Data Integration and Data Exchange: It’s Really About Time

Mary Roth
IBM and UC Santa Cruz
torkroth@yahoo.com

ABSTRACT

With the deluge in the amount and variety of data in the world, it
is rare for data that describes an entity to be completely contained
and managed by a single data source. As a consequence, there is
often great value in combining data about an entity from multi-
ple sources, and also from versions of data reported by the same
source over time. Data integration in which multiple dimensions
of time may be expressed explicitly (e.g., as part of the data itself)
or implicitly (e.g., the publication date of a data source), must be
performed with great care. This is because each data source con-
tains only partial (time-specific) knowledge about an entity, and
thus their collective knowledge about the entity may contain con-
flicts that need to be resolved.

In this paper, we call for a formal framework for data integra-
tion and data exchange across time that would facilitate the cre-
ation of consistent and integrated longitudinal knowledge about en-
tities. We call such longitudinal knowledge of an entity its when-
provenance, which intuitively corresponds to when one knows what
one knows about the entity. We believe that the vision and research
directions described in this paper will serve to instigate the research
and development of the next generation data integration and data
exchange system, where both data and time can be reasoned on
equal footing.

1. Introduction

With the deluge in the amount and variety of data in the world,
it is rare for data that describes an entity to be derived from a sin-
gle source. As a consequence, there is often great value in com-
bining data about an entity from multiple sources, or from various
versions of data reported by the same source over time. In fact, in-
tegrated data across time may unlock insights that may otherwise
be hidden [60]. Rather surprisingly, even though there has been
extensive prior research on data integration and data exchange, and
in the related area of temporal databases, the problem of accurately
and consistently combining heterogeneous data sources that con-
tain time-specific information is still largely unexplored up to now.

Time-specific information can occur implicitly or explicitly in

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2012, Asilomar, California, USA.

Wang-Chiew Tan
UC Santa Cruz
tan@cs.ucsc.edu

data. For example, scientific databases that publish data [51] on
a regular basis have an implicit time component derived from the
publication date. On the other hand, data records that contain birth
and death dates, graduation dates, dates of purchase etc., are exam-
ples of data that contain explicit time-specific information. Other
examples of data sources with interesting time-specific information
include the Internet Archive [38], social media data (e.g., Twitter,
Facebook, blogs etc.), and even public, curated, or enterprise data
that are shared publicly or sold by data markets such as Amazon
Web Services and Azure DataMarket.

In many cases, data contains both implicit and explicit types of
time-specific information. An example of this type of data are the
reports that are available via the Securities and Exchange Commis-
sion (SEC) EDGAR database [29]. The SEC requires that corpo-
rations regularly report information disclosing the financial health
of the company and the stock transactions of its corporate officers
and directors (“beneficial owners"). Each report includes the date
the report was received and published by the SEC as well as ex-
plicit time-specific information, such as the date, number and type
of shares involved in a stock transaction, and the title of the insider
on the day of the transaction.

Even though every version of each data source contains valu-
able information, there is often even greater value for an aggregated
view of the versions of data produced by the data sources. To ex-
emplify, each SEC report contains only partial information; while a
report may record that an executive held the title on certain date, it
does not contain enough information to determine how long the title
was held, or even if he is still employed at the company. However,
such reports can be aggregated and coupled with information from
other publicly available sources to build historical profiles of corpo-
rate executives, including employment history, stock holdings, and
relationships to other executives over time. Such profiles are useful
for a variety of scenarios including executive recruiting, regulatory
compliance, and even fraud detection [19].

There is also significant value to produce aggregate electronic
medical records. This is because a temporally consistent and inte-
grated personal patient health care record provides complete knowl-
edge of a patient’s prescription history and medical procedures to
ensure correct diagnosis and treatment. Patients typically visit mul-
tiple medical facilities and see multiple medical professionals, some-
times simultaneously, over the course of their lifetime, and each in-
cidence may result in the diagnosis and treatment of medical con-
ditions. Each of these interactions is associated with point-in-time
information regarding when a clinic was visited, or when certain
prescriptions and medical procedures were carried out. While any
one medical facility may keep a complete record of a patient’s med-
ical history at that facility, it does not provide a complete view of
the patient’s health and medical care. Currently, medical profes-

sionals rely on the patients to provide medical history information.
However, this method is not always reliable, which can potentially
lead to misdiagnoses and improper treatment. Indeed, adverse drug
interaction is a serious cause of patient hospitalization and death
[36, 41].

In this paper, we illustrate some of the challenges associated with
data integration and data exchange across time by means of a run-
ning example derived from realistic data. We argue for a systemic
approach to investigate and define a time-aware data model and
schema mappings with the goal of developing a system that can
efficiently support data integration and data exchange across time,
longitudinal query answering, and evolution changes that may oc-
cur to the schema, data, and mappings.

1.1 Motivating Example

We now describe a simplified example in detail to exemplify the
issues and challenges to create an integrated archive of profile data
across time. As shown in Figure 1, the goal is to construct em-
ployment histories of individuals from various versions of SEC re-
ports (sources S1 and S2) and additional data available via the In-
ternet (source S3). Source instance S1 is derived from quarterly
SEC Form 10Q reports and provides information that Ann Exec-
utive was Chief Financial Officer (CFO) at ABC corporation in
Jan ’05. Source instance S2 is derived from SEC Forms 3/4/5 that
are periodically filed by corporations to report changes in the stock
holdings of its officers and directors. The extract represented in the
figure shows that Ann Executive was ABC’s Chief Executive Of-
ficer (CEO) in Feb *10. Additional information from a Wikipedia
entry published in Jan 09 (S3) also shows that Ann Executive was
CFO at company XYZ in Jan ’08. Each source instance tracks two
dimensions of time. One time dimension states when the report
to the SEC was made (or when the fact was reported on the Web)
and the other time dimension states when the position held by Ann
Executive was known to begin.

