There is no guarantee that they have

DE Crowd Sourcing
Component

Schema
Integration

Entity
Consolidation
Component

Data
Visualization
Component

Management
Console

Figure 1: The Data Tamer Architecture

found all of the matches. Hence, they provide a collection of
matching attribute names or entities with no false positives.
We have observed that the danger of providing a false pos-
itive is high in real curation problems, so real world DTAs
are very cautious. Therefore, they provide hand-curated col-
lections of known matches.

In the first scenario we start running the Data Tamer sys-
tem, asking a human for help as appropriate. In the second
scenario, we make use of known duplicates as initial training
data. We provide more details in Section 4.2.

3.6 Data Source Update
Finally, some data sources may be dynamic, and be contin-
ually updated. In this case, Data Tamer can make a new
snapshot of a previous data source-k. In this situation, it
makes sense to reprocess the data source, since the infor-
mation has changed. In Version 1, there is no notion of
accepting a live data feed. Such an extension is left to a
future release.

4. DATA TAMER COMPONENTS
A block diagram of Data Tamer is shown in Figure 1. In-
dicated in the diagram are the management console and
components for schema integration, entity consolidation, DE
support and human transformation. These four subsystems
are described in this section. Most of the features described
in this section are currently operational.

4.1 Schema Integration
The basic inner loop in schema integration is to ingest an
attribute, Ai from a data source and compare it to a col-
lection of other attributes in a pairwise fashion. For each
pair, we have available both the attribute name and the
collection of values. Our approach is to use a collection of
algorithms, which we term experts, each returning a score
between 0 and 1. Afterwards, the scores are consolidated
with a set of weights to produce a composite value. Data
Tamer comes with the following four built-in experts, and
additional experts may be plugged in via a simple API.

• Expert-1. Perform fuzzy string comparisons over at-
tribute names using trigram cosine similarity.

• Expert-2. Treats a column of data as a document
and tokenizes its values with a standard full text
parser. Then, measures TF-IDF cosine similarity be-
tween columns.

• Expert-3. This expert uses an approach called min-
imum description length (MDL) that uses a measure
similar to Jaccard similarity to compare two attributes
[17]. This measure computes the ratio of the size of the
intersection of two columns’ data to the size of their
union. Because it relies on exact matching values be-
tween attributes, it is well suited for categorical and
finite domain data.

• Expert-4. The final expert computes Welch’s t-test
for a pair of columns that contain numeric values.
Given the columns’ means and variances, the t-test
gives the probability the columns were drawn from the
same distribution.

The attributes to be compared depend on which level of
information is available to Data Tamer, as described in the
next section. Moreover, the DTA can set a threshold for
suggested mappings, so that high confidence suggestions can
be automatically adopted, while low confidence mappings
enter a queue for human review.

4.1.1 Suggesting Attribute Mappings
The attribute mappings to be considered by Data Tamer
depend on what information is available for the curation
problem at hand, as noted in Section 3.2. Depending on
which level is being examined, different tactics are used.

Level 3. In this case, Data Tamer knows the global schema,
i.e., all the classes of entities and their associated attributes.
Sometimes Data Tamer is told the class to which the incom-
ing data source belongs. In this case, it must merely match
the two collections of attributes. The result of running the
schema integration component is a pairing of incoming at-
tributes to the elements of the class in the global schema. If
Data Tamer is unsure of a pairing, i.e., the matching score
is less than a threshold, then a human is involved as noted
in Section 4.3.

In other cases, the class to which the incoming entities be-
long must be identified. In this case, Data Tamer runs the
algorithm above on all classes, and computes an aggregate
matching score for the attributes. It then picks the best one.
Of course, if no score is high enough or if there are two classes
with similar scores, then a human is involved in the decision
process. It should be noted for each incoming attribute that
this algorithm is linear in the number of attributes seen so
far. Hence, the total complexity is quadratic. We discuss
scalability issues later in this section.

