MoDELDB: A System for Machine Learning Model
Management

Manasi Vartak

MIT

mvartak@csail.mit.edu

Introduction. Building a machine learning model is an iterative
process. A data scientist will build many tens to hundreds of mod-
els before arriving at one that meets some acceptance criteria (e.g.
AUC cutoff, accuracy threshold). However, the current style of
model building is ad-hoc and there is no practical way for a data
scientist to manage models that are built over time. This gives rise
to three types of problems: (1) Reproducing models and results is
excessively time-consuming or at times infeasible. E.g., one of the
companies we interviewed described how lack of documentation
regarding a previous experiment forced them to spend a week re-
creating and running the same experiment; (2) The data scientist
must “remember” results and parameters of previous versions of a
model. E.g., the data scientist must remember what combinations
of parameters or features have been tested as well as their results
in order to draw insights and inform the next experiment; (3) Data
scientists have no means of answering aggregate or example-level
questions regarding different versions of a model. E.g., a data sci-
entist often discovers a discrepancy in the code or data at some
point and must then re-run all analyses downstream from it. How-
ever, in the absence of model versioning, identifying experiments
that must be re-run is an uphill battle.

The above challenges which are a result of the iterative nature
of modeling highlight an important and little-studied problem for
machine learning tools: model management. Model management
is the problem of tracking, storing, and indexing large numbers of
machine learning models so that they may subsequently be repro-
duced, shared, queried and analyzed. In this talk, we will present
ongoing work on ModelDB, a system to manage machine learn-
ing models. ModelDB automatically tracks models in their native
environments, indexes them intelligently, and allows flexible ex-
ploration of models via SQL as well as a visual interface.

Related Work. Scientific workflow management is a rich area
of research that has produced systems including Kepler [3], Tav-
erna [4], and VisTrails [1]. Commercial software vendors have also
introduced tools such as the AzureML suite and the SeaHorse suite
that allow the (graphical) construction of machine learning work-
flows. While these systems provide good workflow management,
they suffer from several drawbacks: (a) almost all of these sys-
tems require workflows to be pre-specified via GUIs, a mode of
interaction unacceptable to most data scientists; (b) these systems
track some subset of — but not all — ingredients required for re-
producibility and versioning: code, data, models and results; (c)
they have limited ability to build workflows across multiple envi-
ronments (e.g. hadoop + torch); (d) they do not support interesting
queries on models as described above.

Architecture. Figure 1 shows the high-level architecture of our

system. ModelDB consists of three key components: native client
libraries for different machine learning environments, a backend

ML env
(spark.ml) ModelDB
a Backend
. ModelDB
ML env thrift Frontend
(Scikit,|earn) » Storage »
v
ML env
(R)

Figure 1: ModelDB Architecture

that defines key abstractions and brokers access to the storage layer,
and a web-based visualization interface. Using the native client
libraries for ModelDB (currently available for spark.ml and scikit-
learn), data scientists can perform experimentation and model build-
ing in their favorite ML environment as usual while, in the back-
ground, the library automatically extracts relevant information and
passes it to the ModelDB backend. The backend exposes a thrift in-
terface to allow clients in different languages to communicate with
it. ModelDB stores models and pipelines as a sequence of actions
(as opposed to states) and uses a branching model of history to track
the changes in models over time [2]. The backend uses a relational
database to store modeling workflows while a custom storage en-
gine is used to store and index models. Logging model-specific
metadata and results allows ModelDB to support aggregate as well
as example-level queries as described in the introduction. The third
component of ModelDB, the visual interface, provides an easy-to-
navigate layer on top of the database that permits visual exploration
and analyses of models and workflows.

In this abstract, we described ongoing work on ModelDB, a novel
system to manage machine learning models. The talk will describe
details of the system design and results from early adopters of Mod-
elDB.

1.
[

REFERENCES
L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva,
and H. T. Vo. Vistrails: Enabling interactive multiple-view visualizations. In
Visualization, 2005. VIS 05. IEEE, pages 135-142. IEEE, 2005.
M. Derthick and S. F. Roth. Enhancing data exploration with a branching history
of user operations, 2001.
B. Ludischer, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039-1065,
2006.
K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. The taverna workflow
suite: designing and executing workflows of web services on the desktop, web or
in the cloud. Nucleic acids research, page gkt328, 2013.

(2]

(3]

[4