The integrated profile of Ann Executive is shown on the right of
Figure 1, and we defer discussion of the middle of the figure to Sec-
tion 2.2. Figure 2 presents a visualization of the changes in one’s
understanding of Ann Executive’s employment history as facts are
combined. The integrated profile shows a combined understanding
of when Ann Executive worked for each company and also when
Ann Executive held various positions in her lifetime.

In this example, we apply a “one company, one job-title” con-
straint (i.e., every individual can only be employed by at most one
company and hold one job position at any point in time) to obtain
the integrated profile. It should be noted that a given application
may require many constraints, and different applications may re-
quire different sets of constraints depending on the desired structure
of the data. For example, instead of “one company, one job-title”,
a more realistic application may allow executives to hold multiple
titles at the same time, and allow an executive to simultaneously
hold multiple stocks in his portfolio, but hold only one quantity of
shares of a given stock at a time.

Observe that the process of combining data from different sources
is not a simple matter of taking a “union” of facts that are mi-
grated to the target. Based on the “one company, one job-title"
constraint, the time periods associated with a company (resp. po-
sitions) of a person are dependent on the time periods associated
with other companies (resp. positions) of the same person over
time. For this example, source instance S1 provides the informa-
tion that Ann Executive was the CFO of organization ABC since
at least Jan ’05 (i.e., active-time) and this fact was reported in Mar
’05 (i.e., reported-time). Pictorially, the current state of knowl-

edge can be visualized as the largest rectangle (P1,P2,P3,P4) in the
graph in Figure 2(a). In other words, in the absence of other in-
formation, one could assume that this fact continues to remain true
up to now. However, with the new knowledge that Ann Executive
was the CEO of ABC in Feb ’10 (reported in a Form 3/4/5 filed in
Feb *10) from S2, and because of the “one-company, one job-title"
constraint, one can deduce that the prior fact that Ann Executive
was the CFO of ABC Company can only be true from Jan *05 to at
most Feb *10. Hence, the new retroactive knowledge about when
Ann Executive was the CFO of ABC is now given by the rectangle
(P5,P2,P3,P6) shown in Figure 2(a). The graph essentially reads
as follows: Since Mar ’05, Ann Executive was known to be the
CFO of ABC in the time period (Jan *05-Feb ’10). In addition, the
rectangle given by “CEO of ABC” states that since Feb ’10, Ann
Executive was known to be the CEO of ABC in the time period (Feb
’10-now). With the knowledge brought about by S2, a choice that
Ann Executive was the CEO of ABC (as opposed to the CFO of
ABC) is made in the active time period (Feb *10-now) because the
knowledge from S2 is based on a later reported-time, and therefore
assumed to be more accurate. Similarly, when the third piece of
information arrives from S3, one can deduce the information that is
given by the three rectangles labeled, respectively, “CFO of ABC”,
“CFO of XYZ”, and “CEO of ABC” in Figure 2(b). Essentially,
the new evidence from S3 requires one to adjust the knowledge of
when Ann Executive was the CFO of ABC again, which is now
given by the rectangle (P7,P2,P3,P8).

This example illustrates how the understanding of Ann Execu-
tive’s employment history evolves as new knowledge arrives. Fig-
ure 2(b) depicts the most accurate and consistent understanding of
the data provided by all data sources S1, S2, and S3 under the given
policies and semantics for the time dimensions. In general, the
integration process must include a mechanism by which one can
specify different application-specific policies to govern the merge
process. Such policies can be invoked to resolve conflicts that arise
as new data is integrated that may introduce constraint violations
when combined with existing information in the integrated result.
For example, it may be that information reported at a later time
should be favored as new evidence, and the time periods asso-
ciated with any older evidence with which the new evidence has
time-conflicts should be adjusted to remove the time-conflict. Al-
ternatively, it may be that sources have different levels of author-
itativeness, with one reporting definitive information, and another
reporting information that might be true only in the absence of other
conflicting information. When resolving time-based constraint vio-
lations in this scenario, the policy may be to favor the second source
unless or until conflicting information arrives from the first.

It is worth noting that in this example, it is important to track both
dimensions of time in the integrated result in order to fully under-
stand the when-provenance, or when one knows what one knows
about the employment history of an individual. For example, a
complete understanding is especially important for audit purposes,
where it is crucial to not only understand when a person held a par-
ticular position but also when that fact was reported. To exemplify,
suppose a question arises as to the earliest possible time that the
SEC could have had knowledge that Ann Executive participated in
fraudulent activities in Jan 05 as the CFO of company ABC. The
answer is Mar ’05, because that was the earliest time it was reported
to the SEC that Ann Executive was employed as the CFO of ABC
in Jan ’05.

Just as constraints are application-specific, the use of time can
vary in semantics across different applications. For example, tem-
poral databases [56] couple valid-time, the time a record is valid
with respect to the application, with transaction-time, a system-

