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1. INTRODUCTION
Recently we have witnessed an explosive growth in the complex-

ity, diversity, number of deployments, and capabilities of big data
processing systems (see Figure 11). This growth shows no sign of
slowing; if anything, it is accelerating, as more users bring more di-
verse data sets and more system builders strive to provide a richer
variety of systems within which to process these data sets. To pro-
cess a large amount of data, big data systems typically use mas-
sively parallel software running on tens, hundreds, or even thou-
sands of servers. Most of these systems target commodity hard-
ware based clusters, including MapReduce, Hyracks, Dryad, and
Microsoft SQL Azure, just to name a few. They achieve scalable
performance through exploiting data parallelism.
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Figure 1: Parallel Data Processing Stacks.

Although parallelism can significantly reduce data processing
time, issues such as hardware/software skew, resource contention,
and failures are more likely to arise. All big data systems have to
face this unwanted but inevitable fact. Due to all these issues, it

1Figure 1 is based on Figure 3 in [2].
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gets harder to anticipate the future state of a system, and a one-time
decision model used by schedulers, optimizers or resource man-
agers will be vulnerable to state changes. For example, suppose
that a scheduler initially assigns a task of a map-reduce job to a
machine based on the current state of the system. Then another
program overloads the disk and significantly slows down the task.
If the scheduler does not monitor the system and revise its decision,
the whole job will be delayed due to this problem. This unexpected
problem can be avoided by monitoring the system’s state continu-
ously and rescheduling the task to a different, more lightly-loaded
machine. With such a monitor and revise capability, “users” of the
system (be they optimizers, schedulers, resource managers, or even
humans submitting and waiting for jobs to complete) may be able
to improve the usability and performance of the system. Of course,
whenever a scheduler or optimizer or human uses current system
observations to make a decision, it is implicitly using these obser-
vations to make a prediction about the future. But this is currently
done in an ad-hoc way, with no systematic approach that makes use
of all the information that is available and combines it in a princi-
pled way to make predictions. While the capabilities of these big
data systems continue to grow impressively as measured by the va-
riety, complexity, and quantity of computations they can provide,
there has not been an accompanying growth in the ability of a sys-
tem to monitor its state, to make useful predictions about future
states, and to revise these predictions as time passes.

In some sense this situation is surprising. In a wide variety of
complex endeavors, humans have built up mechanisms to make
predictions, then to monitor and revise predictions as time passes.
Examples can be found in weather forecasting, logistics, trans-
portation, project management, and so forth. Airlines do not sim-
ply look at a snapshot of current takeoff and landing queues, make
a schedule, and stick with it despite changes in weather. Weather
forecasts are continuously revised and updated. Shipping schedules
are modified in response to unforseen circumstances or changes in
demand. Yet in complex data processing systems one finds many
examples of “users” simply making a scheduling or execution plan
based on some ad-hoc collection of information, then sticking with
this plan no matter what happens subsequently.

But the community has not completely ignored this issue —
there has been work in the data management community that does
focus on prediction, monitoring, and refining predictions:query
progress indicators[3, 7, 8, 9, 11, 13]. For readers who have not
followed this line of work, these progress indicators begin with a
prediction of the running time of the query, and while the query exe-
cutes, they modify their predictions based on the perceived progress
of the query. They may also utilize improved information like in-
termediate result cardinality estimates. Thus progress indicators fit
the “predict, monitor, revise” paradigm.



However, current progress indicator technology is still in its in-
fancy. We suggest that to better serve different “users” of a big data
processing system, we need to first change how we view and evalu-
ate progress indicator technology. Then, to fulfill the role we envi-
sion for them in big data management systems, current progress
indicators need to grow in every dimension. They need to ex-
pand the class of computations they can service, expand the kinds
of predictions they can make, broaden the sources of inputs they
monitor, and increase the accuracy of their predictions. We term
such a greatly expanded progress indicator a “progress indicator on
steroids.”

