Managing General and Individual Knowledge
in Crowd Mining Applications

Yael Amsterdamer!, Susan B. Davidson?, Anna Kukliansky?!,
Tova Milo!, Slava Novgorodov!, and Amit Somech!

IPel Aviv University, Tel Aviv, Israel
2University of Pennsylvania, Philadelphia, PA, USA

ABSTRACT

Crowd mining frameworks combine general knowledge, which
can refer to an ontology or information in a database, with
individual knowledge obtained from the crowd, which cap-
tures habits and preferences. To account for such mixed
knowledge, along with user interaction and optimization is-
sues, such frameworks must employ a complex process of rea-
soning, automatic crowd task generation and result analysis.
In this paper, we describe a generic architecture for crowd
mining applications. This architecture allows us to examine
and compare the components of existing crowdsourcing sys-
tems and point out extensions required by crowd mining. It
also highlights new research challenges and potential reuse
of existing techniques/components. We exemplify this for
the 0ASSIS project and for other prominent crowdsourcing
frameworks.

1. INTRODUCTION

Crowdsourcing is of great current interest. Within the
database community, efforts to integrate the crowd into an
information system began by “plopping” a database on top
of the crowd, essentially treating them as an external (and
very slow, potentially unreliable) hard drive. For example,
crowd workers can insert additional tuples or fill in missing
attribute values in a given table, or help evaluating operators
such as selection, group-by (clustering) and order-by (rank-
ing) [6, 7, 14, 15, 16, 17]. Crowdsourcing is also used in
performing specific computational tasks such as entity reso-
lution, data cleaning, and machine learning tasks [4, 8, 11,
19, 20, 21]. Including the crowd as an additional information
and processing source in these ways has therefore required
extensions to the query processing and optimization compo-
nents of a traditional database architecture.

More recently, crowd mining has been proposed for more
complex information finding applications [1]. In such appli-
cations, general knowledge — such as an ontology, or informa-
tion in a database — is combined with individual knowledge

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR’15),
January 4-7, 2015, Asilomar, California, USA.

from the crowd. In contrast to general knowledge, individual
knowledge captures habits and preferences. To illustrate, we
give three examples:

1. Ann, a vacationer, is interested in finding child-friendly
activities at an attraction in NYC, and a good restau-
rant nearby. For each such combination, she is also
interested in useful related advice (e.g., what to wear,
whether to walk or rent a bike, etc.)

General knowledge: NYC attractions, restaurants, the
proximity between them, names of activities
Individual knowledge: what people like doing best with

children, what restaurants they like and frequently
visit, what they take with them when they go, etc.

2. A dietician wishes to study the culinary preferences in
a particular population, focusing on food dishes that
are rich in fiber.

General knowledge: food dishes that are rich in fiber.
Individual knowledge: the culinary preferences of indi-
viduals in the population.

3. A researcher wishes to study the social habits in com-
munities where the longevity is in the top percentile.
General knowledge: statistics about the longevity in dif-

ferent communities.
Individual knowledge: the social habits of individuals.

A number of existing technologies could potentially be used
in each of the examples above, e.g. searching the web, or post-
ing a question on some forum to receive input. However, they
do not enable general knowledge to be combined with indi-
vidual knowledge for specific questions. For the first example,
Ann could do a web search or use a dedicated website like
TripAdvisor to query for child-friendly activities or for good
restaurants. However, she would still need to sift through
the results to identify the appropriate combinations: Not all
good restaurants, even if child-friendly, are appropriate after
a sweaty outdoor activity; a restaurant may be geographi-
cally close to some attraction but not easy to access; and
so on. Moreover, much of the information is text-based so
finding related advice (e.g., walk or bike) may be time con-
suming. Forums, on the other hand, are more likely to yield
detailed answers relevant to Ann’s specific question. How-
ever, she would again receive a number of (wide-ranging)
text-based results, which she would then have to manually
examine, filter and aggregate.

