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ABSTRACT
With the emergence of new hardware technologies, new opportuni-
ties arise and existing database architectures have to be rethought
to fully exploit them. In particular, recovery mechanisms of current
main-memory database systems are tuned to efficiently work on
block-oriented, high-latency storage devices. These devices cre-
ate a bottleneck during transaction processing. In this paper, we
investigate the opportunities given by the upcoming Storage Class
Memory (SCM) technology for database system recovery mecha-
nisms. In contrast to traditional block-oriented devices, SCM is
byte-addressable and offers a latency close to that of DRAM. We
propose a novel main-memory database architecture that directly
operates in SCM, eliminates the need for logging mechanisms, and
provides a way to trade recovery time with the overall query perfor-
mance. We implemented these concepts in our prototype SOFORT.
Our evaluation shows that we are able to achieve instant recovery of
the DBMS while removing the need for transaction rollbacks after
failure.

1. INTRODUCTION
The shift from traditional disk-centric database system architectures
to main-memory-centric architectures has brought a major techno-
logical disruption with different prevalent physical designs (e.g.,
column stores and main-memory-optimized index structures) and
corresponding query processing models. More and more emerging
hardware technologies and architectures (e.g., Hardware Transac-
tional Memory (HTM), Remote Direct Access Memory (RDMA),
and heterogeneous cores) force us to rethink existing database ar-
chitectures [19] to let the DBMS adapt and exploit the opportunities
coming from the hardware side.

In this paper, we focus on the impact of Storage Class Memory
(SCM) on the recovery mechanisms of a database system. Due to
the block-oriented nature of today’s non-volatile devices (e.g., hard
disk or flash), both traditional disk-based and modern main-memory
database systems rely on additional log and snapshot components to
efficiently guarantee consistency and durability. SCM, however, is

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and re-
production in any medium as well allowing derivative works, provided that you
attribute the original work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4–7, 2015, Asilomar, California, USA.
.

| 3 

> 

Diese Zeile ersetzt man über: Einfügen > Kopf- und Fußzeile   NICHT im Master  

Tr
an

si
en

t 
M

ai
n

 M
em

o
ry

 
Pe

rs
is

te
n

t 
St

o
ra

ge
 

Log 

log 
buffer 

buffer pool 

… … 

runtime data 

Tr
an

si
en

t 
M

ai
n

 M
em

o
ry

 
N

o
n

-V
o

la
ti

le
 

M
ai

n
 M

em
o

ry
 

database 

ru
n

ti
m

e 
d

at
a 

a) Traditional Architecture b) SCM-enabled Architecture 

m
o

vi
n

g 
th

e 
p

er
si

st
en

cy
 b

ar
 

Database 

Figure 1: Database architecture in the presence of SCM.

byte-addressable and offers a latency close to that of DRAM. Thus,
we propose a novel main-memory database architecture, as depicted
in Figure 1, that directly operates on SCM, eliminates the need for
an explicit I/O and logging component and provides a vehicle to
trade recovery performance with the overall query performance.

Using a hybrid memory model consisting of both traditional RAM
and persistent SCM allows for a radical change and a novel sys-
tem architecture in different perspectives: First, there is no need
to copy data out of the storage system but directly modifying the
data stored in SCM becomes possible. Second, the use of concurrent
and persistent data structures in combination with an adequate con-
currency scheme (e.g., Multi-Version Concurrency Control) allows
for completely dropping the logging infrastructure. Third, it can be
dynamically decided where to store certain database objects as long
as their loss can be tolerated, e.g., index structures may be stored
in transient RAM and reconstructed within the recovery procedure,
potentially based on recent workload patterns. Moreover, system
runtime information can easily and efficiently be stored on the SCM
side to improve system startup time. Finally, the system may re-
tain and continue running transactions in case of system failures,
due to instant and point-in-time recovery. For large main-memory
database systems running in business-critical environments (e.g.,
online shops), this is a major advancement compared to traditional
log-based systems.

In this paper and the accompanying demonstration proposal, we
outline the basic concepts of our SOFORT1 system, in which we
implement and evaluate our design principles. As we show, our
system allows placing database objects either in DRAM or in SCM.
This yields the opportunity to balance additional runtime overhead
due to the higher latency of SCM with the time to fully recover from

1“SOFORT” in German means: “instantly”.
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Figure 2: Simplified architectural model.

a system crash. At one extreme, the system stores all data in SCM,
allowing to recover instantly and continue running transactions im-
mediately after recovery. At the other extreme where only primary
data is stored in SCM, the recovery procedure asynchronously re-
computes, step-by-step, secondary data structures out of the primary
SCM data and stores it (for faster read/write access) in transient RAM.
Obviously any configuration in between these extremes allows tun-
ing the system for the specific needs of an application scenario.