Source Instances Intermediate data

Target Instance

1
fu 1 Integrated Profile of Ann Executive over time
3 SEC Form 10Q (extracted from text) Form 10Q (extracted from text): (active:Jan05-now, reported: Mar05-now)
k] organization: ABC name: Ann Executive
g position: Chief Fin. Officer o)\ | = company: (active: Feb 10-now, reported: Feb 10-now)
i empName: Ann Executive ~So (active:Jan05-now, reported:Mar05-now) (active: Jan 05-Jan 08, reported: Mar 05-now)
g reportedOn: Mar, 2005 NNA name: Ann Executive ABC
since: Jan, 2005 company: ABC 5
position: Chief Fin. Officer g(aYthlve: Jan 08-Feb 10, reported: Jan 09-now)
1
1
. A R
_r§ SEC Form 3/4/5 (originally XML): (active:Feb10-now, reported:Feb10-now) positon: (ac.twe. Feb 10.—now, reported: Feb 10-now)
i5 filing date: Feb 2010 name: Ann Executive = Chief Exec. Officer
) name: Ann Executive] —— 9 company: ABC (active: Jan 08-Feb 10, reported: Jan 09-now)
% company: ABC position: Chief Exec. Officer (active: Jan 05-Jan 08, reported: Mar 05-now)
o title: Chief Exec. Officer Chief Fin. Officer
{| since: Feb, 2010 (active:Jan08-now, reported:Jan09-now)
] name: Ann Executive
= 1 ’¢7 company: XYZ
4 Web (e.g., Wikipedia): PR position: Chief Fin. Officer
5 name: Ann Executive ’¢’ -
2 title: Chief Fin. Officer ’f
o
> company: XYZ (s3) q . ’ X
g version: Jan, 2009 Mapping rules Merge and fuse through time-aware union
1] starting: Jan, 2008
Figure 1: Combining knowledge across different times from different SEC filings and the Web.
nowh (P1) (P4) nowh (P1) (P4)
CEO of ABC (1) CEO of ABC
Feb10 (P5) (P6) Feb10 (P5) | (P6)
Jan 09 Jan 09 CFO of XYZ
g g | (2)
£ Janos £ Jan08 | (P7) (P8)
(3
£ Jan07 CFO of ABC £ Jan07
<
Jan06 Jan06 CFO of ABC
Mar05 Mar05
Jan05 | (P2) (P3) Jan0s | (P2) (P3)
Mar05 Jan06 Jan07 Jan08 Jan 09 Feb10 now Mar05 Jan06 Jan07 Jan08 Jan 09 Feb10 now

Reported time

(a)

Reported time
(b)

Figure 2: An illustration of the process of integrating facts from the middle of Figure 1.

generated clock time for when a record enters a database. Valid-
time can be used to record when something was, is, or will be true
(e.g., past, present, or future). In our example, active-time is similar
to valid-time, though the update semantics of a standard relational
bi-temporal database would replace the active time currently asso-
ciated with the record, rather than merge and fuse the active-time
from various sources as desired in our example and as shown in
Figure 1. Reported-time, however, is not like transaction-time, be-
cause it is not a system-generated value; instead, it represents the
time at which a report was filed with the SEC, not the time the
record derived from the report was inserted into the database. In
other data integration scenarios, it may also be important to track
the departure time from the original source and/or its arrival time
at the target integrated database.

While single and two dimensional (bi-temporal) time is well
studied in the literature, use cases also exist for higher dimensions.
For example, data in SEC reports filed by companies might record a
time for when the data was valid, a time to capture when the report
was filed with the SEC, and a time to record when the report was
published by the SEC, each of which might be crucial for com-
pliance verification and fraud detection. Additionally, streaming
and complex event processing systems [5] that model sliding win-
dows of valid time rely on three dimensions of time: valid-time,
an occurrence-time to record the window in which the valid time
occurred, and transaction-time.

Even though we use a fictitious corporate executive to illustrate

our ideas, the running example is realistic in that one can obtain the
various types of information that we depict from the SEC EDGAR
database and the Web. In this discussion, we assume that the source
instances contain structured information that may be the result of an
extraction process that is applied on “raw” data sources (e.g., text
files, Web pages, blogs, etc.) which may be unstructured. Further-
more, we assume that these source instances are already mapped
into a form that is ready for integration. The example is intention-
ally kept simple to focus our discussion on the key issues of this
proposed framework. However, in practice, added complexities can
arise in several different dimensions. For example, the structure of
the integrated profile may not resemble the structure of the source
data as closely as it does in this example. In addition, data can be
much richer in both structure and content; data can be hierarchical
(whether in the source or target), it may be qualified with multiple
dimensions of time, and may contain more attributes, records, and
types than what is shown in Figure 1.

1.2 Related work

Related work on data integration and data exchange Data in-
tegration and data exchange are long standing problems that are
known to be difficult and time-consuming tasks [9, 27].

A primary task to combine data from multiple sources, whether
through data integration or data exchange, is the precise specifi-
cation of schema mappings between the source schemas and the

global or target schema. These schema mappings are typically
specified through the non-trivial efforts of data architects'. Several
commercially available tools and research prototypes help allevi-
ate the task of integrating and exchanging data. They range from
graphical user interfaces (e.g., Altova Mapforce, Stylus Studio, [35,
57]), and high-level declarative languages (e.g., [14, 52]) to spec-
ify schema mappings, to the study of operators for manipulating
schema mappings (e.g., [7]) and more recently, the use of data ex-
amples (e.g., [1, 2, 3, 53]) to design and understand schema map-
pings. However, prior techniques and systems are largely agnostic
to time, and hence, they cannot be immediately applied to build
an integrated dataset over time without at least manually introduc-
ing ad-hoc time-manipulation functions into the mapping process.
Except for [62], which discusses three types of temporal hetero-
geneity that need to be resolved when integrating data over time,
the issue of time, to the best of our understanding, has not been
systematically and thoroughly addressed in prior work in this area.

Our call to investigate techniques for resolving conflicts across
time can be seen as a generalization of the study of data conflict
resolution for integration [12, 13, 28, 59]. The difference is, again,
that existing techniques for data conflict resolution are agnostic to
time. Our proposed time-aware union (described in Section 2.2)
resolves data conflicts at any time point through a broader strategy
that takes into account constraints and policies that may be based
on time.