Ideally, user questions should be posed in natural language,
and compiled into a declarative query language which can
then be processed and optimized. However, standard query
languages cannot be used as-is for questions that mix indi-

vidual and general information needs, since they must enable
processing each type of information in a different manner.
Evaluating such queries is also complex: deciding what ques-
tions to ask next, and to how many and what type of crowd
workers (statistical modeling), which is affected by the type
of data in question (general or individual); determining how
to aggregate answers to obtain high quality results for the
different types of data; sequencing questions to crowd work-
ers to create a good user experience; and deciding when to
update general and individual knowledge based on crowd-
provided information. Moreover, the system may enable per-
sonalization so that crowd members can be selected to either
resemble the query issuer or diversify the individual knowl-
edge obtained. Relevant profile data may be either obtained
directly from users/crowd workers or inferred from user re-
quests and crowd responses. Crowd mining therefore requires
significantly more complicated components than those used
in previously proposed crowdsourcing architectures.

In the remainder of this paper, we describe a framework
architecture for crowd mining applications (Section 2) and
discuss how our crowd mining system, OASSIS [1], employs
this architecture and what research challenges remain (Sec-
tion 3). In Section 4, we use the architecture to analyze
other prominent crowdsourcing systems, compare them to
each other and to OASSIS and identify extension opportuni-
ties for supporting crowd mining. We conclude in Section 5.

We note that an important enabling factor for crowd-based
systems is an adequate HCI, and the study of HCI in this con-
text leads to challenges involving many research areas (e.g.,
social sciences, game theory). While in [1] we have imple-
mented a user-friendly crowdsourcing platform, we do not
study these aspects here but focus instead on the data layer.
Other important challenges when dealing with personal in-
formation about the crowd (such as preferences), involve pri-
vacy and data security. These issues, again, are out of the
scope of this paper, and we may assume that a security layer
is instrumented wherever personal data is recorded.

2. ARCHITECTURE

A diagram of the general architecture of a crowd mining
framework is given in Figure 1. The components of this ar-
chitecture are generic, and we next elaborate on the purpose
of each of them. Note, in particular, that many of the com-
ponents employ a separate, dedicated handling of individ-
ual and general data; and that the reuse of obtained results,
which is an important optimization in a crowd-based setting,
is discussed across several components.

2.1 Data Repositories

Let us start by defining the three main data repositories
used by our crowd mining framework. Each of them is par-
titioned into a few distinguished types of data.

The Knowledge Base is the main knowledge repository of
the framework, which stores long-term data. It consists of
two main parts: first, the input data, gathered externally to
the framework, which may integrate conventional DB data,
ontological knowledge bases, document collections, etc.; sec-
ond, inferred data, which is generated based on (automatic
analysis of) crowd input. Within this inferred data, we may
distinguish general from individual data. The former type
may be viewed as a completion of data missing in the in-
put, for instance, the address of a company, and must adhere
to the input schema. The latter type captures data such as

opinions, habits and recommendations, which may apply to
a particular crowd worker but not to another. The inference
process may have some error probability, and the trust in the
crowd input may vary based on, e.g., the trust in the con-
tributing crowd workers and the level of agreement between
them. To reflect these uncertainties, inferred data may be
annotated with provenance and confidence scores. Individ-
ual data may be more volatile then general data, as people
may change their habits and opinions; hence, this data may
further be annotated with expiry dates and properties of its
contributing crowd workers.

The User Profile repository contains details per crowd worker,

and is useful for the management of workers, rewarding and
task assignment. Similarly to the Knowledge Base, the data
here can be split into input and inferred data. The former
type captures profile information that is given as input to
the system (by the workers or by the crowdsourcing plat-
form); and the latter type captures data inferred based on
past tasks. For example, the worker Alice may enter her lo-
cation and birthdate to the system; the system may further
infer, based on her task results, that Alice is an expert in
geography, and is frequently engaged in sports.

Last, the Crowd Results repository is of a more temporary
nature and records the results of crowd tasks relevant for a
particular query. It records (1) for every worker, a sequence
of “raw” results, and (2) some additional inferences that may
be done based on the results (see Section 2.4), which may be
more convenient for analysis and output display.