We demonstrate the overall system concept and report experi-
mental results of a working prototype running on an SCM simu-
lator directly working on DRAM and SCM representations of the
corresponding data set. SOFORT is organized as a column store
with a traditional separation of the primary data set into a read-
optimized static data store and a write-optimized dynamic data store
that buffers incoming changes to the data set and is periodically
merged into a new version of the static data store. To ensure physi-
cal data integrity, persistent data structures used in SCM are carefully
designed to recover, in case of failures, in a consistent state relative
to the rest of the database.

In the remainder of this paper, Section 2 presents specific back-
ground with respect to Storage Class Memory and the used hardware
simulator, while Section 3 outlines our prototype SOFORT that was
developed according to our outlined architectural principles. There-
after, we detail the recovery mechanism in Section 4. We conduct
the evaluation in Section 5 and review related work in Section 6.
Finally, Section 7 concludes this paper.

2. BACKGROUND
In this section we first give a brief description of SCM and describe

the SCM hardware simulator that we use to evaluate our system.
Thereafter, we introduce a series of microbenchmarks that helps
characterize the performance of SCM and from which we infer our
system design decisions.

2.1 Storage Class Memory
Storage Class Memory (SCM) is Non-Volatile Memory (NVM) that
exhibits latency characteristics close to that of DRAM with density,
durability, and economic characteristics comparable to existing stor-
age media. Current SCM technologies provide an asynchronous
latency within an order of magnitude of DRAM, with writes notice-
ably slower than reads. Promising SCM technologies include Phase
Change Memory [15], Spin Transfer Torque RAM [12], Magnetic
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Figure 3: Hardware simulator overview.

RAM [9], and Memristors [25]. Continuing advances in NVM tech-
nology hold the promise that SCM will become reality in the closer
future.

Persistence Primitives
To maintain the invariants required to provide ACID guarantees,
database systems must reason about when and in what order writes
are persisted (made durable). However, memory subsystems may
reorder writes to improve performance and existing processors pro-
vide no explicit mechanism to prevent this. To guarantee that a write
to location A is persisted before a write to location B, one must
explicitly persist the write to location A before writing to location
B: there is no MFENCE counterpart for persistence2. As in the work
by Bhandari et al. [6] we assume an architectural model as shown
in Figure 2. In this model NVM is connected via an NVM controller.
A store buffer is used to improve performance by hiding memory
write latency and a buffer is used to allow non-temporal writes to
completely bypass the cache. Ensuring that a write is persisted
requires first ensuring that the write reaches the controller and then
ensuring that the contents of the controller buffers are presented to
NVM. Bhandari et al. [6] outline three ways in which writes can be
made visible to the controller: stores followed by explicit flushes
of the affected cache lines (using CLFLUSH), non-temporal writes,
and setting the caching policy of persisted memory to write through.
Which approach performs better depends on the algorithm being
implemented. Currently the only way of ensuring that the controller
buffers are presented to NVM is via a mechanism like ADR [3] that
forces the contents of controller buffers on power failure. Future
processors will provide additional mechanisms: for example, In-
tel processors will provide a PCOMMIT [4] instruction to explicitly
force the contents of the controller buffers to NVM.

Hardware Simulator
In this paper we assume a hybrid architecture that is equipped with
both DRAM and SCM, where the software can allocate memory in
SCM through the memory interface. For our implementation we
used Persistent Memory File System (PMFS) [10], a SCM-aware file
system, as the SCM interface, but the results are independent of the
specific API as long as it provides routines to perform the following:
(1) Allocate an SCM segment of a given size, returning an identifier.
(2) Map existing persistent SCM memory into the virtual address

space using an identifier.
(3) Free persistent SCM memory using an identifier.

We do assume that the virtual address can change when persistent
memory is mapped into the virtual address space of the database
process.

For our evaluation, we use the same kind of NVM Evaluation
Platform (NVMEP) as in Dulloor et al. [10] and Oukid et al. [17].
Using a special BIOS, the NVMEP simulates a different latency by
2MFENCE only ensures that all CPUs have a consistent global view
of memory.
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Figure 4: SIMD Scan performance on DRAM and SCM with/without
prefetching.

means of a microcode patch. The platform is equipped with two
Intel Xeon E5 processors running at 2.60GHz. Each processor
has 8 physical cores with 64KB L1 and 256KB L2 data cache
each, and a shared 20MB last-level cache. During all of our tests,
Hyperthreading Technology was disabled.