Level 2. In this case, Data Tamer may have certainty on a
subset of the attributes. If so, it runs the above algorithms.
If an attribute fails to match, it is added to the schema for
the class that is specified by the DTA or identified algo-
rithmically. Future data sources can then match a larger
collection of attributes. The complexity is the same as for
Level 3.

If templates are available, then consider the set, S, of all at-
tributes in any template, plus any dictionary names and syn-
onyms. Data Tamer employs a two-pass algorithm. First, it
matches all incoming attributes against the members of S,
keeping only the highest scoring one. In a second pass, the
score of an incoming attribute is adjusted upward if other
attributes match other attributes in the template selected.
Then, the match is kept if it is above a threshold.

In addition, Data Tamer watches the incoming sites for col-
lections of attributes that typically appear together. If so, it
automatically defines the collection as a new template, and
adds the newcomer to the template dictionary.

Level 1. Each incoming attribute is compared against all
previously seen attributes, synonyms and dictionaries.

For all levels, the worst case complexity is quadratic in the
total number of attributes. The first expert is very cheap to
run on pairs of attributes, since it does not look at the data.
The other three experts must inspect the data columns and
are much more expensive. So far, running time of our at-
tribute identification algorithms has not been a showstopper,
since they are run“off line”. Our first improvement will be to
parallelize them over multiple nodes in a computer network,
by replicating the Postgres database and then “sharding”
the incoming attributes. This will yield an improvement of
a couple of orders of magnitude. After that, further running
time improvements will require a two-step process with a
cheap first pass and a more expensive second pass on a sub-
set of the attributes.

This two-pass approach will introduce additional experts
whose running times are independent of the size of at-
tributes’ data sets. The current first expert, which compares
attribute names, is an example. Other experts will base
comparisons either on attribute metadata or on samples de-
rived from attribute data. Available metadata includes ex-
plicit fields in the data set like types and description strings.
Although explicit metadata may not be available, useful at-
tribute properties can always be computed and stored in
a statistics table. Useful derived metadata include counts
and histograms of distinct values, inferred data type, and so
on. These statistics are also useful for constructing samples
for other experts, for example, an expert that computes the
Jaccard similarity of the sets of top-k most common values
of two attributes. These first-pass experts will act as a high-
pass filter for the more expensive second-pass, and will save
wasted effort making detailed comparisons between fields
with little in common.

4.2 Entity Consolidation
Entity consolidation is effectively modeled as duplicate elim-
ination. The goal is to find entities that are similar enough
to be considered duplicates. This module receives a col-
lection of records, R1, . . . , Rn, from one or more local data
sources that arrive incrementally. We assume that attribute
identification has been previously performed. Hence, all
records have attributes values from a collection of attributes
A1, . . . , Am. In general, the data may well be noisy and
sparse.

The deduplication process is divided into multiple tasks as

we show in the following.

4.2.1 Bootstrapping the Training Process
Initially, the system starts with zero knowledge about the
deduplication rules. We learn deduplication rules from a
training set of known duplicates and non-duplicates. We
assume that duplicate tuples usually have at least one at-
tribute with similar values. We obtain a set of tuple pairs
that are potentially duplicates to be presented to expert
users as follows. Let Simi indicates a similarity measure for
values of attribute Ai. For each attribute Ai, we partition
the range of Simi into a number of equal-width bins, and
for each bin we select a sample of tuple pairs with Simi be-
longing to this bin. The obtained pairs, ordered by attribute
similarities, are then presented to expert users for labeling.
Since the presented pairs are sorted by the attribute sim-
ilarity in a descending order, the experts could choose to
stop labeling pairs below a certain similarity threshold, and
declare the remaining unseen pairs as non-duplicates. We
denote by TP the set of pairs labeled as duplicates, and we
denote by TN the set of pairs labeled as non-duplicates.

In order to increase the expected number of found dupli-
cates in the candidate pairs, we only consider the attributes
that have relatively large numbers of distinct values when
obtaining the candidates (e.g., Title, Address and Phone)
while discarding other attributes that are less distinctive
(e.g., City and State). The reason is that high similarity on
non-distinctive attributes does not increase the chances of
being duplicates very much.