2.2 Query Engine

The user information needs are formulated by a declarative
query language (to be exemplified in the next section), that
allows to seamlessly query general and individual knowledge.
The Query Engine is responsible for computing an efficient
query plan and managing its execution. The dual objective is
to minimize both the machine execution time (as in standard
query processing) and the crowd effort (which is often the
bottleneck in terms of time, cost and availability [16]).

Some parts of the query plan can be computed based on
data which is already recorded in the knowledge base — both
general and individual. For the rest, the help of the crowd is
required: e.g., to obtain data that is missing from the knowl-
edge base or to re-fetch data that is stale, mistrusted, or
needs to be collected from a particular target crowd, accord-
ing to preferences specified by the query issuer. The Query
Engine maps these information needs into micro-tasks for
the crowd. A micro-task might be, e.g., the verification or
completion of a small piece of data, by posing an appropri-
ate question to crowd workers; and it may involve individual
or general data, as determined by the query language. The
unique micro-tasks that the Engine computes are then sent,
along with relevant user preferences (e.g., the budget for pay-
ing the crowd, desired properties of crowd workers, etc.) to
the Crowd Task Manager, which is responsible for the distri-
bution of each unique micro-task to multiple crowd workers.

Note that to optimize the query execution, crowd tasks
may be generated by the Query Engine in an incremental
manner: the results of previous tasks may affect the neces-
sity of subsequent tasks, and thus the Query Engine may
collect some results from the Crowd Task Manager, before
computing the best tasks to issue next.

2.3 Crowd Task Manager

Sending each unique task to multiple crowd workers is use-

budget, preferences
query

NL request query
user

Significant

Request
results

refinement

NL task
g\g NL answer result
g task

result
Crowd
workers

task

NL Parser / Generator

|

Next Crowd
— worker

Selection

reward

Knowledge

Knowledge Base | Inputgeneral

Tasks, budget,
preferences

Crowd Task

Task,
preferences

Inferred <€
updates general
:: Inferred €T

individual

Crowd results X
Summarized

crowd results

updates

Result Summarized

general

Summarized
individual

Inference and
summarization

Raw crowd
results

updates

Raw crowd
results

Crowd worker

properties User/worker Profile

Figure 1: Crowd mining architecture

ful to overcome crowd errors or when the individual views of
different crowd workers are needed. Thus, given a task, the
Crowd Task Manager has to aggregate its results obtained
from different crowd workers(by, e.g., computing the average
or majority vote). The particular aggregation function may
vary depending on the system or user preferences; but more
importantly, it should be tied to the type of data — general
vs. individual. For the former type of tasks, the aggrega-
tion should allow identifying the correct answers with high
accuracy, e.g., the correct missing company address. For the
latter, there is no single “correct” answer, and the aggrega-
tion should capture the (expected and even desired) variety
of crowd views/habits. For each such aggregated result, the
Crowd Task Manager uses a significance function to com-
pute whether sufficient crowd input has been collected, and
whether its result is “significant”, i.e., belongs in the query
output.

The Crowd Task Manager prioritizes submitting the un-
finished tasks to workers based on (i) the estimated effect
of more task results on the overall utility, e.g., the overall
confidence in the query output; (ii) the profiles of the avail-
able active workers and their current session state/context.
E.g.,we may prefer to pose to a worker a task related to/dif-
ferent from previous tasks she performed. In other cases, the
Task Manager may choose to fetch a new worker from the
pool, by issuing a request to the Crowd Selection component
(see Section 2.5).

In parallel, the Task Manager may check for inferred, sum-
marized data in the Crowd Results repository, which may
render some tasks that were already generated by the Query
Engine redundant. For instance, two dependent tasks may be
sent to workers in parallel, until enough confidence is gained
in the result of one of them. Then, the completion of this
task and subsequent inferences may lead to the completion
of the other. The significant among the summarized results
are fed back to the Query Engine, and form a compact query
output.

