
Exploring a continuum between main-memory and
disk-oriented OLTP systems

Caetano Sauer
TU Kaiserslautern, Germany

csauer@cs.uni-kl.de

1. PROBLEM
In-memory OLTP databases re-emerged 10 years ago as

a rebuild-from-scratch solution to a pressing problem: a
25-year-old software architecture was still the foundation
of systems running on modern hardware [21]. A typical
design approach in these systems is to eliminate large,
complex software components by restricting the behavior of
transactions. For example, buffer management is not needed
if all data fits in memory, concurrency control is eliminated
if transactions run serially, and redo logging is not required
if durability is provided with synchronous replication [9].

However, eliminating large components also means giving
up on important features and introducing limitations.
Therefore, successful approaches have been introduced to,
among other goals, offload cold portions of a growing
dataset [2, 3, 5, 19]; support efficient recovery from logs [14,
24]; and improve parallelism by either tuning partitions [4,
17] or re-introducing concurrency control [11, 12, 16].
Looking further ahead, new challenges such as the advent
of non-volatile memories [1, 10, 13, 18, 23] are likely to
introduce even more techniques to the state of the art.

Given this context, one must be careful to not go “full
circle”and end up with a system design that is actually more
complex than the legacy system that was initially replaced.

Focusing on storage management issues, our discussion
aims to take a step back and re-evaluate traditional designs
in some aspects that could benefit modern designs. While in-
memory systems are able to deliver much higher transaction
throughput than their legacy counterparts, that usually
comes with a cost for recovery and reliability. In this
aspect, traditional designs like ARIES [15] and its variants
still have the upper hand, since they support a wider
range of failures and enable more efficient, fine-granular
recovery. Furthermore, they solve most of the problems
addressed by the approaches cited above, albeit with a cost
in performance. Therefore, an evolution coming from the
opposite side—improving the legacy design for in-memory
performance—might be a valuable contribution towards
achieving the best of both worlds.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits
distribution and reproduction in any medium as well as allowing derivative
works, provided that you attribute the original work to the author(s) and
CIDR 2017.

8th Biennial Conference on Innovative Data Systems Research (CIDR ’17).
January 8-11, 2017, Chaminade, California, USA.

Log DB Indexed log

a) Dual storage b) Single storage

Main memory Main memory

Figure 1: Dual- vs. single-storage approaches

2. SOLUTION
Our current line of research identifies the duality of

storage as the main problem with legacy architectures. As
illustrated on the left side of Fig. 1, database architectures
usually maintain a history of changes in a log, in order
to support fast commits with a no-force approach [8] as
well as provide redundancy for recovery. Additionally,
in-memory data structures are mapped to pages on a
database file, which requires a disk-oriented layout and
careful propagation from a buffer pool.

We propose a single-storage approach, shown on the right
side of Fig. 1. While the idea itself is not new [20, 22],
we propose a novel, generalized organization that is aimed
at matching the performance of in-memory databases while
supporting efficient, on-demand recovery. The key idea is
to completely decouple in-memory data structures from any
on-disk representation, providing persistence solely through
logging. Unlike a dual-storage approach, however, the log is
indexed and reorganized incrementally to enable fast access
to persistent data.

The new design, which is currently being built in a
prototype system, offers substantial benefits for recovery
and reliability. It inherits the on-demand, incremental
recovery capabilities of previous work on instant recovery [6]
as well as pointer swizzling techniques [7]. However, it
takes these ideas much further. The single indexed log not
only decouples in-memory from on-disk representations—
thus enabling in-memory performance—but also offers
a generalized design perspective that essentially blurs
distinctions between a database page and a log record, a
backup and a replica, physical and logical logging, etc. This
opens the opportunity for generalized system designs that,
instead of being either specialized or one-size-fits-all, provide
a common design template and code libraries that embrace
specialization and make trade-offs explicit.