Readers who are familiar with the progress indicator line of work
may wonder: “These progress indicators have a difficult time giv-
ing accurate predictions even in artificially simple scenarios such
as single queries running on dedicated hardware. Now, since this
simple problem appears too difficult to solve, you are proposing
that we extend this technology to much more complex domains?”
Such readers are correct! But this brings us directly to the point of
this paper.

Simply put, we believe that extending the goals of progress in-
dicator technology to modern big data processing scenarios is a
task that is well motivated, is rich with challenging and interest-
ing research problems, and has a chance of success, provided that
we evaluate and use the technology in a reasonable way. We be-
lieve that not only is the current progress indicator technology in-
adequate for the task, the goals we set for them and the way we
evaluate their utility are also off the mark. It is our hope that if
the community develops appropriate metrics and uses them to eval-
uate this technology, and steadily improves the technology itself,
we will avoid the suboptimal usability and performance of big data
processing systems that could result without this technology.

In the remainder of this paper, we discuss problems with us-
ing “classical” progress indicator metrics, enumerate some poten-
tial uses for this technology, and touch on some of the challenges
that arise when we apply it to complex big data processing sys-
tems. Furthermore, we give a small case study that gives a taste of
the kind of technical issues that can arise in this area by applying
“debug runs,” which were developed for map-reduce runtimes, to
parallel database query runtime progress indicators.

2. EVALUATING PROGRESS INDICATOR
TECHNOLOGY

Prior work has primarily focused on making progress estimation
predictions as close to the actual running time as possible. The es-
timates are mainly used as feedback to users. We believe that to
provide more helpful progress estimates for different components
in the system, we need to change the “lens” through which we view
the progress indicator technology. Next, we will give two motivat-
ing examples.

A simple progress score.Take for instance, the progress indi-
cator shipped with the Pig system [14] running map-reduce jobs. It
monitors a task’s progress using a score between 0 and 1. To com-
pute this score, the 7 phases of a map-reduce job are divided into 4
pipelines, 1 for the map task and 3 for the reduce task as follows:
{Record reader, Map, Combine}, {Copy}, {Sort}, and {Reduce}.
For a map task, since it only contains 1 pipeline, the score is defined
as the percentage of bytes read from the input data. For a reduce
task, since it consists of 3 pipelines, each of these phases accounts
for 1/3 of the score. In each pipeline, the score is the fraction of the
data that has been processed. The overall score of a map-reduce
job is computed as the average of the scores of these pipelines. The
progress of a Pig Latin query is then the average score of all jobs

in the query. As mentioned by other researchers [13], the progress
score provided by the Pig system is not accurate. It assumes that all
pipelines in the same query contribute equally to the overall score
(e.g., it is assumed that all pipelines perform the same amount of
work or take the same amount of time to process), which is rarely
the case in practice. Despite the fact that the estimate is not per-
fect, this simple progress score has been used by Hadoop for se-
lecting stragglers (tasks making slow progress compared to oth-
ers) and scheduling speculative executions of these stragglers on
other machines, with the hope of finishing the computation faster.
Google has noted that speculative execution can improve a job’s
response time by 44% [4]. Follow-up work proposed a new sched-
uler, LATE, which further improved Hadoop response times by a
factor of 2 by using a variation of this score [17].

A state-of-the-art progress indicator. Later, ParaTimer [12]
was proposed for Pig Latin queries to provide more accurate time-
oriented progress estimates. These progress estimates can be used
to handle stragglers in a different way. When data skew happens
(e.g., some tasks need to process more data than others), tasks with
too much input data will be considered as stragglers. Because these
tasks run more slowly due to their input data and not the machine
where they have been scheduled, speculative executions of these
tasks on other machines will not reduce their execution times. An
alternative approach is needed. SkewTune [6] handles this problem
by utilizing ParaTimer. When a slot becomes available and there
are no pending tasks, the task with the longest expected remaining
time (determined by ParaTimer) is selected as a straggler. The un-
processed input data of this task is repartitioned, and then they are
added to existing partitions to form new partitions, such that all new
partitions complete at the same time. This detection-repartition
cycle is repeated until all tasks complete. Their experimental re-
sults show that using this technique can significantly reduced job
response time in the presence of skew.