2.4 Inference and Summarization

This component processes the raw results obtained from
the crowd, along with data from the Knowledge Base and
User Profile. The inference/summarization process may be
based on semantic relations between units of data, on hard
or soft constraints, on predefined rules, etc. For instance,
given semantic ontological knowledge that Central Park and

Battery Park are both parks in New York, individual crowd
recommendations about them may be summarized to deter-
mine that visiting parks in New York is recommended. We
note that, here again, inference about general and individual
data may have different flavors.

In a similar manner, the component may send updates,
based on inferred and summarized data, back to the Knowl-
edge Base and User Profile repositories. In this manner, sub-
sequent queries may benefit from the execution of previous
tasks. For instance, we can enhance worker profiles based on
their task results. Given tasks involving general data, we can
use their results to estimate the expertise of a worker in a cer-
tain domain area, since we can estimate which results were
correct and which were erroneous. Given individual data
tasks, we can infer the individual habits, likes and dislikes
for a worker, based on his or her results.

2.5 Crowd Selection

This component searches the repository for crowd workers
that are suitable to perform a certain task. The selection
of workers may be done (i) according to explicit preferences
given by the query issuer, (ii) by a similarity between the
query issuer and the crowd worker (in tasks which involve
recommendations), or (iii) by worker properties related to
the task, such as the expertise area, quality and availability
of the workers. The similarity between the user who issued
the query and a crowd worker is a function of their over-
lapping input profile, as well as similarity in their results
in crowd tasks regarding individual data. The latter is es-
pecially interesting, as it indicates overlapping habits and
opinions between the users.

Based on the three parameters for worker selection men-
tioned above, the Crowd Selection component may choose the
most suitable worker, fail to find a suitable worker, and/or
modify the reward based on the worker requirements/avail-
ability. For example, given a task involving general data, it
may be preferable to pay more for an available, high-expertise
worker, rather than for many less suitable workers.

Last, another possible responsibility of this component is
to perform a filtering of malicious workers and spammers. It
may be possible to detect that the results of a worker are not
correlated with the ground truth (in the case of general data)
or that they are highly contradictory [1, 13]; such workers will
not be selected for further tasks.

2.6 NL Parser/ Generator

Ideally, users should be able to formulate their information
request in a natural language (NL), and this would be au-
tomatically translated to the target query language. Much
previous work has been devoted to translating NL to formal
queries on relational/XML/RDF data [3, 5, 12]. However, a
new challenge in the context of crowd mining stems from the
need to properly identify, in the parsing process, the general
vs. individual parts of the user request. (We will illustrate
this, for Anne’s question from the Introduction, in the fol-
lowing section).

Analogously, for the interaction with crowd workers, the
tasks that they receive, initially generated by the Query En-
gine, should be phrased in NL. Some tasks whose results are
free text answers may also require NL parsing. The mecha-
nism here can vary from very simple to very complex. For
instance, the generation of tasks may be done using textual
instruction templates, along with some rules on how to fit
the task parameters into them. Or, if the free text answer
of a worker should correspond to a single concept, e.g., an
entity, this entity can be searched in a knowledge base.

3. 0ASSIS AS AFRAMEWORK EXAMPLE

We illustrate next how the architecture described above is
used in the 0ASSIS crowd mining system, and what research
challenges remain. We will use Ann’s vacation query from
the Introduction as our running example. We first provide a
brief overview of the system, then explain how its different
components fall within the described architecture.

0ASSIS allows users to declaratively specify their informa-
tion needs and mines the crowd for answers. The answers
returned are concise, and represent significant data patterns.
0ASSIS uses an RDF-based model® to capture both the gen-
eral knowledge in an ontology and individual, crowd-provided
data. User queries are formulated in 0ASSIS-QL, a new query
language that extends SPARQL? with crowd mining features.
In the execution of a query, the ontology is used to find can-
didate data patterns based on general knowledge, e.g., com-
binations of nearby attractions and restaurants in NYC. The
system then mines the crowd by automatically generating
and posing questions to the crowd. In this manner, it identi-
fies which patterns are common/significant, as well as related
advice. E.g., it can ask which combinations of attractions and
restaurants are typically visited together by crowd members.
Semantic inference is employed to enrich the crowd-provided
data, and semantic summarization yields a compact, com-
prehensive query output. Dynamic prioritization of crowd
questions is performed to support the inference process while
minimizing the number of questions asked of the crowd.