Another important source of training data is known dupli-
cates, available with the data sets, as mentioned earlier.
In addition, the web aggregator has specified several hand-
crafted rules that it uses to identify duplicates with high
precision. Again, this is a source of known duplicates. We
use the existing information as positive training data (i.e.,
TP). Negative training data (TN) is easier to find since non-
duplicates are very frequent. Given a random set of tuple
pairs, expert users needs only to filter out any non-matching
pairs that are highly similar, resulting in negative training
data (TN).

4.2.2 Categorization of Records
Records are classified into multiple categories such that each
category represents a set of homogenous entities that have
similar non-null attributes and similar attribute values. This
might occur, for example, if western ski areas look different
than eastern one. For example, vertical drop and base eleva-
tion are noticeably different in the two classes of records. In
addition, closure because of high winds may be commonly
reported for one class and not the other. The benefit of
record categorization is twofold: first, by learning dedupli-
cation rules that are specific to each category, we achieve
higher quality rules that can accurately detect duplicate tu-
ples. Second, we use tuple categorization to reduce the num-
ber of tuple pairs that need to be considered in our duplicate
detection algorithm. The performance gain is similar to that
obtained by blocking techniques (e.g., [7, 14]) currently used
in entity resolution in large datasets.

Categorization of records can be done using classifiers. In
Data Tamer, categorization is performed in two steps. In

the first step, we obtain a set of representative features that
characterize each category. We obtain such features by clus-
tering a sample of the tuples from the available sources. We
use a centroid-based algorithm such as k-means++ [6]. The
number of categories is determined with the help of the du-
plicates in training data TP that was obtained in the boot-
strapping stage (Section 4.2.1). In the second step, we assign
each tuple to the closest category (w.r.t. to some distance
function such as cosine similarity). While similar to block-
ing in the achieved performance gain, this two-phase catego-
rization is substantially different from previously proposed
blocking algorithm, which are usually performed by cluster-
ing, indexing, or sorting the entire data set; these are very
expensive operations, which we avoid in our categorization
algorithm.

Categorization of tuples might change over time when new
data sets become available. We maintain the categorization
by adding new categories and/or merging/splitting the exist-
ing categories when needed. For example, consider the case
where the radius of a given category (measured by the max-
imum distance between the representative features of the
category and the category’s members) becomes very large
compared to the other categories. In this case, we split the
category into two or more smaller categories. Efficient in-
cremental categorization is one of our current research di-
rections.

4.2.3 Learning Deduplication Rules
The deduplication rules are divided into two types: (1) cut-
off thresholds on attribute similarities, which help pruning
a large number of tuple pairs as we show in Section 4.2.4;
and (2) probability distributions of attribute similarities for
duplicate and non-duplicate tuple pairs. We learn such rules
from the collected training data TP and TN . For example,
one rule indicates that the probability of having two tuples
with similar values of ‘Title’, given that they are duplicates,
is close to one. Another rule indicates that having different
values for attribute ‘State’ among duplicates is almost zero.
Note that the learning module will choose to neglect a num-
ber of attributes that are not useful in learning the proba-
bility of being duplicates (e.g., ‘user rating’ in data collected
by the web aggregator). Also, since they are semantically
different, the deduplication rules distinguish between miss-
ing attribute values and dissimilar attribute values, and we
learn the probability of each event separately.

We use a Näıve Bayes classifier [15] to obtain the proba-
bility that a tuple pair is a duplicate given the similarities
between their attributes. This classifier aggregates the con-
ditional probabilities for all attributes to obtain the marginal
probability of being duplicates (assuming conditional inde-
pendence across attributes).

4.2.4 Similarity Join
The goal of the similarity join between two data sets is re-
trieving all duplicate tuple pairs. Once the deduplication
rules are obtained as shown in Section 4.2.3, we perform sim-
ilarity join as follows. We obtain all candidate tuple pairs,
where each pair belong to the same category and at least one
attribute has a similarity above its learned threshold. Then,
we compute the attribute similarities of the candidate pairs

and we use these similarities to identify duplicate records
according to the classifier learned in Section 4.2.3.