For the first example with the simple progress score, although
the score is only a rough approximation of the actual query exe-
cution time, the information it provides is sufficient for identifying
stragglers. Thus, it is helpful for scheduling speculative executions.
For the second example, identifying a straggler is not sufficient. To
make all new partitions complete at the same time, SkewTune must
also know more precise execution time of the tasks. In both cases,
rather than using the progress estimates as user feedback, they are
used by the system to identify the bottlenecks (e.g., the longest run-
ning tasks) and help reduce the response time.

Inspired by these examples, it seems that it may not always worth
pushing hard on improving estimation accuracy. For some tasks,
the current progress indicators are good enough to be useful. In-
stead, when evaluating progress indicator technology, it would be
better to focus on the following questions: (1) Is the progress in-
dicator good enough, so that it is more helpful than not forspe-
cific tasks? By analogy, query optimizer cost estimates do not have
to be perfect to be useful. Similarly, progress indicator estimates
do not have to be perfect to be useful for, say, scheduling. (2) Is
the progress indicator accurate when nothing in its current universe
of knowledge changes? Specifically, it would be silly to start a
progress indicator, then add 100 “monster” queries, and say “wow,
that initial prediction was really terrible!” As we mentioned be-
fore, when it comes to big data processing systems, future states
are harder to predict. As “monster” queries start running on a sys-
tem, as skew and failures happen, some tasks will slow down and
become stragglers. Predicting the stragglers ahead of time may be-
come too overwhelming for progress indicators. Instead, we should
ask, how good is a progress indicator given the information avail-
able at the time? (3) Finally, does the progress indicator react to



changes quickly? When the situation does change, how long does
it take a progress indicator to get to a good prediction given the new
information? A progress indicator that takes forever to adjust, but is
very accurate when it does, may be less useful than one that adjusts
immediately but is somewhat inaccurate. For the two examples we
discussed, the sooner we can identify the stragglers, the sooner we
can schedule speculative executions and repartitions.

3. PROGRESS INDICATORS ON STEROIDS
With this new view of progress indicators and how we evaluate

this technology for big data systems, we discuss the need for a new
type of progress indicators — the so called “progress indicators on
steroids” that grow in every dimension to fulfill the role we envision
for them.

First of all, we need to expand the set of components they can
serve. In general, we believe that this technology can be beneficial
to any computation that makes decisions based on a cluster state.
The more the computation relies on the state prediction, the better
decisions it can make by detecting the unexpected state changes.
Here, we list many use cases for progress indicator technology, in-
cluding but not limited to:

1. User Interface. Users would always like to get accurate
feedback about query execution status, especially if queries
tend to be long-running.

2. Scheduling. By using progress indicator technology to ob-
tain the current state of a cluster and roughly predict its future
state, a scheduler can likely do a better job at determining the
order in which to run jobs than it could without such infor-
mation.

3. Resource Management. Progress indicators can help in lim-
iting resource contention in a distributed system, and help de-
cide when to re-allocate work, so that system resources are
efficiently utilized.

4. Skew Handling and Stragglers. By using progress indi-
cator technology, skew can be detected, and the system can
proactively response to skew in a way that fully utilizes the
nodes in the cluster while still preserving the correct query
semantics.

5. Query Optimization . Dynamic re-optimization is likely to
be increasingly valuable in parallel data processing systems.
Progress indicator technology can be useful in providing up-
to-date query monitoring data, as well as possible future pre-
dictions about processing speed, resource availability and so
forth, which can aid in re-optimization decisions.

6. Performance Debugging. Debugging queries and system
performance is a very challenging task. Progress indicator
technology can be useful here as well. For instance, the
length of query runtime could be estimated prior to running,
and then in the first few minutes of running and then used
in identifying the possible reasons for why the process may
have slowed down.