A full description 0ASSIS is given in [1]. We review them
below in light of the architecture presented in the previous
section.

3.1 The Ontology and Crowd-provided Data

The RDF ontology used in 0ASSIS forms its Input General
Knowledge Base, and can be chosen from several publicly

available, large knowledge bases, e.g., Yago [9], or Foursquare®.

It contains elements of different domain areas and general
knowledge facts in the form element-relation-element (RDF

"Mttp://www.w3.org/standards/techs/rdf
2http://www.w3.org/TR/rdf-sparql-query/
3Foursquare API. developer.foursquare.com/.

[o I B

o e e
w N = O ©

SELECT FACT-SETS
WHERE
{$x instanceOf Attraction.
$x inside NYC.
$x hasLabel "child-friendly".
$y subClassOf Activity.
$z instance0f Restaurant.
$z nearBy $x}
SATISFYING
{$y doAt $x.
[1 eatAt $z.
MORE}
WITH SUPPORT = 0.25

Figure 2: Sample 0ASSIS-QL Query

triples). E.g., the fact that “Maoz Vegetarian is nearby Cen-
tral Park”, can be modeled by the triple {Maoz Veg. nearby
Central_Park}. The ontology also contains semantic knowl-
edge, such as a hierarchy of subsuming concepts, e.g., Central
Park is a park, a park is an outdoors place, etc.

The data collected from the crowd — namely, pattern fre-
quency and related advice — is recorded as raw data in the
Crowd Results repository. It further undergoes an analysis,
inference and summarization process (to be explained next),
the result of which is also cached in the repository and is
eventually used to generate the query output.

3.2 0ASSIS-QL

We next provide an overview of the query language used
in OASSIS. An 0ASSIS-QL query has three parts: (i) a SE-
LECT clause, which defines the output of the query; (ii) a
WHERE clause, which is evaluated against the ontology; and
(iii) a SATISFYING clause, which defines the data pattern to
be mined from the crowd. An example of a query Q is given
in Figure 2, which expresses the scenario presented earlier:
“Find a popular combination of activities in a child-friendly
attraction in NYC, and a good restaurant nearby (plus other
relevant advice)”. The answer to Q, in natural language,
would include, e.g., “Go biking in Central Park and eat at
Maoz Veg. (tip: rent the bikes at the Boathouse)”, and “Feed
a monkey at the Bronx Zoo and eat at Pine Restaurant”.

We use Q to illustrate the semantics of 0ASSIS-QL; full
details of the language can be found in [1].

The SELECT clause (line 1) specifies that the output should
be significant fact-sets, i.e., sets of facts that co-occur fre-
quently, in RDF format. (The language further allows pro-
jecting the query results only on certain facts or variables.)

The WHERE clause (lines 2-9) defines a SPARQL-like se-
lection query on the ontology. It consists of facts over the
ontology elements, such as NYC or Activity, each in a sepa-
rate line. The facts also contain variables (e.g. $x, $y, ...),
and the selection returns all variable bindings such that the
resulting fact-set is contained in the ontology.

The SATISFYING clause (lines 10-14), to which we apply
the previously found variable bindings, defines the data pat-
terns (fact-sets) to be mined from the crowd. It further
specifies a support threshold, which sets the minimal fre-
quency of significant fact-sets (line 14). Consider, for ex-
ample, the fact-set {[] eatAt $z. $y doAt $x}, where []
stands, intuitively, for “anything”. Combined with the bind-

ings $z +— Maoz_Veg., $y — Sport, and $x — Central_Park,

this fact-set corresponds to a habit of eating (anything) at
Maoz Veg. and doing a sport in Central Park. By formulat-
ing a question to the crowd, the system can ask them how
frequently they engage in this habit, aggregate the answers,

http://www.w3.org/standards/techs/rdf
http://www.w3.org/TR/rdf-sparql-query/
developer.foursquare.com/

and decide whether the pattern is significant or not. MORE is
a syntactic sugar which captures related, unrestricted advice.

