
GeneralStore:
Declarative Programmable Storage

Peter Alvaro

ABSTRACT

Despite the broad and growing diversity of storage-intensive
applications, storage interfaces have evolved little over time.
Fears of vendor lock-in and loss or inaccessibility of legacy
data have discouraged the evolution of the POSIX API to
better support existing and emerging workloads. This has
long been a source of consternation for applications devel-
opers, who are often required to duplicate significant func-
tionality to avoid inefficiencies [3].

Recently, the development of programmable storage sys-
tems (PSS) [5] has promised to upend this tradition, expos-
ing a variety of composable subsystems as building blocks
rather than a narrow storage interface. Such systems provide
infrastructure programmers with great flexibility in imple-
menting application-specific semantics while reusing trusted
components. Unfortunately, the composition of subsystems
is a low-level task that couples and obscures orthogonal con-
cerns including functional correctness, reliability and per-
formance. Building a new interface typically requires thou-
sands of lines of carefully-written C++ code, an effort that
must be repeated frequently as device and subsystem char-
acteristics change.

The problem of programmable storage closely parallels the
advent of the relational model for data management sys-
tems. The rate of evolution of the storage subsystem (due in
part to advances such as solid-state devices and non-volatile
memory) has far outstripped the rate of change of applica-
tion code – an ideal setting for a“data independent”solution.
However, the analogy only carries so far. The space of“phys-
ical designs” for a particular application implemented over
a PSS, including both access methods and tunable parame-
ters for low-level storage interfaces is much broader and more
varied than in the relational setting. For example, a physi-
cal design must decide whether to use block-oriented or key-
value interfaces, to use spinning disks, SSDs or some mix,
to choose appropriate “tunables” such as block size (Ceph

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2017.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’17)
January 4-7, 2017, Asilomar, California, USA.

has 994 tunable parameters), as well as to implement and
maintain secondary structures such as indexes or caches (or
materialized views). At the same time, a language like SQL
lacks the expressivity required to implement many of the
applications that can be built atop a PSS.

In this abstract, we advocate a declarative approach to pro-
grammable object storage systems that leverages and in-
tegrates the hard-won lessons from the data management
and storage communities. We propose GeneralStore, a pro-
grammable storage system vision that separates the con-
cerns of functionality, performance and reliability, enabling
a wide variety of optimizations without risking years of in-
vestment into code hardening (investments that are com-
monly made obsolete by the evolution of the storage sub-
strate). As a proof of concept, we implement the CORFU
protocol [1] atop the Ceph object storage system [4] using
BRADOS, a declarative language that borrows syntax from
Bloom [2]. We show how BRADOS is expressive enough
to implement a succinct and intuitive shared log abstrac-
tion, yet “declarative” enough to give rise to a large set of
physical implementations that can be costed and searched
whenever physical storage characteristics change, whether
due to software changes or hardware upgrades. We present
a high-level architecture for GeneralStore that builds on the
state of the art in data management and storage systems re-
search, identifying difficult challenges and synergies for the
research community.

1. COLLABORATORS
This abstract describes joint work with Noah Watkins, Michael
Sevilla, Ivo Jimenez, Shel Finkelstein and Carlos Maltzahn.

2. REFERENCES
[1] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,

M. Wei, and J. D. Davis. CORFU: A Shared Log Design for
Flash Clusters. NSDI’12.

[2] Bloom programming language. http://www.bloom-lang.org.
[3] M. Stonebraker. Operating System Support for Database

Management. Commun. ACM.
[4] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and

C. Maltzahn. Ceph: A Scalable, High-performance
Distributed File System. OSDI ’06.

[5] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn.
RADOS: a scalable, reliable storage service for
petabyte-scale storage clusters. In PDSW ’07.