Second, we need to expand the kind of information progress in-
dicators can provide by expanding their sources of inputs. So far,
progress indicators are mainly used to predict the percent finished
or the remaining execution time of a task. This is also the most ob-
vious and direct usage of progress indicators. We believe that there
is much more useful information we can derive from the progress
indicator technology. For example, ranking a set of tasks by their
completion percentage will reveal which ones are stragglers that
may need more attention. Furthermore, we can have a deeper anal-
ysis of the collected statistics for these stragglers to automatically
detect their causes. In addition, the average progress made by tasks

running on a specific machine will indicate whether the machine is
healthy, so that more tasks or speculative executions of stragglers
can be assigned to these machines to make better progress. When
a task finishes, its resources are released. Knowing the remaining
execution time of the running tasks and the resources reserved for
them will give us an idea about resource availability in the future.
An intriguing possibility that has not yet been explored to date is
the usage of changes in estimates over time as a first-class object
for analysis (rather than the estimates themselves). For example,
while Query 1 is running, Query 2 is started; the difference in the
estimates for Query 1’s running time before and after Query 2 was
started may give useful, actionable information even when both es-
timates are inaccurate in the absolute sense.

So far we have emphasized the necessity of a new view and
the importance of a new role for progress indicators. As always,
we should strive to increase the accuracy of their prediction. For
some use cases, however, such as identifying stragglers and healthy
machines, rough progress estimates are good enough. For other
use cases, such as predicting resource availability, more accurate
progress estimates are required. Admittedly, this is a very chal-
lenging problem. Later, we will discuss some of the technical chal-
lenges that need to be tackled in order to produce accurate progress
estimates.

4. HOW DO YOU BUILD IT?
We believe that progress indicator estimation is not a “cook book”

process: while the general problem is always the same, the specific
system being monitored and the task for which it is being moni-
tored will dictate what the progress estimator should examine and
how it should use this information.

Progress 
Indicator

Monitoring 
Part

Prediction 
Part

Figure 2: The two main components of a progress indicator.

However, we believe a simple and clean abstraction of progress
indicator’s main components will pave the way to a more system-
atic approach to this technology. One way to do it is by considering
its two main components (see Figure 2):

1. Monitoring . Monitoring data tell you what is actually hap-
pening in the system. The monitoring component collects
statistics and observation data, such as the number of queries
running and waiting in the queue, the number of tuples that
have been processed or are waiting to be processed, and re-
source usage, such as CPU, RAM, or network. This observa-
tion data may be collected from a variety of sources including
the optimizer, query executor, automated profiler, scheduler,
load profiler, or logger. Each observation provides one piece
of the puzzle that makes up a total picture of the system.

2. Prediction. The prediction component is where analytics
about progress takes place. Predictive analytics may perform
some statistical analysis by extracting information from the
observed data (from the monitoring component) and using it
to predict future trends and behavior patterns.
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Figure 3: Relative Influence Diagrams in Progress Estimation.

Another part of the progress estimation involves therelative weight-
ing of monitoring versus prediction. To be a bit more precise,
progress estimators are always making predictions; the question
we are addressing here is how heavily the prediction should be in-
fluenced by information external to the information gathered about
the task while it is running (which we term “prediction”), and how
much it should be influenced by information gathered during the
execution of the task (which we term “monitoring”).

Figure 3 is intended to show two possible scenarios of the rela-
tive influence of monitoring versus prediction on the progress esti-
mation for 2 use cases: UI and scheduler. For example, in (a) de-
picting a UI use case, as the running query progresses, the impact
of monitoring vs. prediction increases. This is perhaps intuitive;
when the query is deep into its execution it makes sense that pre-
dictions about its future behavior rely more heavily on recently ob-
served true cardinalities and processing costs than on pre-execution
optimizer estimates.

As a contrasting example, suppose that in (b) we are considering
a scheduling problem where a large number of relatively short tasks
are being run, and the workload of computational tasks being pre-
sented to the system is relatively stable. In this case when predict-
ing the performance of a given task, it may make sense to weight
thea priori predictions of task performance based on the stable his-
tory of the system more heavily than predictions based upon recent
fluctuations about the stable baseline monitored recently.

