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1. PROBLEM
In-memory OLTP databases re-emerged 10 years ago as

a rebuild-from-scratch solution to a pressing problem: a
25-year-old software architecture was still the foundation
of systems running on modern hardware [21]. A typical
design approach in these systems is to eliminate large,
complex software components by restricting the behavior of
transactions. For example, buffer management is not needed
if all data fits in memory, concurrency control is eliminated
if transactions run serially, and redo logging is not required
if durability is provided with synchronous replication [9].

However, eliminating large components also means giving
up on important features and introducing limitations.
Therefore, successful approaches have been introduced to,
among other goals, offload cold portions of a growing
dataset [2, 3, 5, 19]; support efficient recovery from logs [14,
24]; and improve parallelism by either tuning partitions [4,
17] or re-introducing concurrency control [11, 12, 16].
Looking further ahead, new challenges such as the advent
of non-volatile memories [1, 10, 13, 18, 23] are likely to
introduce even more techniques to the state of the art.

Given this context, one must be careful to not go “full
circle”and end up with a system design that is actually more
complex than the legacy system that was initially replaced.

Focusing on storage management issues, our discussion
aims to take a step back and re-evaluate traditional designs
in some aspects that could benefit modern designs. While in-
memory systems are able to deliver much higher transaction
throughput than their legacy counterparts, that usually
comes with a cost for recovery and reliability. In this
aspect, traditional designs like ARIES [15] and its variants
still have the upper hand, since they support a wider
range of failures and enable more efficient, fine-granular
recovery. Furthermore, they solve most of the problems
addressed by the approaches cited above, albeit with a cost
in performance. Therefore, an evolution coming from the
opposite side—improving the legacy design for in-memory
performance—might be a valuable contribution towards
achieving the best of both worlds.
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Figure 1: Dual- vs. single-storage approaches

2. SOLUTION
Our current line of research identifies the duality of

storage as the main problem with legacy architectures. As
illustrated on the left side of Fig. 1, database architectures
usually maintain a history of changes in a log, in order
to support fast commits with a no-force approach [8] as
well as provide redundancy for recovery. Additionally,
in-memory data structures are mapped to pages on a
database file, which requires a disk-oriented layout and
careful propagation from a buffer pool.

We propose a single-storage approach, shown on the right
side of Fig. 1. While the idea itself is not new [20, 22],
we propose a novel, generalized organization that is aimed
at matching the performance of in-memory databases while
supporting efficient, on-demand recovery. The key idea is
to completely decouple in-memory data structures from any
on-disk representation, providing persistence solely through
logging. Unlike a dual-storage approach, however, the log is
indexed and reorganized incrementally to enable fast access
to persistent data.

The new design, which is currently being built in a
prototype system, offers substantial benefits for recovery
and reliability. It inherits the on-demand, incremental
recovery capabilities of previous work on instant recovery [6]
as well as pointer swizzling techniques [7]. However, it
takes these ideas much further. The single indexed log not
only decouples in-memory from on-disk representations—
thus enabling in-memory performance—but also offers
a generalized design perspective that essentially blurs
distinctions between a database page and a log record, a
backup and a replica, physical and logical logging, etc. This
opens the opportunity for generalized system designs that,
instead of being either specialized or one-size-fits-all, provide
a common design template and code libraries that embrace
specialization and make trade-offs explicit.

This research hopes to debunk the idea that in-memory
and disk-based architectures are opposites separated by a
sharp border—rather, they are part of a continuum of design
choices built upon orthogonal principles.
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