Figure 3 gives an overview of the NVMEP. Conceptually, local
DRAM is attached to each socket, whereas SCM is attached to both
sockets. The NVMEP emulates this architecture by assigning two of
the four memory channels on each socket as DRAM. The memory
on the remaining two memory channels emulates a uniform SCM
region by interleaving memory on a cache-line level. The microcode
patch adds latency to all memory accesses in this memory region,
which therefore emulates SCM. and allows varying its latency. We
chose to set the latency to 200 ns in our experiments, which is more
than two times the latency of DRAM (90 ns). From an application’s
perspective, however, PMFS manages all emulated SCM, which is
therefore not visible as DRAM. To separate the impact of Non-
Uniform Memory Access (NUMA) from the impact of SCM, we use
only the cores and DRAM of the first socket for all of our tests.

2.2 Microbenchmarks
To better understand the implications of SCM on database perfor-
mance, we have conducted a series of microbenchmarks. In the
following we describe some of these microbenchmarks and present
our main findings. All microbenchmarks are single-threaded.

Full Column Scan
In the first microbenchmark, we evaluate the performance of a full
column Single Instruction Multiple Data range scan operator (SIMD
Scan) on DRAM and on SCM [24]. The SIMD Scan operates on
bit-packed compressed columns, where the bit case indicates the
number of bits used to represent a value. Figure 4 shows that for an
SCM latency of 200 ns, which is more than two times higher than
the 90 ns DRAM latency, the average performance penalty for the
different bit cases is 8% compared with using DRAM. In addition,
the average performance penalty for the lower bit cases (1–16) is
only 5%. This is due to hardware prefetching that hides the higher
latency of SCM when detecting a sequential access pattern. With
hardware prefetching disabled for both SCM and DRAM [1], we
observe that the average performance penalty of using SCM rises to
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Figure 5: Skip List read/write performance on DRAM and SCM.

41% compared with using DRAM. If we compare similar memory
technologies, disabling prefetching incurs a slowdown of 34% for
DRAM and 56% for SCM.

We conclude that the higher latency of SCM has little impact on
the performance of the SIMD Scan.

Skip List on SCM
However, not all data structures perform the same in SCM and in
DRAM. In this microbenchmark, we evaluate the read and write per-
formance of a skip list in DRAM and in SCM. We experiment with a
transient and a persistent skip list; the transient skip list is simply
a traditional skip list without modifications to its implementation
while the persistent skip list makes its changes persistent immedi-
ately using persistence primitives, such as, flushing instructions and
memory barriers. The skip list is first populated with one million
of 2× 4 bytes integer key-value pairs before the microbenchmark
is run, then, we execute 10 million either read or insert operations.
Figure 5 illustrates the results of this experiment. The prefixes w and
r on the labels of the figure’s y axis are abbreviations for write and
read, respectively. We observe that there is a 49% penalty for reads
when using SCM instead of DRAM, while for writes the penalty
is 43% and 47% for a transient skip list and a persistent skip list,
respectively. This is due to the fact that the memory access pattern
is random and therefore unpredictable for hardware prefetchers.

Effect of Higher SCM Latencies
Finally, we conduct a study of SCM latency effects on the two
previous microbenchmarks. We restrict the experiment for the SIMD
Scan to bit case 16. Figure 6 summarizes the performance results.
We observe that the higher the latency of SCM gets, the more the skip
list performance deteriorates. The performance penalty at an SCM
latency of 700 ns is 82% and 76% for reads and writes compared
with using DRAM, respectively.

As for the SIMD Scan, its performance decreases by only 8%
for an SCM latency of 200 ns compared with using DRAM. How-
ever, its performance significantly deteriorates in the presence of
high SCM latencies, because the hardware prefetcher is not able to
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Figure 6: Impact of higher SCM latencies on the SIMD Scan and
Skip List performance over using DRAM.

prefetch data at the right time. Indeed, one of the problems that
the hardware prefetcher has to solve is when to prefetch data; if
the data is prefetched too early, then it might be evicted from the
cache before it is used by the CPU, and if the data is prefetched too
late, then prefetching will not hide the whole memory latency. As
the hardware prefetcher is calibrated for the latency of DRAM, it
prefetches data too late when the latency of SCM is too high making
it unable to hide the whole memory latency. This is a limitation of
our hardware simulator and can be fixed in real hardware by simply
having the hardware prefetcher calibrated for SCM.