Similarity join is performed incrementally to accommodate
new data sources that are continuously added. For each
new source, we first categorize tuples within the new source,
perform self-similarity-join on the new tuples, and perform
similarity join between tuples in the new source and tuples
in exiting sources. When new training data is added as a
result of asking humans for help resolving ambiguous cases,
we update the deduplication rules, efficiently identify which
tuples are affected by such changes and re-classify them.

4.2.5 Record Clustering and Consolidation
Once we obtain a list of tuple pairs that are believed to be
duplicates, we need to obtain a clustering of tuples such that
each cluster represents a distinct real-world entity. Cluster-
ing of tuples ensures that the final deduplication results are
transitive (otherwise, deduplication results would be incon-
sistent, e.g., declaring (t1, t2) and (t2, t3) as duplicate pairs
while declaring (t1, t3) as non-duplicate). We depend on a
modified version of a correlation clustering algorithm intro-
duced in [13]. Given a similarity graph whose nodes repre-
sent tuples and whose edges connect duplicate pairs of tu-
ples, we perform clustering as follows. The algorithm starts
with all singleton clusters, and repeatedly merges randomly-
selected clusters that have a “connection strength” above a
certain threshold. We quantify the connection strength be-
tween two clusters as the number of edges across the two
clusters over the total number of possible edges (i.e., the
Cartesian product of the two clusters). The algorithm ter-
minates when no more clusters could be merged.

When the underlying similarity graph changes (i.e., new
edges are added and/or existing edges are removed), we up-
date the clustering as follows. We identify all nodes in the
graph that are incident to any modified edges. Clusters that
include any of these nodes are split into singleton clusters.
Then, we reapply the same merging operation on the new
singleton clusters.

Tuples in each cluster are consolidated using user-defined
rules. Null values are first discarded, and then we use stan-
dard aggregation methods such as Most-Frequent, Average,
Median, and Longest-String to combine the attribute values
of tuples within each cluster.

4.3 Human Interface
In both the attribute identification phase and the entity con-
solidation phase, a human DE may be asked by a DTA to
provide curation input. In the case of attribute identifica-
tion, the task is to decide if two attributes are the same
thing or not. In the case of entity resolution, the task is to
decide if two entities are duplicates or not. There are two
cases that Data Tamer deals with as noted in the next two
subsections

4.3.1 Manual Mode
If the tasks requiring human intervention are few or if there
are only a few DEs, then the DTA can manually assign hu-
man tasks to DEs. He does so by using a collection of rules
that specify the classes of issues that should go to specific

individuals. Alternatively, he can just assign tasks manu-
ally. In either case, routing of human requests is done by
the DTA with minimal infrastructure.

However, if there are many issues, or if DEs vary in the
amount of time they have to offer, or if there are many DEs
to deal with a large volume of issues, then a more sophis-
ticated crowd sourcing model should be employed. Data
Tamer implements the model discussed in the next section.

4.3.2 Crowd Sourcing Mode
Large-scale data curation may require enlisting additional
DEs with lesser expertise to help with the workload. Non-
guru DEs can be asked to complete “easier” tasks, or they
could be crowdsourced to produce results with higher confi-
dence of correctness than could be assumed of any of them
individually. But with a large and diverse DE population
come the following issues that must be addressed:

• Determinination of Response Quality. When a
task requiring human intervention is forwarded to a
single guru, the resulting response can be assumed to
be accurate. But a task addressed by multiple DEs
with variable expertise is likely to result in multiple
responses of variable quality. Therefore, the set of dis-
tinct responses returned by a set of DEs should be ac-
companied by a probability distribution that reflects
the aggregate confidence in each response being cor-
rect.

• Determination of DE Domain Expertise. The
confidence of each distinct response to a task must be
a function of the expertise ratings in the given task’s
domain of those DEs who gave that response. This
introduces a challenge for how to characterize and de-
termine domain expertise.

