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ABSTRACT
Existing scale-up graph engines are tuned for either short,
navigational requests (e.g., Nearest-Neighbor) or longer, an-
alytics requests (e.g., PageRank). However, they do not
have good performance for both workloads running concur-
rently. We present Janus, a scale-up graph engine archi-
tected for modern, many-core servers with large memory.
Janus has excellent scale-up performance on navigational re-
quests, on analytics requests, and on a mixed workload run-
ning concurrently both navigational and analytics requests.

1. INTRODUCTION
Graphs applications can be found in many domains like

social networks, bioinformatics, telcos, transportation net-
works, workforce and IT asset management, cyber security,
national security, and various scientific computing domains,
to name a few. So it is without a surprise that many new
specialized graph engines have emerged for storing, query-
ing, processing, and analyzing graphs. And these graph en-
gines provide tailored optimizations for different kinds of
workloads, algorithms, and executions.

Existing graph engines may be either scale-up or scale-
out. Scale-up engines have excellent performance but the
graph is limited by the resources on a single node. Scale-out
engines can distribute a large graph across a cluster of nodes
but the communication overhead limits scalability [4].

For graph applications, the workloads may be broadly
characterized as navigational or analytics. A navigational
workload comprises requests that access relatively few graph
vertices and/or edges (e.g., Nearest-Neighbor). An analytics
workload comprises requests that are resource-intensive and
access a large fraction of a graph (e.g., PageRank). In many
applications, it is desirable to run both workloads concur-
rently. In this case, the large, longer requests interfere with
the shorter requests and vice-versa.

In general, graph engines that perform well on navigation
tend not to perform well on analytics, and vice versa. There
are several reasons for this. Navigation oriented graph en-
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gines allow updates to the graph and support many concur-
rent users. Their internal data structures are designed for
high throughput requests, accessing and updating a small
portion of the graph. Analytics requests are long-running,
tend to consume most resources on the graph engine, and so
degrade service for concurrent navigational requests. On the
other hand, analytics oriented graph engines store a graph
using highly tuned, read-optimized data structures that en-
able fast traversal of large numbers of vertices and edges.
Graph updates typically require these data structures to
be rebuilt. So analytics graph engines work best with im-
mutable or slowly changing graphs. In practice, graph en-
gines are optimized for either analytics or navigation; they
are not doing both well and especially, when both workloads
run concurrently.

Hence, existing graph engines may be categorized into four
quadrants: scale-up vs. scale-out and navigational vs. ana-
lytics. There is no single, best engine for all environments.

Emerging computer architectures provide us with an op-
portunity to build graph engines in a different way. Next-
generation server architectures are designed to be equipped
with thousands of cores, petabytes of volatile and non-volatile
memory, connected via fast interconnect [7]. An application
on such a system could maintain a large graph and exe-
cute resource-intensive requests concurrently with shorter
requests. Consequently, we believe that such an emerging
system would be an excellent platform for big graph applica-
tions running mixed workloads concurrently and efficiently.
This could enable a single, best graph engine. Our work is
an attempt toward this goal.

2. JANUS
Janus 1 Graph Engine is a scale-up graph engine designed

for many-core, large-memory servers. Janus serves mixed
graph workloads, navigational and analytics, as well as in-
sertions and deletions. The key design points of Janus are
as follows.

• Janus is designed to concurrently process navigational
and analytics requests, and at the same time allow
efficient data ingestion.

• Janus is designed to fully utilize the power of mod-
ern servers that employ thousands of CPU cores, huge
volatile and non-volatile memory, which most likely
has non-uniform access cost.

1The name is inspired by the Roman god with two faces.



2.1 Scalable Transaction Processing for Graphs
Our key idea to satisfy the above goals is leveraging trans-

action processing. Graph analysis usually consists of read-
only accesses. Thus, most of existing analytics graph engines
have not incorporated transaction processing. Nevertheless,
transaction processing can serve key roles in graph analytics
for two reasons.