To support our analysis, we have augmented the SIMD Scan with
customized software prefetching for each SCM latency we experi-
ment with. In Figure 6 we can clearly see that the overhead caused
by the higher latencies of SCM is significantly decreased for the
SIMD Scan; Using software prefetching decreases the overhead, at
an SCM latency of 700 ns, from 60% to 27% compared with using
DRAM.

Summary
In general, from the previous microbenchmark results, we draw
the conclusion that latency sensitive data structures like indexes
do not perform well in SCM, while operators with sequential data
access patterns perform nearly equally in DRAM and SCM. Besides,
software prefetching can be leveraged to hide the effects of high SCM
latencies if the data access pattern of the workload is predictable.
While static data structures can be easily made persistent on SCM,
dynamic data structures require considerable changes to ensure their
durability and post-recovery integrity.

3. SOFORT ARCHITECTURE
SOFORT is a single-level 3 transactional storage engine designed to
leverage the full capabilities of SCM [17]. It is a hybrid system that
takes advantage of both DRAM and SCM to achieve fast recovery
while exhibiting good OLTP and OLAP performance. SOFORT stores
data column-wise and employs dictionary encoding to speed up
query execution, as processing integers is faster than processing

3single-level means that there is no separation between the working
copy and the persistent copy of the data.

other types of data, and to enable compression, such as using direc-
tory tokens for different cardinalities with different bit cases [23],
for an optimal use of SCM and DRAM.

3.1 Data Placement
In general there are two ways of using SCM: (1) as DRAM replace-
ment due to its better scalability and economic properties, or (2)
as DRAM extension, and additionally leveraging its non-volatility
property. We chose the latter way for SOFORT to take advantage
of both technologies, namely SCM and DRAM. Leveraging the non-
volatility property of SCM requires to redesign the database data
structures using persistence primitives [4]:
(1) Store fences are used to enforce the ordering of stores.
(2) Non-temporal stores (Streaming SIMD Extensions (SSE) non-

temporal instructions) allow to bypass the CPU cache and write
directly to memory.

(3) Cache lines are flushed with CLFLUSH or, in the future, with
the new optimized CLFLUSHOPT.

(4) A new instruction, named PCOMMIT, will flush the buffers in
the memory controller. .

These primitives enable data structures to make their changes durable
immediately and to recover after failure to a state of integrity. An ex-
ample of a persistent data structure is the versioned B-tree proposed
by Venkataraman et al. [20]. Our prototype SOFORT implements
its own persistent data structures, such as arrays and columns, to
guarantee physical integrity after system failure.

The design of SOFORT relies on a Twin-store main-memory
database architecture, with a larger static store and a smaller dy-
namic store. The two stores are periodically merged to do garbage
collection and keep the dynamic part small. We envision that the
static part will be entirely kept in SCM and is instantly recovered
after failure at a negligible cost. Traditional (non-persistent) data
structures, such as indexes, can also be used for the static part in
SCM since they are only changed during the merge process, which
creates a new version of each such data object. Flushing all cache
levels at the end of the merge process is sufficient to ensure that the
static part is persistent in SCM.

The microbenchmark results presented in Section 2.2 support this
vision; column scans and other operators with predictable memory
access patterns perform nearly equally on SCM and on DRAM. As for
index lookups, although latency sensitive, they still fulfill their main
purpose on the static store, which is speeding up query processing.
Indeed, even with half the performance, an index lookup remains
orders of magnitude faster than a scan of a large column. Hence,
we expect the static part on SCM to exhibit similar performance as
on DRAM. However, the performance of OLTP queries handled by
the dynamic part highly depends on the performance of its dynamic
data structures. These dynamic data structures require considerable
changes to ensure their durability and post-recovery integrity, which
adds an extra overhead to the overhead caused by the higher latency
of SCM.

Given the low latency of DRAM and the non-volatility property
but high latency of SCM, SOFORT is designed to take advantage of
both technologies. To do so, SOFORT seeks a trade-off between
query performance and recovery performance by keeping primary
data structures (i.e., columns and dictionaries) in SCM for faster
recovery, and secondary data structures (e.g., indexes) in DRAM for
better transaction performance.

3.2 Concurrency Control
Multi-Version Concurrency Control (MVCC) [14, 13] is a natural
design decision for SOFORT, as versioning simplifies rollbacks, that
is, makes them completely unnecessary, if the physical integrity of



persistent data structures can be ensured as it is done in SOFORT.
Besides, it simplifies the design of persistent columns, as handling
integers incurs less complexity in recovery procedures than handling
complex data structures that have their own constructors and allocate
memory, which makes memory leaks much more difficult to handle
in case of failures. A detailed description of the concurrency control
mechanism of SOFORT is available in [17].

