
Treating Microservices as a Unifed, Distributed Database

Brennan Saeta
Coursera Inc.

381 E. Evelyn Ave.
Mountain View, CA

saeta@coursera.org

ABSTRACT
Microservices have become a popular application architec-
ture,[2] allowing multiple teams within an organization to
efficiently build a complex system. Additionally, the rise
of native mobile apps and interactive javascript web apps
bring sophisticated business logic into the client. A prin-
cipled approach–inspired by database architectures–enables
frontend developers to treat the backend as if it were a
database, resulting in efficient bandwidth use, and avoids
“chatty” APIs, without sacrificing developer productivity.
Naptime is an open source API framework that allows inde-
pendent micro services to present a unified, queryable API
to clients. Naptime operates on a graph-like subset of re-
lational algebra that is amenable for efficient execution of
distributed queries.

JSON-based APIs over HTTP provide an easily consum-
able cross-platform lingua-franca for both Javascript-based
web applications, and native mobile applications. Addition-
ally, microservices often interact with each other via HTTP
and JSON as well. Unfortunately, developers implement
business logic and interact with persistence systems typi-
cally in an ad-hoc fashion as per the application needs. An
extreme approach is the Backend-for-Frontend pattern,[3]
where presentation logic is split between the client and the
server. Alternatively, Facebook has developed GraphQL[1]
however that requires abandoning existing infrastructure to
support JSON/HTTP APIs, and the microservice architecture–
until now.

The data needs of interactive clients inevitably place relational-
algebra-like demands upon the underlying API. Let us take
a course catalog as a motivating example. An API to power
this will need to support pagination to allow the user to
browse the list of courses. Additionally, a user may search
for a specific course, so this course API must support se-
lection. The rich UI should display detailed information
about the instructor for each course, and thus the API must
support natural joins across related data types in a single
query. Finally, only the necessary data should be transferred

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

across a WAN or mobile network, and so the API must sup-
port projections. Coupled with additional concerns such as
admission control to mitigate DoS and DDoS attacks, API
frameworks should borrow from the rich experience of SQL
database systems.

The Naptime data model centers around a resource. Read
queries fall into 3 main categories: (1) multi-get, (2) get-all,
and (3) finders. Responses from all three types of handlers
invariably return a paginated list of elements; in short, a re-
source is a SQL table, and the handlers implement relational-
algebra-like selections. The Naptime framework automati-
cally adds field-projection capabilities to each handler. Fi-
nally, an engine sits on top of all the individual resources
and can automatically link related resources into a single
response based on the client query. The engine supports
both “forward” joins, where the id of the related resource is
a field in the root model, as well as “reverse” joins, where
the related resource must be queried to determine the set of
related elements. This model supports both one-to-one, one-
to-many, and many-to-many relations, and is more flexible
than a graph-based nodes-and-edges model.

Naptime has been in production for years, and powers
98% of all new APIs at Coursera. By providing a higher
level of abstraction than arbitrary JSON and HTTP re-
quest/response pairs, developers are more productive. The
Naptime toolkit implements high-level testing APIs, and
turns imperative business logic into declarative code. Addi-
tionally, the toolkit leverages advanced Scala language fea-
tures to catch bugs at compile time. The resulting uni-
fied, queryable API is much more flexible as applications
evolve than a custom hand-implemented HTTP- or RPC-
based API. We have even developed a loose bijection be-
tween Naptime’s HTTP- and JSON-based APIs and Face-
book’s GraphQL, allowing us an easy incremental transi-
tion. As we learned in the evolution from SQL to NoSQL to
NewSQL, the principles of database systems are inescapable.

1. REFERENCES
[1] L. Byron. Graphql specification.

http://facebook.github.io/graphql/, 2016.

[2] J. Lewis and M. Fowler. Microservices: a definition of
this new architectural term.
http://martinfowler.com/articles/microservices.html,
2014.

[3] S. Newman. Pattern: Backends for frontends.
http://samnewman.io/patterns/architectural/bff/,
2015.