Related work on bi-temporal databases There is a large body of
work on bi-temporal databases and [22, 40] provides a comprehen-
sive overview of related work and concepts in this area.

The problem of integrating data with time-specific information
cannot be immediately resolved with bi-temporal databases. As
mentioned earlier, bi-temporal databases have only two specific
notions of time, namely that of valid-time and transaction-time
(which are also known as application-time and, respectively, system-
time in the recent standard [39]). Transaction time denotes the time
at which updates are applied to the database and hence, they can
only “increase”, while valid time denotes the time at which a tuple
is valid in the real world. However, in data integration and data ex-
change settings over heterogeneous distributed data sources, there
is little control over the order in which facts arrive to be merged
into the target. As can be seen in our running example, facts may
arrive in the target “out-of-order”, whether we consider reported-
time or active-time. Hence, it is important to provide idempotent,
commutative, and associative properties as facts are integrated to
ensure a time-consistent result, regardless of the order in which the
facts are learned. While a standard bi-temporal database, for ex-
ample, could be used to track when facts are learned, it does not
guarantee that the most current understanding of the facts will be
the same, regardless of the order in which updates occur. Suppose,
for example, we did use a bi-temporal relational database to store
records about corporate executives like Ann Executive in Figure 1,
and that valid-time was used to capture the time at which a particu-
lar job description was valid in the executive’s career. Consider the
following three updates that correspond to the arrival of the three
facts shown in the middle of Figure 1:

UPDATE PROFILE FOR PORTION OF BUSINESS_TIME
FROM "01/01/2005’ to CURRENT DATE

SET POSITION = ’'CFO’, SET COMPANY = ’ABC’
WHERE NAME = ’'Ann Executive’

UPDATE PROFILE FOR PORTION OF BUSINESS_TIME
FROM ’02/01/2010’ to CURRENT DATE

"The term “data architect” is used by [10] to refer to the role of the
person who designs and develops schema mappings.

SET POSITION = ’'CEO’, SET COMPANY = ’'ABC’
WHERE NAME = ’Ann Executive’

UPDATE PROFILE FOR PORTION OF BUSINESS_TIME
FROM ’"01/01/2008’ to CURRENT DATE

SET POSITION = ’'CFO’, SET COMPANY = ’'XYZ’
WHERE NAME = ’Ann Executive’

The update statements above are written with the DB2 syntax.
The database will add a system generated transaction-time with an
open-ended time interval for each update that reflects the time at
which the update was made, and it will automatically ‘close-out’
the transaction-time of the existing version of the same record with
an open-ended time interval (if one exists). Thus, the version of the
record with the open-ended transaction-time reflects the current un-
derstanding of the record. If the updates are executed in this order,
then the current understanding is that Ann Executive has been CFO
of XYZ since January 2008. However, if the order of the statements
is reversed, the database will record the current understanding to
be that Ann Executive has been CFO of ABC since January 2005.
While all three facts illustrated in the middle of Figure 1 were true
at different points in time, it is not possible to rely on a system-
generated transaction-time to accurately portray the time at which
the facts were reported to be true according to the application. Is
the last update a correction to the first and second, or just a fact that
arrived out of order?

Even if facts from different data sources are migrated in an order
that can be treated as transaction-time order, the combined knowl-
edge of when Ann Executive is the CFO or CEO of a company
under the valid-transaction-time semantics is different from the se-
mantics that are depicted in Figure 1. As mentioned earlier, each
update to the valid-time columns of a record in a bi-temporal database
effectively replace the previous values of valid-time columns for
that record, rather than merging the new and existing values as
shown in our example.

In principle, one could re-engineer bi-temporal databases to adopt
our desired semantics and to handle out-of-order updates. We can
add additional columns to a bi-temporal database to capture time-
specific information that may exist in the data (e.g., active and re-
ported time). However, this will require ad-hoc functions to be in-
troduced, perhaps through the use of triggers or user-defined func-
tions, to manipulate the time in a way that fits the application. As
we described in Section 1.1, applications may require different se-
mantics to integrate data with time-specific information in general.
Since the “correct” semantics may depend only on the application
at hand, our running example points out the need to provide an ex-
tensible framework that goes beyond the valid-transaction-time se-
mantics of bi-temporal databases so that alternative semantics can
be adopted as needed.

With the exception of [24] and [49], most implementations of
bi-temporal databases have been relational, which do not naturally
capture the use cases and the time-aware nested relational structure
that we have described in our running example. Furthermore, re-
gardless of existing implementations of bi-temporal databases, to
the best of our knowledge, there currently does not exist a frame-
work where one can declaratively specify schema mapping rules
for data integration and data exchange across time.

Related work on complex event processing, streams, and un-
certain data Complex event processing and data streams that con-
tinually react and respond to many inputs from multiple sources
is another area of related research [5, 15, 58]. The goal of such
systems is to make decisions based on continuously streaming data
that may arrive in order or out-of-order [46], and for which the time

element associated with data values may be known with certainty
or may be imprecise [54, 61]. For example, [5] introduces an oc-
currence time set by an application to track changes in valid time
for a tuple that represents an event. However, it does not address
how conflicts should be resolved if the valid times for a set of tuples
(with different values) that refer to the same event overlap. In fact,
the time-aware union operator could conceivably be used to resolve
such conflicts between multiple sources contributing to the stream,
and adjust the occurrence time appropriately before tuples enter
the stream. In data integration and data exchange, conflicts need
to be resolved when multiple sources supply multiple distinct val-
ues of time-aware data that introduce constraint violations. In our
running example, the time-aware union operator enforces the “one-
company, one job-title” constraint for an executive. In general, the
system should enable support for other reasonable constraints, such
as to allow an executive to hold multiple different stocks in his port-
folio simultaneously, but only one quantity of a given stock at any
time instant, or that the time periods associated with salary infor-
mation reported for an executive at a particular company be con-
tained within the time periods of his known tenure at that company.
What is needed is a formal foundation by which to model such con-
straints, and enable specification of application-specific policies to
resolve violations as part of the integration process to produce a
consistent integrated result.