Durability management relies on the fact that SOFORT is a single-
level store, i.e., it does not differentiate between transient main
memory and persistent storage for primary data structures. In other
words, the working copy of the data is the same as the durable copy
of the data. Consequently, SOFORT does not require a traditional
transaction log to achieve durability, as changes are applied directly
to the primary, durable data.

4. RECOVERY MECHANISM
In this section, we detail the recovery mechanism of SOFORT. First,
we describe the basic recovery procedure. Afterwards, we explain
how SOFORT retains and continues unfinished transactions at re-
covery. In the next subsection, we show how our basic recovery
procedure can be extended to achieve instant recovery. Finally,
we argue about how to trade between throughput performance and
recovery time.

4.1 Basic Recovery Procedure
SOFORT distinguishes between two types of data structures: persis-
tent ones and transient ones that are recovered in a different way.
The persistent data structures are recovered by “reload” routines
that check their physical integrity and allow them to recover from
problematic situations. For instance, if the system fails while an
array is being resized, the “reload” routine of the array will detect
that and decide whether to continue to resize or to roll back to the
previous size, depending on how far in the resize process the failure
occurred. More technical details on our persistent memory manage-
ment, such as persistent memory allocation and persistent pointers,
can be found in [17]. The transient data structures on the other
hand are fully rebuilt from the persistent data structures within the
recovery procedure. This implies that primary data structures whose
loss at failure causes a loss of information (e.g., the column store
and the dictionary array) cannot be transient. Our basic recovery
procedure follows these steps:
(1) Recover memory management information and rebuild the map-

ping from persistent memory to virtual memory. No data has to
be fetched from slow storage media such as hard disks or SSDs
during the whole recovery process.

(2) Recover persistent data structures, i.e., instant reload followed
by integrity checking and self-contained repairs if needed.

(3) Examine the transaction control block array and continue unfin-
ished transactions.

(4) Rebuild transient data structures on DRAM.

As explained in Section 3, we envision that the static part of the
store will be kept in SCM and is recovered at a negligible cost.
Regarding the dynamic part of the store, the “recovery” of persistent
data structures executes instantly, independently of the data size,
while rebuilding transient data structures is the only time consuming
step in the procedure, which reflects a potential source of recovery
overhead. However, in Sections 4.3 and 4.4, we show how to achieve
instant and guaranteed recovery, even in presence of transient data
structures, and we quantify the impact of this technique on usual
query processing throughput.
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4.2 Continuing Unfinished Transactions
SOFORT does not need to roll back unfinished transactions after a
database failure. Instead, it allows the user to continue executing
open transactions. To achieve this, SOFORT executes a transaction
statement by statement as usual. However, the difference to tradi-
tional systems is that SOFORT makes the changes of each statement
durable, in SCM, before executing the next one. The changes, which
are durable, are not visible to other transactions and will only be-
come atomically visible when the transaction commits by updating
the MVCC commit time-stamps. Figure 7 shows what happens in
case of a system failure during the processing of a statement of a
transaction. Every executed statement is guaranteed to have its in-
curred changes persisted. If the system crashes before a statement is
finished, the latter is re-executed or finalized respectively right after
recovery. To do so, the transaction list, an array of currently running
transaction objects, is stored in SCM. It keeps redo information of
currently executing statements, and classical MVCC information of
the other already executed statements of the running transaction.
Moreover, storing the transaction list in SCM does not affect per-
formance as accessing it represents a negligible part of the total
transaction execution time in addition to the fact that it is present
most of the time in the CPU cache due to its small size.

With no transaction rollbacks after failure and instant recovery,
the application or user will not notice that the system has crashed
and will continue executing his transaction as if nothing happened.
If the application does not reconnect to the DBMS after a crash,
its transactions are aborted after a timeout. Since MVCC hides
uncommitted changes from other transactions, there is no need to
spend time on undoing the changes – they are removed during the
next merge process. This approach is highly beneficial especially for
long-running interactive transactions as they occur in e-commerce
applications, which we will showcase in the attached demo proposal.