• Motivation of Helpful and Timely DE Re-
sponses. Given a diverse DE population, individual
DEs will differ by the responsiveness and effort put into
their responses. The issue here lies in how to incent
DEs to be good citizens in responding to tasks.

• Management of DE Workloads. DEs not only
have variable domain expertise but also variable avail-
ability to respond to tasks. Thus, it is necessary to
manage workloads in such a way that individual DEs
are neither overtaxed nor underutilized given their
workload constraints.

We have built a tool (the Data Tamer Exchange, or DTX)
which acts as a market-based expert exchange by helping
to match a task requiring human input to an individual or
crowdsourced set of DEs who can provide it. DTX assumes
a collection of attribute identification or entity resolution
problems, which must be validated or refuted. For each such
task, the tool shows a DTA how many DEs are available in
each of some number of fixed Expert Classes associated with
the task domain, and how the cost and quality of response
will vary according to how many DEs from each class are
asked to respond.

The key features of the DTX are the following:

• Confidence-Based Metrics for DEs and Re-
sponses. The DTX maintains a vector of confidence-
based expertise ratings for each DE reflecting their de-
gree of expertise in each of a set of domains specified
by a DTA. Each rating is a value between 0 and 1 that
denotes the probability that the DE produces a correct
response to tasks from the associated domain. A DE’s
expertise rating for a given domain is calculated from
reviews made of each of his responses in that domain
by other, more expert DEs and from the DTA who re-
quested the response. A similar confidence-based met-
ric is used to measure the quality of a response (i.e., the
probability that the response is correct). A response
solicited from a single DE has a quality rating equiva-
lent to the expertise rating of the DE. Crowdsourcing
produces a collection of responses (TRUE or FALSE),
and the quality rating of each vote is aggregated us-
ing Bayesian Evidence Gathering from the expertise
ratings of the responders who voted for that choice.
More specifically, given a question with n responders
with expertise ratings ~E and responses ~R, the cumu-
lative confidence of a given response b is:

P (~R|B) · P (B)

P (~R|B) · P (B) + P (~R|B̄) · P (B̄)

such that B and B̄ are random variables denoting
events whereby response b is a correct and incorrect
answer, respectively, and for either random variable
(X),

P (~R|X) =
∏

Ri=X

Ei ·
∏

Ri 6=X

(1− Ei)

such that the subproducts above are the combined
probabilities of the correct responders being correct
(Ri = X) and the incorrect responders being incorrect
(Ri 6= X).

• Expert Classes. The DTX dynamically clusters DEs
into domain-specific expert classes according to the
DE’s expertise rating in that domain. For example, the
most expert DEs in a given domain might be assigned
to expert class #1 on the basis of having an expertise
rating of 0.9 or higher. When a task is submitted to
DTX, the tool responds by presenting statistics about
each expert class in the task domain, including the
number of DEs, the cost per DE response (classes with
higher expertise ratings charge more per response) and
the minimum expertise rating of DEs within the class.
On this basis, a DTA decides for each class, how many
(if any) DEs he will pay to respond to a task in this
class.

• Economic Incentives for Good Citizenship. The
DTX assumes an economic model whereby the pay-
ments earned by a DE for a response is commensurate
with his expert class. Payment for responses comes
from the accounts of DTAs who are provided a budget
with which to complete their tasks. Payment for re-
views of DE responses is provided by the system to
DEs (at the same rate as responses) and to DTAs
(whose pay is added to their budgets).

• Dynamic Pricing to Manage Workload. The
DTX dynamically adjusts the prices paid per response
at each expertise level so as to encourage the selection
of underutilized DEs and discourage the selection of
overtaxed DEs.

The economic model helps to address two issues with large-
scale data curation:

1. Given that responses may be reviewed, DEs are in-
cented to produce helpful and timely responses so as to
achieve higher expertise ratings and therefore to earn
higher pay.

2. Given that DTAs are assigned a fixed budget with
which to complete all of their tasks, they are incented
to spend as little as possible for DE responses. This
helps to offload the responsibilities of guru DEs by en-
couraging DTAs to classify tasks according to their dif-
ficulty and solicit responses from the least expert (and
hence cheapest) DEs whose responses have minimally
acceptable confidence.

