
Stop the Truthiness and Just Be Wrong

Oliver Kennedy
University at Buffalo

okennedy@buffalo.edu
Based on discussions with Ying Yang, Niccolò Meneghetti, Poonam Kumari, Will Spoth, Aaron Huber, Arindam Nandi,

Boris Glavic, Vinayak Karuppasamy, Dieter Gawlick, Zhen Hua-Liu, Beda Hammerschmidt, Ronny Fehling, Lisa Lu,

and many more. . .

Since their earliest days, databases have held themselves
to a strict invariant: Never give the user a wrong answer. So
ingrained is it in the psyche of the database community, that
those violate have only done so through cumbersome data
models [4,11], huge warning signs [5], or annoying language
constructs that break classical SQL [1,6].

Sadly, by trying to enforce perfection in the database it-
self, database systems fail to acknowledge that the data be-
ing stored is rarely precise, correct, valid, or unambiguous.
Emphasizing on certain, deterministic data forces the use of
complex, hard-to-manage extract-transform-load pipelines
that emit deceptively certain, “truthy” data rather than ac-
knowledging ambiguity or error. As more decisions are au-
tomated, even small truthiness errors can drastically impact
peoples’ lives, from denying a person credit1, to deciding
that an 8-year old is a terrorist2. System designers must
decide between presenting erroneous data as truthful or risk
discarding useful information, and many choose the former.

The database community has already begun treating un-
certainty as a first class primitive in databases [8]. Unfortu-
nately, uncertainty also requires us to rethink how we inter-
act with data. For example, personal information managers
like Apple Calendar and the iOS Phone App increasingly
use facts data-mined from email to automatically populate
databases in their contacts and calendar applications. Fig-
ure 1 illustrates how these two applications present extracted
information to the user. Here, uncertain facts are explicitly
kept distinct or clearly marked as being guesses. The in-
terface includes intuitive provenance mechanisms that help
to put the extracted information in context. Furthermore,
the interface includes overt feedback options to help the user
correct or confirm uncertain data. We need to start adapting
these techniques to more general data management settings.

The presentation layer isn’t the only problem, as identify-
ing sources uncertainty requires developers to invest lots of
upfront effort rethinking how they write code. We need to

1
http://money.cnn.com/2016/04/11/pf/john-oliver-credit-reports/index.html

2
http://www.nytimes.com/2010/01/14/nyregion/14watchlist.html? r=0

This article is published under a Creative Commons Attribution Li-
cense(http://creativecommons.org/licenses/by/3.0/), which permits distri-
bution and reproduction in any medium as well as allowing derivative
works, provided that you attribute the original work to the author(s) and
CIDR 2017. 8th Biennial Conference on Innovative Data Systems Research
(CIDR ’17). January 8-11, 2017, Chaminade, California, USA.

Figure 1: Extraction in Calendar.app and iOS Phone

make it worth their while. For example, we might provide in-
frastructure support to help developers draw generalizations
from ambiguous choices [2]. We might streamline impera-
tive language support for uncertainty [9, 10]. Or, we might
define higher-order data transformation primitives [3, 12].

In summary, the illusion of accuracy in database query re-
sults can no longer be maintained. Database systems must
learn how to acknowledge errors in source data, and how to
use this information to effectively communicate ambiguity to
users. Moreover, this needs to happen without overwhelm-
ing users, breaking the decades-old abstractions that people
understand and use on a day-to-day basis in their work-
flows, or requiring a statistics background from all users.
We need tooling [3, 12] and interfaces [7] that make it easy
for databases to be less truthy and more wrong.

1. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. 10(106) worlds and beyond: Efficient

representation and processing of incomplete information. VLDBJ,
18(5):1021–1040, 2009.

[2] G. Challen, J. A. Ajay, N. DiRienzo, O. Kennedy, A. Maiti, A. Nandugudi,
S. Shantharam, J. Shi, G. P. Srinivasa, and L. Ziarek. maybe we should
enable more uncertain mobile app programming. In HotMobile, 2015.

[3] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and
Y. Ye. Katara: Reliable data cleaning with knowledge bases and
crowdsourcing. pVLDB, 8(12):1952–1955, Aug. 2015.

[4] A. Deshpande and S. Madden. Mauvedb: Supporting model-based user
views in database systems. In SIGMOD, 2006.

[5] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
SIGMOD, 1997.

[6] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas.
Mcdb: A monte carlo approach to managing uncertain data. In SIGMOD,
2008.

[7] P. Kumari, S. Achmiz, and O. Kennedy. Communicating data quality in
on-demand curation. In QDB, 2016.

[8] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases.
Synthesis Lectures on Data Management, 3(2):1–180, 2011.

[9] S. Vajda. Probabilistic programming. Academic Press, 2014.

[10] S. J. van Schaik, D. Olteanu, and R. Fink. Enframe: A platform for
processing probabilistic data. CoRR, 2013.

[11] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M. Hellerstein.
Bayesstore: Managing large, uncertain data repositories with probabilistic
graphical models. PVLDB, 1(1):340–351, 2008.

[12] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy. Lenses:
An on-demand approach to ETL. VLDB, 8(12):1578–1589, 2015.

http://money.cnn.com/2016/04/11/pf/john-oliver-credit-reports/index.html
http://www.nytimes.com/2010/01/14/nyregion/14watchlist.html?_r=0

	References