4.3 Instant Recovery
To achieve instant recovery, SOFORT starts accepting new trans-
actions right after “reloading” the persistent data structures of the
dynamic part of the store (step 2 in the procedure). This is possible
because all of the primary data are persistent in SCM allowing us to
process transactions without the vanished transient data structures.
However, since the latter are responsible for speeding up query
processing, the transaction throughput could be low at this point in
time. SOFORT rebuilds transient data structures progressively and
in parallel to normal transaction processing. The partially recon-
structed transient data structures are leveraged to speed up query
execution. Hence, transaction throughput during recovery continu-
ously increases until it reaches, once all data structures have been
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Figure 8: Different SOFORT recovery schemes. TATP scale factor 500, 4 users. The database is crashed at second 15.

completely rebuilt, its maximum observed before failure. In the fol-
lowing section we discuss how to trade between runtime transaction
throughput and guaranteed recovery performance.

4.4 Balancing Query Performance with
Recovery Performance

As we have shown in Section 2.2, latency-sensitive data structures,
such as indexes, perform almost two times better if they are located
in DRAM, because of its low latency. However, storing secondary
index structures in DRAM causes a significant drop in transaction
throughput immediately after recovery, since they have to be rebuilt
before the DBMS can leverage such indexes for optimized query
processing. SOFORT tries to shorten the period of low throughput
by employing a progressive rebuild mechanism for the transient
secondary data structures. For example, the system keeps track of
how far the dictionary has been indexed and, based on this infor-
mation, it either scans the remaining part of the dictionary array or
does a lookup on the partially rebuilt dictionary index. Nevertheless,
operational database systems often require certain guarantees in
terms of minimum transaction throughput per second. To enable
SOFORT to meet such constraints, we allow placing a certain amount
of transient data structures (or all in the extreme scenario) in SCM
to store them in a persistent way. Besides, the rebuilding of the
transient data structures can be done in a specific order, based on the
transactions which need to be continued at the same time with the
recovery process. By varying the amount of transient and persistent
data structures, we are able to balance between a high transaction
throughput during usual query processing and a guaranteed mini-
mum throughput during recovery.

5. EVALUATION
We evaluate recovery performance with respect to three metrics: (1)
Recovery area is the maximum number of transactions that could
have been executed if the database had not failed. This corresponds
to the colored area in Figure 8. Hence, the smaller the area of the
colored region the better; (2) Recovery response time is the average
query response time during the recovery process, and (3) Recov-
ery delta is the time it takes to achieve the pre-failure throughput.
Currently only the dynamic part is implemented in SOFORT.

We use the Telecom Application Transaction Processing (TATP)
benchmark, a simple but realistic OLTP benchmark that simulates a
telecommunication application [2]. We run the benchmark with 4
users and a scale factor of 500, which corresponds to an initial popu-
lation of 5 million subscribers and a database size of roughly 10GB.
Then, we crash the database and monitor the throughput variation
during the recovery process by sampling it every 100ms. Figure
8 summarizes the experiment results. We explore three scenarios:
Scenario 1: all indexes are transient and SOFORT waits until the

completion of their reconstruction before accepting queries; this
corresponds to what we have proposed in [17]. Scenario 2: SOFORT
accepts queries right after recovery where it uses the primary, per-
sistent data structures to answer queries while taking advantage of
the indexes that are being rebuilt in the background, as explained in
Section 4.4. This scenario includes two sub-scenarios: in Figure 8b,
all indexes are transient while in Figure 8c 40% of the indexes are
persistent in SCM. Scenario 3: all indexes are persistent in SCM and
there are no transient data structures to reconstruct.

Figure 8a shows the results for scenario 1. We observe that the
throughput drops to zero at crash time and it takes SOFORT approxi-
mately 8 s to start answering queries again. The throughput is back
to its maximum observed before failure immediately after SOFORT
starts processing queries again. The recovery delta is then 8 s. The
recovery time is spent rebuilding the transient data structures, which
means that recovery time is proportional to the transient data struc-
tures size. Hence, recovery may take much longer for instances with
larger transient data structures.

Figure 8b shows the results for scenario 2 where all indexes
are transient. We observe that it takes only a few milliseconds
after failure for SOFORT to start answering the first queries. The
throughput gradually increases as secondary data structures are
rebuilt to reach its maximum observed before failure after 8 s, which
is identical to the recovery delta observed in scenario 1. Also, the
recovery area has decreased by 16% compared with scenario 1.
However, the recovery delta is still a function of the size of the
transient data structures. This approach is optimal when throughput
is to be favored. Figure 8c shows the case where 40% of the indexes
are persistent in SCM. We notice that both the recovery area and
the recovery delta are significantly improved; the recovery area is
decreased by 82% compared with scenario 1 and the recovery delta
is less than 2 s. However, this does not come for free as throughput
during usual query processing is decreased by 14% compared with
the two previous cases. This approach is optimal when we seek a
trade-off between throughput and recovery performance.