This research hopes to debunk the idea that in-memory
and disk-based architectures are opposites separated by a
sharp border—rather, they are part of a continuum of design
choices built upon orthogonal principles.

http://creativecommons.org/licenses/by/3.0/


3. REFERENCES
[1] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and

S. Swanson. From ARIES to MARS: transaction
support for next-generation, solid-state drives. In
Proc. SOSP, pages 197–212, 2013.

[2] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. B. Zdonik. Anti-caching: A new approach to
database management system architecture. PVLDB,
6(14):1942–1953, 2013.

[3] A. Eldawy, J. J. Levandoski, and P. Larson. Trekking
Through Siberia: Managing Cold Data in a
Memory-Optimized Database. PVLDB, 7(11):931–942,
2014.

[4] A. J. Elmore, V. Arora, R. Taft, A. Pavlo,
D. Agrawal, and A. El Abbadi. Squall: Fine-grained
live reconfiguration for partitioned main memory
databases. In Proc. SIGMOD, pages 299–313, 2015.

[5] F. Funke, A. Kemper, and T. Neumann. Compacting
transactional data in hybrid OLTP & OLAP
databases. PVLDB, 5(11):1424–1435, 2012.

[6] G. Graefe, W. Guy, and C. Sauer. Instant Recovery
with Write-Ahead Logging: Page Repair, System
Restart, Media Restore, and System Failover, Second
Edition. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2016.

[7] G. Graefe, H. Volos, H. Kimura, H. A. Kuno,
J. Tucek, M. Lillibridge, and A. C. Veitch. In-memory
performance for big data. PVLDB, 8(1):37–48, 2014.

[8] T. Härder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Computing Surveys, 15(4):287–317, 1983.

[9] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and
what we found there. In Proc. SIGMOD, pages
981–992, 2008.

[10] J. Huang, K. Schwan, and M. K. Qureshi.
NVRAM-aware logging in transaction systems.
PVLDB, 8(4):389–400, 2014.

[11] E. P. C. Jones, D. J. Abadi, and S. Madden. Low
overhead concurrency control for partitioned main
memory databases. In Proc. SIGMOD, pages 603–614,
2010.

[12] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases.
PVLDB, 5(4):298–309, 2011.

[13] L. Ma, J. Arulraj, S. Zhao, A. Pavlo, S. R. Dulloor,
M. J. Giardino, J. Parkhurst, J. L. Gardner, K. Doshi,
and S. B. Zdonik. Larger-than-memory data
management on modern storage hardware for
in-memory OLTP database systems. In Proc. DaMoN
Workshop, pages 9:1–9:7, 2016.

[14] N. Malviya, A. Weisberg, S. Madden, and
M. Stonebraker. Rethinking main memory OLTP
recovery. In Proc. ICDE, pages 604–615, 2014.

[15] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, 1992.

[16] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for

main-memory database systems. In Proc. SIGMOD,
pages 677–689, 2015.

[17] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-aware
automatic database partitioning in shared-nothing,
parallel OLTP systems. In Proc. SIGMOD, pages
61–72, 2012.

[18] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge.
Storage management in the NVRAM era. PVLDB,
7(2):121–132, 2013.

[19] R. Stoica and A. Ailamaki. Enabling efficient OS
paging for main-memory OLTP databases. In Proc.
DaMoN Workshop, page 7, 2013.

[20] M. Stonebraker. The design of the POSTGRES
storage system. In Proc. VLDB, pages 289–300, 1987.

[21] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The End
of an Architectural Era (It’s Time for a Complete
Rewrite). In Proc. VLDB, pages 1150–1160, 2007.

[22] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C.
Ooi. Logbase: A scalable log-structured database
system in the cloud. PVLDB, 5(10):1004–1015, 2012.

[23] T. Wang and R. Johnson. Scalable logging through
emerging non-volatile memory. PVLDB,
7(10):865–876, 2014.

[24] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu.
Adaptive logging: Optimizing logging and recovery
costs in distributed in-memory databases. In Proc.
SIGMOD, pages 1119–1134, 2016.


	Problem
	Solution
	References

