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ABSTRACT

Despite the broad and growing diversity of storage-intensive
applications, storage interfaces have evolved little over time.
Fears of vendor lock-in and loss or inaccessibility of legacy
data have discouraged the evolution of the POSIX API to
better support existing and emerging workloads. This has
long been a source of consternation for applications devel-
opers, who are often required to duplicate significant func-
tionality to avoid inefficiencies [3].

Recently, the development of programmable storage sys-
tems (PSS) [5] has promised to upend this tradition, expos-
ing a variety of composable subsystems as building blocks
rather than a narrow storage interface. Such systems provide
infrastructure programmers with great flexibility in imple-
menting application-specific semantics while reusing trusted
components. Unfortunately, the composition of subsystems
is a low-level task that couples and obscures orthogonal con-
cerns including functional correctness, reliability and per-
formance. Building a new interface typically requires thou-
sands of lines of carefully-written C++ code, an effort that
must be repeated frequently as device and subsystem char-
acteristics change.

The problem of programmable storage closely parallels the
advent of the relational model for data management sys-
tems. The rate of evolution of the storage subsystem (due in
part to advances such as solid-state devices and non-volatile
memory) has far outstripped the rate of change of applica-
tion code – an ideal setting for a“data independent”solution.
However, the analogy only carries so far. The space of“phys-
ical designs” for a particular application implemented over
a PSS, including both access methods and tunable parame-
ters for low-level storage interfaces is much broader and more
varied than in the relational setting. For example, a physi-
cal design must decide whether to use block-oriented or key-
value interfaces, to use spinning disks, SSDs or some mix,
to choose appropriate “tunables” such as block size (Ceph
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has 994 tunable parameters), as well as to implement and
maintain secondary structures such as indexes or caches (or
materialized views). At the same time, a language like SQL
lacks the expressivity required to implement many of the
applications that can be built atop a PSS.

In this abstract, we advocate a declarative approach to pro-
grammable object storage systems that leverages and in-
tegrates the hard-won lessons from the data management
and storage communities. We propose GeneralStore, a pro-
grammable storage system vision that separates the con-
cerns of functionality, performance and reliability, enabling
a wide variety of optimizations without risking years of in-
vestment into code hardening (investments that are com-
monly made obsolete by the evolution of the storage sub-
strate). As a proof of concept, we implement the CORFU
protocol [1] atop the Ceph object storage system [4] using
BRADOS, a declarative language that borrows syntax from
Bloom [2]. We show how BRADOS is expressive enough
to implement a succinct and intuitive shared log abstrac-
tion, yet “declarative” enough to give rise to a large set of
physical implementations that can be costed and searched
whenever physical storage characteristics change, whether
due to software changes or hardware upgrades. We present
a high-level architecture for GeneralStore that builds on the
state of the art in data management and storage systems re-
search, identifying difficult challenges and synergies for the
research community.
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