3.3 Query Evaluation

The 0ASSIS-QL user query is passed to the Query Engine of
0ASSIS, which is responsible for executing the WHERE clause,
finding the relevant variable bindings, sending them to be
evaluated by the crowd via the Crowd Task Manager, and
returning significant results back to the user. Since the WHERE
clause is in a SPARQL-like format, an efficient, off-the-shelf
SPARQL module is used to find variable bindings. The bind-
ings are then plugged into the SATISFYING clause to obtain
candidate data patterns, each potentially corresponding to a
crowd question.

Next, the Query Engine interacts with the Crowd Task
Manager, employing an efficient algorithm to evaluate the
SATISFYING clause using the crowd. Crowd workers may be
asked two types of questions: a concrete question about a
data pattern, e.g., “How often do you do sports in Central
Park?” for the pattern {Sport doAt Central_Park}; or a spe-
cialization question, where the worker can specify a relevant
habit, related to a previous question, e.g., specify which types
of sports she does in Central Park. For the former type of
question, the Task Manager polls the Engine for the next
data pattern about which the worker should be asked, ac-
cording to the evaluation algorithm.

The algorithm aims to minimize the number of questions
asked while providing a pleasant user experience, based, re-
spectively, on theoretical results and on preliminary user
studies [1]. It turns out that these considerations dictate
the order in which questions are asked to crowd members, to
be as follows: based on the ontology semantic knowledge, a
semantic subsumption partial order is defined over fact-sets;
and this partial order is traversed “top-down” in our evalu-
ation algorithm, from the most general to the most specific
fact-sets. This traversal can be viewed as a search for the
specific patterns that apply to a worker, which is guided by
this worker’s and other workers’ answers. The Task Man-
ager poses each question to multiple crowd workers, and the
answers are aggregated using average. Statistical modeling
is used to determine the result significance and the overall
utility of each question. For details see [2].

Finally, the Inference and Summarization component of
the O0ASSIS framework constantly interacts with the Task
Manager during the execution of the SATISFYING clause. For
instance, having discovered that a pattern is insignificant,
(overall or for a particular worker), the Inference and Sum-
marization component infers that more specific patterns (ac-
cording to the partial order relation) are also insignificant
overall /for this user, respectively. Analogously, when a pat-
tern is resolved as significant, more general patterns are in-
ferred to be significant as well. This inference scheme also
entails a formal definition of compactness: only the maxi-
mally specific patterns among those which are significant and
match the query are maintained as the summarized Crowd
Results; the significance of other patterns can always be in-
ferred. Consequently, the most specific patterns are also the
patterns that are eventually output to the user.

3.4 Further Challenges

Describing 0ASSIS in terms of the crowd mining architec-
ture in Figure 1 is useful not only for highlighting what novel
components it contains but also, more importantly, for clar-
ifying what challenges still remain for future research.

From the discussion of its data repositories, we observe
that the crowd input is currently used only for obtaining
individual information. However, as observed in [1], the col-
lection and inference of general data from the crowd may also
be very useful, e.g., in the case that missing ontology data is
encountered while parsing the query or the crowd answers,
or to enhance the query in general.

A second desired extension is crowd selection. To enable
specifying preferences for crowd workers, by the user or the
system, 0ASSIS-QL could be extended by an additional clause
specifying crowd properties, with conditions on both input
properties (e.g. age group, education), if available, as well as
inferred information (e.g. expertise, preferences). The cur-
rent short-term cache of results that is kept per-worker can
easily be converted into long-term profile and used as input
for such a query. Finally, the filtering of spammers by 0ASSIS
may be done by identifying workers whose answers frequently
contradict the query answer semantics [1].

Last, although 0ASSIS’s UI facilitates query construction
using a structured query-building form with auto-completion
capabilities, it is an interesting challenge to allow users to
specify their queries in natural language. Since there al-
ready exist tools which translate NL requests into SPARQL
(e.g., [5]), and SPARQL forms the basis for 0ASSIS-QL queries,
these tools could be used in a translation from NL to 0ASSIS-
QL. However, any off-the-shelf tool would have to be ex-
tended, in order to separate the query parts related to general
information from those related to individual information.