Figure 8d shows the results for scenario 3. We notice that the
throughput during normal processing is 30% lower than for scenario
1 for which both SCM and DRAM are leveraged. However, recovery
is instant at maximum throughput observed before the crash. Indeed,
the recovery area has completely vanished – it has decreased by
99.8% compared with scenario 1 and the recovery delta is only a
few milliseconds. Besides, recovery is instant independently of data
size, including secondary data structures, since recovering persistent
objects takes no time. This scenario is optimal when the system
must provide guaranteed throughput right after failure.

The distribution of the data structures over SCM and DRAM used
in these scenarios are just one of many possible distributions. The
more secondary data structures we put on DRAM, the higher the
performance during usual query processing and the lower the perfor-
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Figure 9: Impact of persistent indexes in SCM on throughput during
usual query processing and recovery area. TATP scale factor 500, 4
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mance of recovery. In contrast, the more secondary data structures
in SCM, the lower the performance during usual query processing
and the better the recovery performance. This is due to the fact
that current secondary data structures, such as B-trees and skip lists,
are not a good fit for SCM as they are latency sensitive. On the
other hand, data structures that exhibit more data locality, such as
arrays and columns, are less latency sensitive and thus show good
performance in SCM.

In the second experiment, we run TATP with a scale factor of
500, vary the percentage of secondary data structures in SCM and
evaluate both throughput and recovery area. Figure 9 summarizes
the results of the experiment. We notice that the more secondary
data structures we put in SCM, the smaller the recovery area, and the
lower the throughput during usual query processing. The throughput
drop is limited to 30% for the extreme case where all secondary
data structures are persistent in SCM. We also observe that both
throughput and recovery area curves are not linear; it is due to the
fact that not all secondary data structures are equally important for
the TATP workload, which also holds for other workloads. Therefore,
taking advantage of specific characteristics of a workload may lead
to an optimal trade-off between throughput and recovery by for
example, putting the most used secondary data structures in DRAM
and the less used ones in SCM.

We have also evaluated the average response time during the
recovery process, as shown in Figure 10. In this experiment, we also
vary the percentage of secondary data structures in SCM and run
TATP with a scale factor of 500. We observe that the more secondary
data structures we put in SCM, the lower the recovery response time.
Besides, the difference in response time between the two extreme
cases, all secondary data structures in DRAM and all in SCM, is huge;
for the former case, response time reached a peak of 506 µs while
for the latter case it never exceeds 2 µs. In conclusion, depending on
the scenario and context, we have a trade-off between throughput,
response time guarantees, and recovery performance.

6. RELATED WORK
To our knowledge, with SOFORT, we are the first to propose a
hybrid SCM-DRAM single-level transactional system. Bailey et
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Figure 10: SOFORT average recovery response time. TATP scale
factor 500, 4 users.

al. [5] presented Echo, a persistent key-value storage system with
snapshot isolation. Contrary to SOFORT which assumes that DRAM
and SCM are of the same memory hierarchy level, Echo adopts
a two-level memory design with a thin layer of DRAM on top of
SCM. Other works have used SCM to optimize OLTP durability
management. Pelley et al. [18] propose to use in-place updates
and group commits to optimize OLTP durability management and
speed up recovery based on row store, disk-based OLTP database
architectures. In their work, SCM is handled more as block device by
paging than as byte-addressable memory. They also assume a DRAM
cache for SCM, while SOFORT treats SCM as of the same level of
DRAM, and goes further into adopting a single-level memory design,
more inspired from column store, main-memory architectures than
disk-based OLTP architectures. Fang et al. [11] propose an SCM-
based new logging technique implemented on IBM SolidDB, which
is a disk-based row store. SCM is used only to store the log. Our
approach is radically different since we use SCM as memory and
storage at the same time and we do not need a transaction log. Wang
et al. [22] proposed a new SCM-based scalable distributed logging
approach. All these works aim to improve existing systems based
on classical database architectures, while we propose a green field
approach that makes the most out of SCM.

To manage SCM, Condit et al. [8] presented BPFS, a carefully
designed, high performance transactional file system that runs on top
of SCM. Nayaranan et al. [16] proposed Whole System Persistence
(WSP), where data is flushed only on power failures using the resid-
ual energy of the system. However, contrary to SOFORT, they do
not consider software failures, which are prominent. Zhao et al. [26]
proposed Kiln, a persistent memory design that employs SCM to
offer persistent in-place updates without logging or copy-on-write.
While they assume a non-volatile last level cache, SOFORT makes
no such hardware assumption.