Further, the payment for reviews incents this crucial input,
helping to ensure the accuracy of the confidence-based rat-
ings of DE expertise and response.

4.4 Visualization Component
At any time, the DTA or a DE can call our visualization
system and pass a local data source to that system. It dis-
plays the data source (or a sample of the source) as a table
on the screen. The human can inspect the data source for
insight.

It is possible that we will switch the visualization system to
Data Wrangler to access their Extract, Transform and Load
(ETL) operations. In this way a Data Tamer user could
apply Data Wrangler transformations manually and convert
data types and formats. In this case, we can remember the
transformations applied and put them into a graph of data
types. If we see the data types in the future, we can apply
the transformations automatically. To allow the DTA to
“snap” the data, we always employ a no-overwrite update
strategy for data in the Postgres database.

Alternatively, we could implement a Data Tamer-specific vi-
sualization interface. In this way, the screen component can
be tailored to Data Tamer needs. For example, the entity
consolidation system wants to display potentially matching
clusters and the schema matcher wants to show columns
from multiple local data sources which might match an at-
tribute of interest. Neither capability is included in Data
Wrangler.

5. EXPERIMENTAL VALIDATION
We ran the Data Tamer system on the data used by the web
aggregator described in Section 2. After modest training
on fewer than 50 manually labeled sources, our automatic
system successfully identified the correct attribute mapping
90% of the time. This overall success depends on combining

Aggregator Data Tamer
Total records 146690
Pairs reported as duplicates 7668 180445
Common reported pairs 5437
Total number of true
duplicates (estimated) 182453

Reported true duplicates
(estimated) 7444 180445

Precision 97% 100%
Recall 4% 98.9%

Figure 2: Quality results of entity consolidation for
the web aggregator data

results from the individual experts. On their own, attribute
name matching is successful 80% of the time, MDL 65%,
and fuzzy value matching 55%. Because the aggregator has
few numeric columns (postal codes, and latitude/longitude),
the T-test expert only provides results for fewer than 6%
of attributes, but its results are correct in 65% of cases.
The experts compliment each other well: at least one expert
identified the correct mapping for 95% of the attributes.

We evaluated our entity consolidation module using a set
of 50 data sources. On average, each data source contains
4000 records, which took 160 seconds to be deduplicated
and integrated into the central database (using a single ma-
chine). Statistics about the found duplicate pairs in the 50
data source are summarized in Figure 2. We compared our
results to the duplicate pairs found by the current dedu-
plication algorithm used by the web aggregator. The total
number of records in the 50 data sources is 146690. Data
tamer has reported 180445 duplicate pairs, while the aggre-
gator’s algorithm only reported 7668 duplicate pairs. The
number of common pairs reported by both the aggregator’s
algorithm and Data Tamer is 5437.

We assume that common pairs are true duplicates. Also, we
assume that pairs that were not reported by either algorithm
are true non-duplicates. We evaluated the accuracy of the
remaining pairs (i.e., pairs reported by one algorithm but not
the other) by asking a domain expert to examine a sample
of 100 pairs. Based on the expert feedback, 90% of the pairs
reported by the web aggregator but not reported by Data
Tamer are true duplicates. Also, 100% of the pairs reported
by Data Tamer but not by the aggregator were labeled as
true duplicates. It follows that the (estimated) number of
true duplicates reported by the aggregator is 5437+ (7668-
5437)*0.9 = 7444. The number of true duplicates reported
by Data Tamer is 5437 + (180445-5437) * 1.0 = 180445.
The total number of true duplicates in the data set is 5437+
(180445-5437) * 1.0 + (7668-5437)*0.9 = 182453. The pre-
cision of Data Tamer is 180445/180445=100%, while the
precision of the aggregator is 7444 / 7668 = 97%. The re-
call of Data Tamer is 180445/182453 = 98.9%, while the
recall of the aggregator is 7444/ 182453= 4%. These results
clearly show that our entity consolidation module is capable
of significantly increasing the recall of existing deduplication
algorithms, while maintaining the same level of precision.