Related work on versioning, archiving, and annotation systems
Different techniques for archiving data exists, going back to multi-
version control systems [8] with certain ACID guarantees, diff-
based version management systems (e.g., [48]), reference-based
approaches (e.g., [20]) for hierarchical data, to techniques that com-
pact versions based on key constraints [16, 18, 43].

Archiving can be construed as a form of data integration across
versions of data. All the systems above, however, apply only to
a single dimension of time (i.e., versions of data) and cannot be
immediately generalized to manage multiple dimensions of time.

Time-specific information can be seen as a special type of anno-
tation and in this context, our work is a first step towards a general
and extensible framework for understanding how to integrate data
with different types of annotations in general. There has been sig-
nificant prior work on manipulating annotations of data [11, 33, 44]
and the study of provenance semirings [34], which allows different
types of annotations on data. It is conceivable that the “additive”
commutative monoid of a provenance semiring can be applied to
obtain a union of such annotated data sources. However, a mecha-
nism for understanding how conflicts are to be resolved in the pro-
cess of combining annotations will be required to ensure that con-
straints in the target schema and associated policies are satisfied.

2. Challenges

The final integrated profile of our running example consolidates
the individual data sources into one unified view and thus facilitates
longitudinal querying. For example, it is easier to pose and answer
queries against the integrated profile, such as “Who were the other
executives of XYZ during the time when Ann Executive was CFO
of XYZ? Are they also now executives at ABC? Answering such
queries directly over the individual source instances is likely to in-
volve complex logic that manipulates data from many reports from
the SEC and the Web.

This paper argues for the need to investigate a solid foundation
and develop a system for integrating and exchanging data across
time, as well as answering queries over such settings. Towards this
goal, we will investigate and address questions including: What
are an appropriate data model, constraints, and schema mapping

language that are “time-aware”? What is the precise semantics for
such schema mappings? How does one efficiently exchange data
according to such schema mappings? How does one efficiently
answer queries over a data integration or data exchange specifi-
cation under this framework? How can a data integration system
efficiently perform incremental view maintenance and view adap-
tation, and handle schema evolution?

2.1 Appropriate data model and schema mapping language

Time-aware data model For the purpose of describing the research
challenges, we describe a basic data model that captures both time
and data as first-class citizens:

7 u=now | Str | Int | (7,7) | SetOf T |
Red[ly : 71, .., ln o 7o] | Pair[ly : 71,12 : 2]

The symbol now is a special keyword that refers to the current
time, and Str and Int are the only atomic types for the time being.
A pair (7, 7) is used to specify a time interval, Red[l1 : 71,...,0, :
7] is a record type with fields (or attributes) {1, ..., [, and corre-
sponding types 71, ..., Tn, and a Pair[l; : 71,02 : T2] is a special
record type with two fields. Data is modeled in a tree-like structure
using set types, records, and pairs similar to the nested relational
model used in data integration and data exchange [52].

Here, a temporal context can be associated with every element in
the tree in the data since every element can, in principle, vary over
time. Intuitively, the temporal context of an element is a set of n-
dimensional time intervals that is used to capture the time periods,
under the different dimensions, at which this element exists. In
the case where only two time dimensions are involved, a temporal
context is also known as a bi-temporal element in the literature of
bi-temporal databases [40]. However, in order to avoid confusion
with the term “elements” (i.e., nodes of a tree) in our setting, we
will use the term temporal context instead.

A data model for our running example is defined in Figure 3.
ActRep, shown in the first three lines, is the type of a temporal
context, which is defined to be a set of records with two fields,
“active” and “reported”, denoting the two dimensions of time in
our running example. The target schema (defined as Data) is shown
afterwards in the same figure.

starttime ::= Int

endtime ::= Int | now

ActRep ::= SetOf Rcd[active: (starttime,endtime),
reported: (starttime,endtime)]

Data ::=

Pair[C: ActRep,
DB: SetOf Pair[C: ActRep, Person:
Rcd[namex: Str,

company :
SetOf Pair[C: ActRep, valuex: Str]

position:
SetOf Pair[C: ActRep, valuex: Str]

11

Figure 3: A data model for our running example.

Intuitively, the label DB is the label for the set of tuples in our
target database. The labels DB, Person, and the values of company
and position are each associated with a field C that is of ActRep
type. In other words, one can capture the temporal context of these
elements across time. Observe that DB is written as a field of a Pair
type instead of SetOf type because there is only one DB element.
In contrast, there can be multiple Person elements under the DB.
Next, observe that name is defined to be of type Str, while company

and positions are defined with SetOf Pair type. This is because we
assume that name is the key of the relation (denoted with a “*”),
which means that every person element can be uniquely identified
by name. In contrast, there can be multiple values for company and
position, since these values can vary across time. However, these
values are unique within the set denoted by company and respec-
tively, position. Hence, the values of company and position are
also keys. It should be noted that even though there is a temporal
context associated with many elements of Data, an implementation
of this model can achieve substantial space savings by storing the
temporal context at an element only if it is different from its parent
element [18]. In fact, this data model is arguably a generalization
of the data model that is implicit in [8, 17, 18, 50], where the focus
was on only a single semantics and single dimension of time (i.e.,
version number).

Time-aware Schema Mappings There should be a high-level lan-
guage that would allow one to declaratively specify the desired inte-
gration and exchange semantics across time, and at the same time,
hide the procedural and physical plans. Such a language should
give rise to an accompanying graphical user interface that allows
one to visually specify such mappings.