Our point here is not to give specific rules of thumb to decide
which component (monitoring vs. prediction) should be weighted
more heavily; rather, it is to highlight that there is an issue to be
considered here, and there is a need for techniques to determine
proper weightings.
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Figure 4: The hierarchical progress indicator.

We close this section with some more thoughts on multi-query
progress estimation. Most work on progress estimation has fo-
cused on individual-query progress estimation. However, in real-
life queries don’t run in isolation. For multiple query progress
indicators, we envision a possiblehierarchical progress indica-

tor framework(see Figure 4), where each query may run its own
local progress indicator with monitoring and prediction and we
have an overallglobal progress indicator collecting and aggregat-
ing the information from the local progress indicators. Individual
local progress indicators could also give feedback to other sibling
progress indicators, especially if they are running on the same node.
Note also that the relative influence of monitoring versus prediction
may be different at each level in the hierarchical progress indica-
tor; for example, leaf nodes may give more influence to monitoring,
while the global (root) progress indicator may give more influence
to prediction.

5. TECHNICAL CHALLENGES
A number of technical challenges must be addressed to augment

and extend existing technology and make progress indicators for
big data management systems a reality. In this section we highlight
a few of these challenges.

1. Pipeline Definition & Shape. In the context of progress esti-
mation, execution plans are partitioned into multiple pipelines
to gain insight into intermediate progress. A challenge here
is that as we transition to more diverse and complex systems,
each (sub)system may have its own execution model, and
thus as a result may have different pipeline definitions and
shapes. For parallel DBMS, the number, shape, and execu-
tion speed of pipelines may be different on different nodes
(see Figure 5(a)). For example, because each node processes
different data partitions, the query plans for the subqueries
running on Node 1 (in yellow) are very different from the
query plans for the subqueries running on Node n (in green),
even if they have identical query text. As a result, each node
may have different pipelines. For Map-Reduce [1] systems
(see Figure 5(b)), a pipeline consists of either a map or a re-
duce step, and the reduce tasks will not start before all map
tasks in the same job have finished. For example, for the first
map-reduce job (in yellow), the reduce tasks start after all
map tasks are finished. Unlike the parallel DBMS, pipelines
running on all nodes are identical. For DAG-based execu-
tion engines [5, 16] (Figure 5(c)), the variations in the num-
ber of pipelines, their shapes, execution speeds, and which
nodes they execute on may be even more drastic. For ex-
ample, Plan 1 (in yellow) is running across multiple nodes,
and each node process different number of pipelines concur-
rently. Even for the the same plan running on the same node,
the number of concurrent pipelines may vary for different
phases. While for a map-reduce job, we have fixed number
of slots per node. The shape of the pipelines will highly im-
pact the degree of parallelism and contention of resources,
and as a result, the query execution time. Progress indicator
technology must be extended to handle such diversity.

2. Work Definition . A fundamental question in progress esti-
mation is how to define a unit of work, and how to measure
how fast the system is processing these units of work. Previ-
ous work has characterized work as the number of tuples [3]
or the number of bytes [9] that must be processed. While
these are relatively easy quantities to measure (although not
always easy to predict!), they are in a sense too high level to
be useful without some interpretation. For example, not ev-
ery tuple or every byte to be processed takes the same amount
of system resources. One could rectify this problem in two
ways. The first is to explicitly capture the fact that different
units of work take different amounts of resources to process.
The second is to assert that the resources needed to process a
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Figure 5: Pipelines in different runtime execution engines.

unit of work are constant, but that processing different bytes
or tuples takes different amounts of work. Although the com-
putations may be similar in both approaches, our intuition
(perhaps gained from physics) is that work should correlate
with resources expended, so we find the second approach
more attractive.

3. Speed Estimation. Whatever definition of work is adopted,
the speed of a pipeline is the amount of work that has been
done for the pipeline in the pastT seconds, whereT is a user-
set parameter. Here again the choice of work unit affects
the computation. Previous progress indicators have in effect
adopted the tuple or byte as the unit of work, and assumed
that each unit of work takes the same number of resources
to process. However, this assumption is rarely true in reality,
and as has been shown in [8] can lead to poor progress esti-
mates. More research is needed on the definitions of speed
and work and how they interact.