4. ADDITIONAL EXAMPLES

Our architecture allowed us to analyze the components of
0ASSIS and detect its capabilities vs. its challenges. In a sim-
ilar manner, putting other crowdsourcing systems in terms
of the architecture enables a systematic comparison of these
systems, and points to extensions required by crowd mining.

Declarative Crowdsourcing Platforms. Different crowd-
sourcing platforms support the evaluation of queries with the
help of crowd workers [7, 14, 16]. They use a standard query
language such as SQL, or an enhanced variation of it, which
allows, e.g., specifying special operators to be evaluated by
the crowd, values to be filled in by the crowd, and/or crowd-
related parameters such as the query budget. The queries are
evaluated over a standard database augmented by data ob-
tained by generating micro-tasks to the crowd. A micro-task
may involve, e.g., filling a missing table value or comparing
two values, and is posed to several users for redundancy. The
number of users is usually fixed or bounded [7, 16] and their
answers are aggregated by a fixed function such as major-
ity vote, or by a predefined function (Resolution Rule [16],
e.g., average, duplicate elimination, etc.). The Query En-
gine then uses standard query plan optimizations over the
standard data computations, as well as crowd-specific opti-
mizations. Crowd-specific optimizations are usually designed
to optimize one of several parameters (the number of micro-
tasks, overall cost, overall time or overall accuracy) while
keeping the other parameters within a fixed range [7, 16].
Placing these crowdsourcing systems in the context of our
crowd mining architecture highlights the key differences be-
tween them and 0ASSIS. Most notably, whereas the distinc-
tion between individual and general data is inherent to crowd
mining, this distinction is missing in the other systems’ data
model. Consequently, their query languages do not make

this distinction, and the different ways of processing individ-
ual versus general data, described throughout Section 3, is
not supported. The mix of general, semantic data with indi-
vidual data in OASSIS, along with its potentially huge space
of data patterns, requires a significantly more careful treat-
ment of crowd questions and answers. This is reflected in
an intensive interaction between architectural components,
e.g., the incremental and sequential selection of questions
per user between the Task Manager, Query Engine and In-
ference modules. Summarization, which is not done in the
other crowdsourcing frameworks, is also crucial in 0ASSIS to
support more efficient task selection and inference.

Plug-in Components. Similar to 0ASSIS, the crowdsourc-
ing systems mentioned above would benefit from some ad-
ditional “plug-in” components: using a user selection mech-
anism; more sophisticated methods for aggregating and an-
alyzing task results; and adopting an NL interface for user
requests. Some techniques related to these components have
already been developed: for crowd selection, e.g., the work
of [21] considers incremental learning of crowd worker exper-
tise for labeling data, and the joint choice of data items and
annotators. The recent work of [18] considers the dynamic
assignment of tasks to workers using a dedicated skill index.
The work of [17] estimates worker reward on-the-fly based
on task difficulty and result quality. For task result signifi-
cance analysis, some solutions rely on a dynamic assignment
of tasks until the result converges [10] or until enough cer-
tainty is obtained, using a model for the crowd errors [15].
Last, there exist NL parsers for different query languages
(e.g., [3, 5, 12]), which may be adapted to support the en-
hanced syntax of the crowdsourcing platforms. Note, how-
ever, that these components only target general data and that
in the case of crowd mining systems like 0ASSIS, a plug-in
solution must account for individual data as well.

Entity Resolution. We also mention crowdsourced entity
resolution, where structural inference is used (in contrast
with the semantic inference we mentioned in Section 3.3).
The transitivity of the equivalence relation between entities
can be used to infer clusters of identical entities. In a crowd-
sourcing framework, this property can be used to minimize
the number of crowd comparison tasks, and then inference
can be used to complete the rest (e.g., [8]).