For example, to declaratively specify the evolution of facts in
our running example from Form 10Q to the target, we may state
the following:

Yo, p, e, r,s.(Form10Q(o, p, e, r, s) — 3C1,C2,C3,0, P.
Data.C((s, now), (r, now))A
Data.DB(C1, (e, O, P))A (¢
O(C2,0) A P(C3,p) A C1((s, now), (1, now))A
C2((s,now), (r,now)) A C3((s, now), (r, now)))

For compactness, we have presented the above time-aware schema
mappings in a notation that is similar to source-to-target tuple gen-
erating dependencies (s-t tgds) [31] over an alternative query-like
notation [52] that is more verbose. These dependencies, also known
as Global-Local-As-View dependencies, have been studied exten-
sively in data integration and data exchange [42, 45].

Intuitively, the schema mapping above asserts the following: for
every record (o, p, e, r, s) in Form 10Q (i.e., the source), where the
variables o, p, e, r, and s bind to “company”, “position”, “name”,
“reportedOn”, and “since” values respectively in Form 10Q, there
must exist variables C1, C2, C3, O, P such that the following is
true in the target: The pair ((s,now), (r,now)) are time inter-
vals that can be found in the temporal context given by Data.C.
Furthermore, the record (C1, (e, O, P)) occurs in Data.DB, where
C' denotes the temporal context associated with the person record
(e, O, P). The variables O and P denote the set of companies, and
the set of positions respectively. The record (C2, 0) exists in the
set O and the record (C'3, p) exists in the set P. Finally, the record
((s, now), (r, now)) occurs in the sets C'1, C2, and Cs.

Similar time-aware schema mappings can be written to migrate
data from S2 and S3 to the target. In general, the language should
allow more complex time-aware schema mappings which may spec-
ify selections, projections, or joins on source instances and tempo-
ral contexts to obtain the desired result. The proposed schema map-
ping language should be sufficiently expressive to capture most, if
not all, practical use-cases. The “right” schema mapping language
is likely to borrow experience from temporal query languages, (e.g.,
[21, 23]), operators proposed for reasoning about time intervals
(e.g., [4]), and/or logical and modal operators (e.g., from Linear
Temporal Logic (e.g., [32])).

2.2 Data Integration and Data Exchange across Time

Time-aware union Traditionally, a data exchange specification is
a triple (S, T, X), where S is a source schema, T is the target
schema and ¥ is a set of schema mappings given by s-t tgds and
target dependencies [30]. Given a source instance I of S, the goal
of data exchange is to materialize a target instance J of T so that
I and J together satisfy 3. A fundamental assumption that is often
implicit in the traditional data exchange framework is that the target
instance is created as a union of facts that are obtained from the
result of the data exchange. Under the set union semantics, the
target instance can be obtained by applying the chase procedure [6,
47] or by executing scripts that implement the chase [52] to obtain
facts in the target. Subsequently, all target facts are union-ed, and
under set union semantics, the set of all identical facts are fused
into one.

To meaningfully integrate and exchange data across time, we
advocate the use of time-aware union instead of set union. Since
“name” is the key of the Persons relation, we can deduce that at
any point in time, there can only be at most one person with the
name Ann Executive. This type of constraint is called a sequenced
key constraint in relational temporal databases [40]. Based on the
semantics of sequenced key constraints and structural constraints
that are imposed by the data model of our target schema defined in
Figure 3, we propose to perform a time-aware union of facts that are
migrated to the target. The time-aware union operator will adjust
the temporal contexts accordingly and then fuse the three records,
shown in the middle of Figure 1, to obtain the final result shown on
the right of the same figure.

A key challenge is to understand and define the desirable proper-
ties that this operator should possess. For example, it will be highly
desirable that the proposed semantics for time-aware union satisfy
properties such as commutativity and associativity. In other words,
if Ty, Ts, and T3 denote three source instances under the same data
model, then 77 W T5 = T W T} (commutativity), where & de-
notes the time-aware union operator. Furthermore, we must have
T (T WT3) = (11 WTs) W T; (associativity). These properties
are crucial in the context of data integration and data exchange be-
cause facts from different source instances may arrive out-of-order
in any time dimension. The commutative and associative proper-
ties will ensure that regardless of the order in which the facts are
combined in the target, the same equivalent target instance, modulo
the representation of time, will be obtained.

The time-aware union operator is similar to the deep union oper-
ator [17] and the merge operator [18], where in deep union, every
node in the deterministic tree can be uniquely identified by a path
from the root to that node. Nodes of different trees are merged
if they have identical paths. The merge operator of [18] extends
deep union where timestamps can be associated with nodes and are
manipulated as appropriate when elements are merged.

Variations of time-aware union, policies, and constraints Se-
quenced key constraints will help determine which facts that are
migrated to the target are to be combined together. However, they
do not specify how such facts should be combined. As described
in Section 1.1, there are multiple ways to combine identical entities
together. Examples of alternatives include choices that can be made
between preferring information that has a later reported time or a
later active time, and whether or not one should retroactively adjust
understanding about the entity as new knowledge is received.

It will be desirable to investigate natural semantic variations of
the time-aware union operator that make sense in practice, and de-
termine which of the alternatives possess properties such as com-
mutativity and associativity. Finally, it will be highly attractive to
provide an extensible framework which allows policies and con-
straints to be specified so that different time-aware union semantics

can be applied to different types of elements in the same global or
target schema.

2.3 Query Answering

Along with a data integration and data exchange framework that
puts both time and data on equal footing, the classical query an-
swering problem in data integration and data exchange will need to
be re-examined in the new setting.