4. Dynamicity. Parallel data processing clusters tend to be dy-
namic. Nodes can join or leave a computation (perhaps due
to failures and restarts), and concurrent, competing compu-
tations can start up or complete. A successful progress indi-
cator will be one that detects these changes and reports them
“as soon as possible.”

5. (Lack of) Statistics. Virtually all progress indicator frame-
works rely on statistics over data to make predictions. Mak-
ing accurate progress estimations with no or limited statistics
(as may be required in systems that process data stored in un-
interpreted files rather than relational tables) is a substantial
challenge, and one that is perhaps most likely to be solved by
a combination of data analysis before execution and statistics
collection/correction during execution.

6. Parallelism. Pipeline parallelism is typically used for inter-
operator parallelism in order to overlap the execution of sev-
eral operators within a query. Data parallelism, on the other
hand, is applicable for both inter- and intra-operator paral-
lelism and requires a data partitioning so that different (sub)
operators can concurrently process disjoint sets of data. Par-
allelism adds a level of complexity when estimating progress.

7. Conveying Information in Input-Level Terminology . A
user typically submits a request (query) using a higher-level
language (e.g., SQL, HiveQL, Pig, SCOPE, PACT). How-
ever, such separation of the programming model from the
concrete execution strategy creates a challenge of translating
an actual execution plan to what the user has actually submit-
ted. Consider for example a HiveQL query: a HiveQL query

gets translated into a sequence of map-reduce jobs. While
we may predict the progress of an individual Map or Reduce
pipeline rather accurately, translating this progress back into
the overall progress of the original HiveQL query is a non-
trivial task.

6. A SMALL CASE STUDY
Due to the complexity and diversity in different data processing

systems (e.g., different pipeline definition/shape and different oper-
ators in the pipelines), technology developed for a specific system
may not work for other systems at all. In this section we present
a preliminary investigation of the issues we encountered when we
attempted to apply a debug run-based progress indicator that was
designed and well-suited for map-reduce jobs to a parallel database
system. Briefly, before a computation begins, every progress indi-
cator has to estimate how much work the computation will involve
and how fast the work can be processed. One very natural and
promising way to do this estimation was proposed in two recent
papers on progress indicators for Map-Reduce worklods [12, 13].
The idea is to use a “debug run” — that is, to run the computa-
tion on a subset of the data, see how long that takes, then scale this
quantity to predict the running time on the full data set. Our goal
here is to attempt to apply this approach to query progress indi-
cators for a parallel database system, specifically Microsoft’s SQL
Server Parallel Data Warehouse (PDW) [10, 15].

6.1 Cluster Setup
All our experiments were conducted with SQL Sever PDW. We

used a version of PDW as of August 2012. PDW was run on a clus-
ter of 18 nodes, including one control node, one “landing node,”
and 16 compute nodes. (The landing node is responsible for data
loading only and does not participate in query execution.) All nodes
were connected by a 1Gbit HP Procurve 2510G 48-port Ethernet
switch. Each node had 2 Intel Xeon L5630 quad-core processors,
32GB of main memory, and 10 SAS 10K RPM 300GB disks. One
of the disks was reserved for the operating system, while eight were
used for storing data. Each node ran SQL Server 2008, which was
limited to at most 24GB of memory.

We used a TPC-H 1TB database for our experiments. Each table
was either hash partitioned or replicated across all compute nodes.
When a table is hash partitioned, each compute node contains 8
horizontal data partitions, and they are stored on 8 different disks,
respectively (so there are a total of 8*16 data partitions for a hash
partitioned table). Table 1 summarizes the partition keys used for
the TPC-H tables. Replicated tables were stored at every node on a
single disk.