We also ran the schema identification system on the biology
problem discussed in Section 2.2. Data Tamer successfully

Figure 3: Quality results of entity consolidation for
Verisk data

mapped 86% of the attributes.

Lastly, we ran the entity consolidation module on the Verisk
medical claims data set. Figure 3 shows the quality of the re-
sulting record pairs for various cut-off thresholds on pairwise
similarity. We divided the threshold range [0,1] into 10 equi-
width subranges, and we obtain a sample of 15 pairs from
each subrange. We relied on a domain expert to classify the
sampled pairs into true duplicates and true non-duplicates.
We computed the precision, the recall, and the F1-measure
for each similarity threshold (Figure 3). To put these results
into perspective, we computed the accuracy of the current
deduplication algorithm used at Verisk. The precision of
this algorithm is 12%, the recall is 30% and the F-score is
17%. On the other hand, our algorithm archives an F-score
of 65% at threshold of 0.8.

To gauge user acceptance of our crowd-sourcing exchange,
we are executing a two-step evaluation with the biology data
mentioned earlier. The company plans to run Data Tamer
on their entire biology problem, with several hundred ex-
perts as their crowd sourcing component. As a first step,
they wanted to do a ”dry run” to make sure the system
worked correctly. Hence, they asked 33 domain experts to
participate in a beta test of the system. We used Data
Tamer to perform schema mapping on a portion of their in-
tegration problem. To verify Data Tamer’s mappings, we
used DTX’s expert worker allocation algorithms to assign
the 33 experts a total of 236 schema-matching tasks. In
each task, the user was asked to mark Data Tamer’s sug-
gested match as True or False, and if False, to suggest an
alternate match. On average, each task was redundantly as-
signed to 2 experts. This resulted in an average of 7 task
assignments per user.

No economic incentives were given to users in this test and
participation was voluntary. Of the 33 experts that we con-
tacted, 18 (54%) logged into the system. Each user who
logged in performed all of the tasks assigned. In total, 113
of the 236 task assignments were completed and 64% of the
tasks received at least one response. The low voluntary re-
sponse rate suggests the need for economic incentives that
reward timely responses. After completion of the assigned

tasks, we asked each participant to rate the system’s usabil-
ity on a scale of 1 to 3. The average score given by users
was 2.6.

The company is now proceeding with a full scale test of the
system using hundreds of domain experts. We plan to cluster
data sources by domain, and then leverage each user’s data
entry history over those sources to determine appropriate
initial domain expertise levels. For example, if a user is the
creator of a data source in a certain domain, then that user’s
response can be weighted more heavily in determining the
correct answer for a task than responses from users who have
not entered data in that domain. We expect to report on
this study in the near future.

6. FUTURE ENHANCEMENTS
In the body of the paper we have indicated assorted future
enhancements, which we discuss in this section. First, we
expect to parallelize all of the Data Tamer algorithms, so
they can be run against a sharded and/or replicated Postgres
database or against one of the parallel SQL DBMSs. Since
many of the algorithms are implemented in SQL or as user-
defined functions, this extension is straight forward.

The schema integration module may need to be accelerated
by making it a two-step algorithm as noted earlier. In ad-
dition, we have yet to consider mechanisms to efficiently
redo schema integration. Since our schema integration algo-
rithms are inherently order sensitive, it is entirely possible
that a different outcome would be observed with a different
ordering of sites. As such an efficient redo will be a required
feature.

Our entity consolidation scheme needs to be made incremen-
tal, so all of the subtasks can be efficiently run as each new
data source is integrated and/or when new training data is
added. Moreover, parallelization of this resource intensive
module will be especially desirable.