The investigation in this direction will first require an adequate
understanding as to what constitutes an appropriate query language
for the proposed data model, especially in the context of work that
has already been done on the language, semantics, and expressive-
ness of query languages in temporal databases (e.g., see [21, 23,
55]). In addition, when a query q is posed against the target schema,
how do we efficiently process q? There are two general approaches
towards a solution for this problem. The first approach aims to an-
swer g directly over the target instance, assuming that the target
instance is materialized. This is especially the case for data ex-
change since the target instance is materialized. However, it has
been shown that a direct evaluation of ¢ over the target instance
produces the correct answer only in certain settings [30]. It will be
interesting to see whether similar results will hold in the new data
exchange framework.

The second approach aims to rewrite g into a query (or queries)
against the source instances so that ¢ can be evaluated against the
source. This approach is usually done in data integration since the
target instance is unavailable. As far as we know, while there is
extensive literature on query rewriting [37], there has been little
or no prior work on query rewriting in the context of time-aware
schema mappings and a data model where both data and time are
first-class citizens.

2.4 Managing changes

Another challenging research topic is to understand how one can
gracefully manage changes that may occur to source instances (aka
incremental view maintenance), schema mappings (aka view adap-
tation), and schemas (aka schema evolution). When such changes
occur, it will be highly desirable to simply compute the updates that
are required without recomputing the entire target instance. There
is a large body of work on temporal view maintenance that has fo-
cused primarily on valid-transaction-time semantics. There is also
a large body of work on view adaptation and schema evolution.
However, to the best of our knowledge, there has been little or no
prior work on view adaptation or schema evolution in the context
of data integration and data exchange across time.

2.5 Efficiency, efficiency, efficiency

In order to support efficient data integration and data exchange,
efficient query processing over large databases, and efficient man-
agement of changes, it will be imperative to investigate physical
design decisions, such as the appropriate physical storage, indexes,
access methods, and even compression techniques that support such
efficient operations. As we borrow experience from prior work in
temporal databases and in parallel database systems (e.g., see [26]),
new investigations will need to be conducted to leverage parallel
database systems or the Hadoop MapReduce [25] framework to de-
velop an efficient system.

3. Conclusion

Building a consistent profile of an entity from multiple data sources
over time requires time-specific knowledge to be evolved as new
facts are integrated. Such facts may have multiple dimensions of
time associated with them, such as when they were true, and when
the fact was made known to be true. Those dimensions may be
imprecise, for example, indicating that the fact is true from a cer-
tain point in time forward unless or until conflicting information is
made available. As updates may be integrated in any order in the
context of data integration and data exchange, it is necessary to re-
adjust the current or historical understanding of entities as new data
is integrated. The problem of how one should re-adjust knowledge
as a new data source is integrated is often application-specific. In
this paper, we have illustrated some of the challenges associated
with data integration and data exchange across time, and we laid
out a vision and some research directions for the next generation
data integration and data exchange system, where we believe that
both time and data should be placed on equal footing.

Acknowledgements This work is partially supported by NSF grant
1IS-0905276. Part of this work was done while Tan was at IBM
Research - Almaden.

4. References
[1] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. Characterizing

schema mappings via data examples. ACM TODS, 36(4):23, 2011.

[2] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. Designing and
refining schema mappings via data examples. In ACM SIGMOD,
pages 133-144, 2011.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. Eirene:
Interactive design and refinement of schema mappings via data
examples. PVLDB (Demonstration), 4(12):1414-1417, 2011.

[4] J. F. Allen. Maintaining knowledge about temporal intervals. In
CACM, pages 832-843, 1983.

[5] R.S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent streaming
through time: A vision for event stream processing. In In CIDR,
pages 363-374, 2007.

[6] C.Beeriand M. Y. Vardi. A Proof Procedure for Data Dependencies.
JACM, 31(4):718-741, 1984.

[7] P. A. Bernstein. Applying Model Management to Classical
Meta-Data Problems. In CIDR, pages 209-220, 2003.

[8] P. A. Bernstein and N. Goodman. Concurrency control in distributed
database systems. ACM Comput. Surv., 13(2), 1981.

[9] P. A. Bernstein and L. M. Haas. Information integration in the
enterprise. CACM, 51(9):72-79, 2008.

[10] P. A. Bernstein and S. Melnik. Model management 2.0: manipulating
richer mappings. In ACM SIGMOD, pages 1-12, 2007.

[11] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An
annotation management system for relational databases. The VLDB
Journal, 14(4):373-396, 2005.

[12] J. Bleiholder and F. Naumann. Declarative data fusion: syntax,
semantics, and implementation. In ADBIS, pages 5873, 2005.

[13] J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv.,
41(1):1-41, 2009.

[14] A. Bonifati, E. Q. Chang, T. Ho, and L. V. S. Lakshmanan. HepToX:
Heterogeneous Peer to Peer XML Databases, 2005.

[15] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda,

M. Riedewald, M. Thatte, and W. White. Cayuga: a
high-performance event processing engine. In ACM SIGMOD, pages
1100-1102, 2007.

[16] P. Buneman, J. Cheney, S. Lindley, and H. Miiller. The database wiki
project: A general purpose platform for data curation and
collaboration. Sigmod Record, 40(3):15-20, 2011.

[17] P. Buneman, A. Deutsch, and W.-C. Tan. A deterministic model for
semistructured data. In Workshop on Query Processing for
Semistructured Data and Non-Standard Data Formats, 1998.

[18] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan. Archiving
scientific data. ACM TODS, 29:2-42, 2004.