Chen et al. [7] discuss how B+-trees and hash joins can benefit
from SCM. Venkataraman et al. [20] contributed Consistent and
Durable Data Structures that leverage the non-volatility property
of SCM using versioning. They propose a versioned B-tree that
is persisted in SCM in real time and that can be recovered in a
consistent state after failure. These works are orthogonal, though
very related to ours. Indeed, there is a need to redesign classical data
structures to make them persistent and come up with new algorithms
that will enable the full power of SCM.



7. CONCLUSION
In this paper, we have investigated how SCM can be leveraged next
to DRAM to achieve instant recovery and remove the need for trans-
action rollbacks after failure by operating directly on the primary
copy of the data. We have used our prototype SOFORT, which is
a log-less, single-level, hybrid SCM-DRAM storage engine, to im-
plement our proposed approach. We showed that instant recovery
can be reached by two methods: by using persistent, primary data
and leveraging secondary data structures that are being rebuilt in
the background to answer queries, or by putting all secondary data
structures in SCM. The former approach offers a high throughput
during usual query processing but a lower throughput and a larger
response time during recovery, while the latter approach offers a
lower throughput during usual query processing than the former
case but a small response time and a guaranteed throughput during
recovery. There are many other distributions of secondary data struc-
tures over SCM and DRAM between these two extreme cases. In
particular, workload analysis and partial reconstruction of transient
index structures may lead to an optimal distribution.

For future work, we plan to investigate new recovery schemes
for the hybrid SCM-DRAM cases by using more efficiently transient
secondary data structures that have to be rebuilt during recovery. In
that context, techniques such as Self-Managing Indexes (SMIX) have
the potential to enhance the recovery performance [21]. We also plan
to investigate how to achieve high availability with minimal cost for
throughput and recovery time. Indeed, our proposed instant recovery
is not sufficient by itself since it addresses only software failures.
We plan to extend it to support hardware failures by investigating,
among others, replication between different nodes. Finally, as shown
in this paper, current indexing data structures do not perform well
on SCM. We plan to investigate alternative indexing structures that
are a better match for SCM.
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Figure 11: User interface of SOFORT demonstration proposal.

APPENDIX
A. DEMONSTRATION OF SOFORT
This paper is accompanied with a demonstration proposal of 10
minutes. It encompasses all the techniques presented in this paper
that have been implemented in our prototype SOFORT. To help the
audience understand better these techniques, we have built a front-
end application, as depicted in Figure 11, that illustrates how we can
trade between recovery performance and throughput performance.
SOFORT will run on our SCM hardware simulator which is described
in Section 2.1. In particular, we demonstrate:

Live recovery. We demonstrate how SOFORT recovers from
random crash scenarios without losing data or corrupting it. In
particular, we demonstrate how the persistent data structures of
SOFORT can recover and execute a self-contained repair if needed.
The demonstration includes sending Linux kill signals to a run-
ning instance of SOFORT during the execution of a benchmark and
then recovering from the crash and continuing the execution of the
benchmark as if the crash did not happen. This is due to SOFORT
persisting the changes of every executed statement in real time. Put
another way, every already executed statement is guaranteed to have
persisted its changes.

Removing the need for transaction rollbacks after recovery.
As a second step, we demonstrate the feasibility of removing the

need for undoing running transactions after failure. To do so, we
run a micro-benchmark consisting of long running transactions on
SOFORT and then we crash the system. Recovery will show that
we crashed in the middle of several long transactions but none have
been rolled back. Even better, we resume execution exactly at the
statement of the transaction when we crashed SOFORT.

Recovery performance/Query performance trade-offs. This
is the main part of the demonstration. We use the TATP benchmark.
The user interface includes a tuner to vary the number of the sec-
ondary data structures that are persistent in SCM and a tuner to vary
the number of users. We vary the number of persisted secondary
data structures and observe the effect on throughput. Then, for
every configuration, we crash the database and observe recovery
performance in terms of recovery area, recovery delta, throughput
during recovery and response time. This will illustrate how DRAM
favors query performance while SCM favors recovery performance.

Different SCM latency effects on SOFORT. Finally, we will
show the effect of different SCM latencies on query performance
and recovery performance. The hardware simulator we use allows to
tune SCM latency via its microcode patch. We will vary SCM latency
within a range and illustrate how higher latencies affect the overall
system performance and how SOFORT manages to stay competitive
even in the presence of very high SCM latencies.
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