5. CONCLUSION

In this paper, we examine a new type of crowd mining
application, which allows users to ask queries that mix gen-
eral and individual knowledge. To account for the complex
reasoning and crowd management in such applications, we
propose a generic architecture which captures the different
components used in crowd mining frameworks. We then
place DASSIS and previous crowdsourcing systems within this
generic architecture, to examine and compare system com-
ponents and point out extensions required by crowd mining.
We also highlight new research challenges and the potential
for reuse of existing techniques/components. In particular,
among the remaining challenges we mention crowd selection,
the deployment of an NL interface, and the maintenance of
crowd-provided data. These challenges become more intri-
cate in the presence of mixed individual and general data,
since each data type requires different handling within each
component. E.g., inference about worker expertise w.r.t. the
ground truth (general data) differs from inference based on

reported habits (individual data). We summarize these chal-
lenges, forming a roadmap for ongoing and future enhance-
ments of 0ASSIS and crowd mining systems in general.

Acknowledgements. This work has been partially funded
by the European Research Council under the FP7, ERC
grant MoDaS, agreement 291071, by the NSF grant IIS-
1302212 and by the Israel Ministry of Science.

6. REFERENCES

[1] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov,
and A. Somech. OASSIS query drlven crowd mining. In
SIGMOD, 2014.

[2] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart.
Crowd mining. In SIGMOD, 2013.

[3] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural
language interfaces to databases - an introduction. NL Eng.,
1(1), 1995.

[4] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti.
Descriptive and prescriptive data cleaning. In SIGMOD,
2014.

[5] D. Damljanovic, M. Agatonovic, H. Cunningham, and
K. Bontcheva. Improving habitability of natural language
interfaces for querying ontologies with feedback and
clarification dialogues. J. Web Sem., 19, 2013.

[6] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the
crowd for top-k and group-by queries. In ICDT, 2013.

[7] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing. In
SIGMOD, 2011.

[8] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. W. Shavlik, and X. Zhu. Corleone: hands-off
crowdsourcing for entity matching. In SIGMOD, 2014.

[9] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: A spatially and temporally enhanced knowledge
base from Wikipedia. Artif. Intell., 194, 2013.

[10] P. G. Ipeirotis, F. Provost, and J. Wang. Quality
management on amazon mechanical turk. In SIGKDD
workshop, 2010.

[11] S. K. Kondreddi, P. Triantafillou, and G. Weikum.
Combining information extraction and human computing
for crowdsourced knowledge acquisition. In ICDE, 2014.

[12] Y. Li, H. Yang, and H. V. Jagadish. NaLIX: A generic
natural language search environment for XML data. ACM
Trans. DB Syst., 32(4), 2007.

[13] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. In VLDB, 2012.

[14] A. Marcus, E. Wu, S. Madden, and R. C. Miller.
Crowdsourced databases: Query processing with people. In
CIDR, 2011.

[15] A. G. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta,
N. Polyzotis, and J. Widom. Optimal crowd-powered rating
and filtering algorithms. PVLDB, 7(9), 2014.

[16] A. G. Parameswaran, H. Park, H. Garcia-Molina,

N. Polyzotis, and J. Widom. Deco: declarative
crowdsourcing. In CIKM, 2012.

[17] H. Park and J. Widom. CrowdFill: collecting structured
data from the crowd. In SIGMOD, 2014.

(18] S. B. Roy, I. Lykourentzou, S. Thirumuruganathan,

S. Amer-Yahia, and G. Das. Optimization in
knowledge-intensive crowdsourcing. CoRR, abs/1401.1302,
2014.

[19] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,

M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu. Data
curation at scale: The Data Tamer system. In CIDR, 2013.

[20] C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera:
Large-scale classification using machine learning, rules, and
crowdsourcing. PVLDB, 7(13), 2014.

[21] Y. Yan, R. Rosales, G. Fung, and J. G. Dy. Active learning
from crowds. In ICML, 2011.

	Introduction
	Architecture
	Data Repositories
	Query Engine
	Crowd Task Manager
	Inference and Summarization
	Crowd Selection
	NL Parser/ Generator

	OASSIS as a Framework Example
	The Ontology and Crowd-provided Data
	OASSIS-QL
	Query Evaluation
	Further Challenges

	Additional Examples
	Conclusion
	References