[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]
[27]
(28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

D. Burdick, M. A. Herndndez, H. Ho, G. Koutrika,

R. Krishnamurthy, L. Popa, I. Stanoi, S. Vaithyanathan, and S. R.
Das. Extracting, linking and integrating data from public sources: A
financial case study. I[EEE Data Eng. Bulletin., 34(3):60-67, 2011.
S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. Efficient management of
multiversion documents by object referencing. In VLDB, pages
291-300, 2001.

J. Chomicki. Temporal query languages: A survey. In ICTL, pages
506-534, 1994.

J. Chomicki and D. Toman. Temporal databases. In Foundations of
Artificial Intelligence, pages 429-467. Elsevier, 2005.

J. Chomicki, D. Toman, and M. H. Bohlen. Querying ATSQL
databases with temporal logic. ACM TODS, 26(2):145-178, 2001.

F. Currim, S. Currim, C. E. Dyreson, S. Joshi, R. T. Snodgrass, S. W.
Thomas, and E. Roeder. 7xschema: Support for data- and
schema-versioned xml documents. Technical Report TR-91,
TimeCenter at Aalborg University, Sep. 2009.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. CACM, 51(1):107-113, Jan. 2008.

D. DeWitt and J. Gray. Parallel database systems: the future of high
performance database systems. CACM, 35(6):85-98, 1992.

A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration.
Morgan Kaufmann, 2012.

X. L. Dong and F. Naumann. Data fusion - resolving data conflicts
for integration. PVLDB, 2(2):1654—1655, 2009.

The EDGAR Public Dissemination Service.
http://www.sec.gov/edgar.shtml.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. TCS, 336(1):89-124, 2005.

A. Fuxman, P. G. Kolaitis, R. J. Miller, and W.-C. Tan. Peer data
exchange. In ACM PODS, pages 160171, 2005.

D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev.
Many-dimensional modal logics: theory and applications. Elsevier,
2003.

F. Geerts, A. Kementsietsidis, and D. Milano. Mondrian: Annotating
and querying databases through colors and blocks. In ICDE, page 82,
2006.

T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, pages 31-40, 2007.

L. M. Haas, M. A. Herndndez, H. Ho, L. Popa, and M. Roth. Clio
Grows Up: From Research Prototype to Industrial Tool. In ACM
SIGMOD, pages 805-810, 2005.

K. M. Hakkarainen, K. Hedna, M. Petzold, and S. Hdgg. Percentage
of patients with preventable adverse drug reactions and preventability
of adverse drug reactions — a meta-analysis. PLoS ONE, 7:¢33236,
03 2012.

A. Halevy. Answering Queries Using Views: A Survey. VLDB
Journal, pages 270-294, 2001.

Internet Archive Wayback Machine. http://waybackmachine.org,
Aug. 26, 2011.

Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation), 2011.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=53682,Dec.15,2011.

[40]

[41]
[42]
[43]
[44]
[45]

[46]

[47]

(48]

[49]

[50]
(511
[52]
[53]

[54]

[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

C. S. Jensen and R. T. Snodgrass, editors. Temporal Database
Entries for the Springer Encyclopedia of Database Systems.
Springer, 2009. http://www.cs.arizona.edu/~rts/pubs/TRmerged.pdf.
A. Jha. Meaningful use of electronic health records: The road ahead.
JAMA, 304(15):1709-1710, 2010.

P. G. Kolaitis. Schema mappings, data exchange, and metadata
management. In ACM PODS, pages 61-75, 2005.

I. Koltsidas, H. Miiller, and S. D. Viglas. Sorting hierarchical data in
external memory for archving. PVLDB, 1(1):1205-1216, 2008.

E. V. Kostylev and P. Buneman. Combining dependent annotations
for relational algebra. In ICDT, pages 196-207, 2012.

M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM
PODS, pages 233-246, 2002.

M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. Claypool.
Sequence pattern query processing over out-of-order event streams.
In ICDE, pages 784795, 2009.

D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Implications of
Data Dependencies. ACM TODS, 4(4):455-469, 1979.

A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric
management of versions in an xml warehouse. In VLDB, pages
581-590, 2001.

H. J. Moon, C. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo.
Managing and querying transaction-time databases under schema
evolution. PVLDB, 1(1):882-895, 2008.

H. Miiller, P. Buneman, and I. Koltsidas. Xarch: archiving scientific
and reference data. In ACM SIGMOD, pages 1295-1298, 2008.
NCBI. National Center for Biotechnology Information (NCBI) Ftp
site. http://www.ncbi.nlm.nih.gov/Ftp/, Jun 10,2012.

L. Popa, Y. Velegrakis, R. J. Miller, M. A. Herndndez, and R. Fagin.
Translating Web Data. In VLDB, pages 598-609, 2002.

L. Qian, M. J. Cafarella, and H. V. Jagadish. Sample-driven schema
mapping. In ACM SIGMOD, pages 73-84, 2012.

C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on
correlated probabilistic streams. In ACM SIGMOD, pages 715-728,
2008.

R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer,
199s.

R. T. Snodgrass and I. Ahn. Temporal databases. IEEE Computer,
19(9):35-42, 1986.

The ++Spicy Schema Mapping System.
http://www.db.unibas.it/projects/spicy.

U. Srivastava and J. Widom. Flexible time management in data
stream systems. In ACM PODS, pages 263-274, 2004.

N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD Conference,
pages 13-24, 2006.

G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. A. Benczir,
S. Kirkpatrick, P. Rigaux, and M. Williamson. Longitudinal analytics
on web archive data: It’s about time! In CIDR, pages 199-202, 2011.
H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in
streams with imprecise timestamps. PVLDB, 3(1-2):244-255, 2010.
H. Zhu, S. E. Madnick, and M. D. Siegel. Effective data integration
in the presence of temporal semantic conflicts. In Intl. Symp. on
Temporal Representation and Reasoning, TIME, pages 109-114,
2004.