Table Partition Key Table Partition Key
Customer c_custkey Part p_partkey
Lineitem l_orderkey Partsupp ps_partkey
Nation (replicated) Region (replicated)
Orders o_orderkey Supplier s_suppkey

Table 1: Partition key for TPC-H tables

6.2 Experimental Setup
Recall that we wish to evaluate the effectiveness of a debug run

approach in estimating work and processing speed. To do so, we
tried running queries on a 1% sample set first (1% sampling was
used for Parallax and ParaTimer). Then the same query was run
on the full (original) data set, and we estimated the progress of the
query using a progress indicator based on the prior run.

We found that the debug run approach was effective for some
queries. Figure 6 depicts the estimated remaining time forQ1 pro-
vided by a debug run-based progress indicator we implemented in
PDW. Q1 consists of 7 different pipelines, and there are no joins
between tables. Our progress indicator was configured to wake
up every 5 seconds, using statistics collected to make a prediction
about how long the query is going to take.

However, we found that there were two reasons why in general
the debug run approach was problematic. We discuss these in the
following two subsections.

 
Figure 6: Progress estimation forQ1

6.3 Multi-Input Pipelines
The debug run-based approach was much more problematic when

we moved to queries with workflows more general than the typical
map-reduce linear pipeline. Specifically, with the multiple input
workflows that result from joins, the sample search space grows
as the product of the size of the input tables, and a 1% sample of
each of the inputs is no longer effective. This is an instance of a
well-known problem in sampling over relational query plans — the
cross product of the input relations is so large that one must take un-
reasonably large samples of the input relations to even observe any
joining tuples. Of course, one can try many different approaches to
attack this problem, but they all involve taking some kind of “cor-
related” sample between the tables, which can either be expensive
or inaccurate (due to correlations) or both.

As an example of this, Figure 7 shows the number of tuples sur-
viving each query step (roughly speaking, a query step is a portion
of a query plan delineated by data movement operations; please re-
fer to [15] for more details about steps in PDW) ofQ4 running on
both the sample data and the full data. Note that they axis is log
scale. Figure 8 shows the ratio between them. As we can see, the

 
Figure 7: Number of tuples processed in each step ofQ4

 
Figure 8: The tuple processed ratio between two plans ofQ4

later steps in the debug run query process many fewer tuples than
the corresponding steps in the original run, and after each step, the
number of tuples processed is reduced by roughly another 99%. In
fact, the debug run has no tuples to process in step 4 and step 5,
which makes it impossible to estimate their processing speeds.

Even for steps that do yield a few tuples things are problematic.
One issue is that for debug runs over a few tuples, startup overhead
dominates and the debug run grossly overestimates the time to pro-
cess a tuple and hence the future running time.Q17 is one of such
example, as shown in Figure 9. The estimated tuple processing
speed for a pipeline started after 360 seconds is highly inaccurate.

 
Figure 9: Progress estimation forQ17

6.4 Cost-based Optimization
Even if the large sample space problem were solved, we encoun-

tered another interesting problem when applying the debug run ap-



proach that worked so well for map-reduce to PDW. In a nutshell,
the problem is that PDW, like virtually all relational database man-
agement systems, employs a cost-based optimizer to choose an ex-
ecution plan. While it is useful to have an optimizer, in this case
it works at cross purposes to our goals because the optimizer often
chooses a different plan for the 1% sample data set than it does for
the full data set (for the TPC-H queries, the execution plans gener-
ated for the full data set and the sample data set were only the same
for 6 out of 22 queries). In such situations it is likely that the debug
run will be a poor predictor of the execution characteristics of the
full computation.  Query 1% sample with act. stat. 1% sample with fake stats. 1TB 