So far, the only data cleaning operations in Data Tamer are
in the entity consolidation system. Whenever there are mul-
tiple records that correspond to an entity, we can generate a
clean result, either automatically or with human assistance.
Although this is a valuable service, we need to implement
a specific cleaning component. Unfortunately, data cleaning
often relies on outlier detection or on a collection of cleaning
rules. Outliers are not necessarily errors; for example -99 is
often used to indicate that data is missing. Hence, finding an
outlier is equivalent in this case to finding a missing value.
Also, most cleaning rules are very complex, if they are to be
useful. Although it is easy to state that ages and salaries
must be non-negative, it is much more difficult to state that
temperature near a window should be lower than tempera-
ture next to a heat vent, if it is winter. We expect to work
on this component in the near future, guided by what users
actually find useful in practice.

Similarly, we have not yet systematically addressed data
transformations, for example to convert local data to have
the same representation, to convert units, or to convert at-
tributes to a common meaning (price without sales tax to
total price, for example). Our approach is to maintain a
graph of Data Tamer data types. Whenever a user exercises

the visualization system to make a transformation, we plan
to remember this as an arc in the graph. Obviously, a user
should be able to add arcs to the graph with corresponding
code to implement the transformation. This graph could
then be used to suggest transformations in the visualization
engine.

7. CONCLUSION
This paper has described the main features of Data Tamer,
namely a schema integration component, an entity consoli-
dation component, a crowd-sourcing module to organize do-
main experts, and a visualization component. In the future,
we will add more modules to perform data cleaning and
reusable transformations.

The system has already been shown to be valuable to three
enterprises. At the current time, the code is being adopted
by all three companies for production use.

8. REFERENCES
[1] http://vis.stanford.edu/wrangler/.

[2] http://www.compositesw.com/solutions/data-
federation/.

[3] http://www.ibm.com/software/data/integration/.

[4] http://www.informatica.com/etl/.

[5] http://www.talend.com.

[6] D. Arthur and S. Vassilvitskii. k-means++: the
advantages of careful seeding. In SODA, pages
1027–1035, 2007.

[7] R. Baxter, P. Christen, and T. Churches. A
comparison of fast blocking methods for record
linkage. ACM SIGKDD, 3:25–27, 2003.

[8] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu,
and Y. Zhang. Webtables: exploring the power of
tables on the web. PVLDB, 1(1):538–549, 2008.

[9] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In ICDE, pages
865–876, 2005.

[10] L. Chiticariu, M. A. Hernández, P. G. Kolaitis, and
L. Popa. Semi-automatic schema integration in clio. In
VLDB, pages 1326–1329, 2007.

[11] P. Christen and T. Churches. Febrl. freely extensible
biomedical record linkage,
http://datamining.anu.edu.au/projects.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1), 2007.

[13] C. Mathieu, O. Sankur, and W. Schudy. Online
correlation clustering. In STACS, pages 573–584, 2010.

[14] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD, pages
169–178, 2000.

[15] T. M. Mitchell. Machine learning. McGraw Hill series
in computer science. McGraw-Hill, 1997.

[16] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB J.,
10(4):334–350, 2001.

[17] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, pages
381–390, 2001.

[18] W. E. Winkler. Overview of record linkage and
current research directions. Technical report, Bureau
of the census, 2006.

APPENDIX
A. DEMO PROPOSAL
At the present time we have validated Data Tamer on three
enterprise data curation problems:

• The the web aggregator mentioned in Section 2.1

• The lab notebooks from the “Big Pharma” company
mentioned in Section 2.2

• The health claims records mentioned in Section 2.3.

In the demo, we pick the web aggregator application, and we
go through the end-to-end steps of data curation, namely:

1. Bootstrap the system by adding a few data sources, and
providing initial training data for attribute matching
and deduplication modules.

2. Ingest a new data source.

3. Examine the data source visually.

4. Perform schema integration with the composite source
assembled so far, asking for human help through our
crowdsourcing module.

5. Perform entity consolidation with the composite source
assembled so far, again asking for human help in am-
biguous cases.

6. We compare our solution with the one currently in pro-
duction use, and show the superiority of our algorithms.

7. We also illustrate the scaling problem faced by this ag-
gregator, and show why traditional human-directed so-
lutions are problematic.