Time (sec) Estimate (sec) Time (sec) Estimate (sec) Time (sec) 
Q1 3.0 47 5.5 223 198 
Q2 6.7 539 4.5 330 91 
Q3 6.5 3119 5.8 5780 1210 
Q4 1.3 27 3.6 200 45 
Q5 9.4 1.1x109 8.8 410766 77 
Q6 0.8 24 0.9 23 33 
Q7 11.4 714 6.2 514371 65 
Q8 10.1 1041 7.9 958601 64 
Q9 8.7 36238 8.5 2.5x107 181 
Q10 6.0 10556 4.0 6450 71 
Q11 7.3 577 4.2 304 109 
Q12 0.9 30 3.6 198 50 
Q13 17.4 1526 7.9 421 186 
Q14 7.5 450 2.5 97 47 
Q15 19.1 179 6.3 315 102 
Q16 2.3 4317 5.7 5058 71 
Q17 371.4 1.26x106 14.7 11527 432 
Q18 14.1 11 6.0 405 122 
Q19 2.0 77 2.0 61 58 
Q20 21.0 1.2x107 5.9 380202 87 
Q21 7.6 49677 5.5 199336 271 
Q22 17.3 1369 5.0 143 77 

Table 2: Initial estimated remaining time for TPC-H queries

To evaluate the impact of this effect, we tested the TPC-H queries
evaluated in two ways. In the first, we kept the progress indicator
deliberately oblivious to the differences in the plans between the
debug and execute runs. That is, we simply viewed each execution
of a step as a black box that processed some number of input tuples
and generated some number of output tuples within a certain time
interval. In the second, we opened up this black box and ensured
that the debug run actually used the same plans as the full run. We
did this by deliberately tricking the optimizer — we manually set
the statistics during the debug run to match those for the full run,
so the optimizer thought the full data set was present.

The results are shown in Table 2. As mentioned, among 22
queries, only 6 queries used the same plans for debug runs and
actual runs. These queries areQ2, Q6, Q10, Q11, Q19, andQ21.
The first column shows the execution time for the debug queries
with the compute nodes treated as a black box (without paying at-
tention to plan selection), while the second column shows the ini-
tial estimates for the full queries based on these debug queries. The
third column shows the running times when we “tricked” the op-
timizer to use the same plan for the debug run and the full query
run, while the fourth column shows the estimate for the full query
based upon this debug run with the same plan. Finally, the fifth and
last column shows the actual execution time of the queries over the
original 1TB data.

Interesting, for those 6 queries that used same plans for debug
runs and actual runs, the estimated remaining times are not the
same in the second column and the fourth column, and for some of
the queries, the difference is quite obvious, such asQ10 andQ21.
Since the sample data does not contain many tuples, we may get
high variance in the execution time of debug runs (e.g., the differ-

ence between 4 seconds and 6 seconds is already 50%). As a result,
the estimated remaining time could be very different. In addition,
the variance has different influence on the estimates, depending on
in which step the difference happens.

We note that the debug runs that were tricked into using the same
plans as the full query runs gave better, and sometimes substantially
better, estimates than the ones that used different plans for the de-
bug and full query run. This is an example of a general and interest-
ing question in multiple layered systems: should we treat the lower
level as a black box, or “open it up” to improve the prediction of
the progress estimator?

In the context of relational database query evaluation, even ig-
noring the impact of the query optimizer, there are some additional
reasons that may make a small debug run a poor predictor of a full
computation. For example, for relational operators such as Sort,
Hash Join, and Nested Loop Join, the per-tuple processing time
changes as the number of input tuples changes, as these operators
behave differently for different sized inputs. Moving beyond re-
lational systems, similar issues will arise in other scenarios; for
example, suppose we are running a computation on top of a dis-
tributed file system that tries to improve performance by deciding
when to ship data and when to ship computations, perhaps as a
function of the amount of data to be processed. One could likely
see substantial differences between debug and full compute runs.

7. CONCLUSION
Very large data processing is increasingly becoming a necessity

for modern applications. For state of the art parallel data process-
ing systems, systematic monitoring and prediction of progress is a
problem. In this paper, we propose the development of “progress
indicators on steroids” for big data systems. The progress indica-
tors we envision greatly expand and improve upon current progress
indicator technology in every aspect. We believe the development
of this technology represents both a tremendous opportunity for re-
search and a much-needed component in big data systems. It is our
hope that the community will begin addressing the challenges in-
herent in building this technology as a step toward enabling a new
generation of data processing systems that are both user-friendly
and efficient so as to more effectively serve the needs of modern
applications and users.
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