First, transactions allow graph analytics, and also naviga-
tional requests, to be consistent in the presence of concurrent
data ingestion (e.g., inserts or deletes on edges and vertices).
This overcomes the suboptimal approach that some exist-
ing graph engines often take, which requires either pausing
queries during data ingestion and/or re-populating the en-
tire graph even for small updates.

Second, a graph query executed on a many-core server
consists of many transactions. Parallelizing a complex com-
putation onto a large number of CPU cores fundamentally
involves concurrency control. Each CPU core has to com-
municate with other cores to exchange intermediate progress
in a consistent yet concurrent fashion. As we shall see in the
later sections, these cores often access an overlapping region
of data, necessiating serializable coordination for correct re-
sults and/or fast convergence. If the internal transactions
are not processed in a scalable, transactional engine, the
scalability of the entire graph engine will be severely lim-
ited. In fact, in our experiments presented in Section 3, we
observed exactly this limitation on GraphLab [11] presum-
ably due to its suboptimal transactional processing engine.

To generalize, somewhat surprisingly, the scalability of
transaction processing can be the crux of apparently read-
only analysis. In order to be parallelized on a modern server
environment, such an analysis requires billions of highly con-
flicting transactions to be processed. This paper focuses on
graph processing, but the same challenge would also appear
in parallelizing various computationally heavy analysis, such
as network intrusion detection and image recognition.

2.2 Architecture Overview
Janus uses a highly scalable data management engine that

provides concurrent accesses for both navigational requests
and analytics requests. Navigational requests benefit from a
locality-aware data management layer that colocates related
data (e.g., closely connected vertices) and requests to min-
imize remote memory traffic. Analytics requests split their
frequently extremely heavy work across hundreds of CPU
cores that must communicate with each other to consistently
share and merge the results of individual computation. In
our implementaion, we built Janus on top of FOEDUS [10],
a transactional database built for next-generation computer
architectures, like HPE’s The Machine [7]. FOEDUS is de-
signed for scalable transaction processing on emerging server
hardware.

The key principle in Janus is that all data accesses are
handled as database transactions, as illustrated in Figure 1.

FOEDUS employs group-commit, which fits well for par-
allelizing analytics graph requests. Group-commit enables
higher throughput at the cost of higher latency for durably
committing an individual transaction. However, the higher
latency is not a concern in this case because a large number
of internal transactions naturally form a group for durability
commit.

The optimistic concurrency control (OCC) scheme in FOE-
DUS also fits well for processing navigational graph requests.
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Figure 1: Janus Architecture Overview

FOEDUS uses a variant of OCC based on dual pages [10].
Dual pages allow read-only, serializable transactions (e.g.,
navigational queries) to immediately commit without un-
scalable read-locks, durability commit latency, or any chance
of aborts.

Next, we provide a detailed view of Janus. We first de-
scribe how we store graph data in Janus and then, how we
process navigational, analytics, and mixed workloads.

2.3 Storing Data
Janus supports directed, property graphs. It stores a

graph as a table VG, named VertexIndexTable (see also Fig-
ure 2), with a schema:

[vid,<meta>, edg cnt,<eid1,meta1>, ..., <eidN ,metaN>]

vid is a vertex id, <meta> stores the metadata of vid (i.e.,
properties), edg cnt is the number of outgoing edges (or out-
degree) of vid, the <eidi,metai> pair is the metadata of an
outgoing edge, and eidi is a vertex id. Depending on the
graph size and the complexity of its topology, the metadata
can be stored inline in VG or metai can point to the meta-
data stored elsewhere. Internally, VG is loosely horizontally
partitioned.

Figure 2: Storage scheme

An example partitioning scheme is depicted in Figure 2.
Each partition contains blocks and each block stores 32 ver-
tices (i.e., a partition stores 2M vertices). A transaction
may update the metadata (of a vertex or edge) in a row of
VG. When this happens, it exclusively locks the row for the
duration of the transaction.



Figure 3: Example navigational query

2.4 Navigational Workload
A typical navigational request accesses a small portion of

a graph (e.g., only a few vertices and/or edges, and no more
than a few dozen vertices and/or edges). For navigational
workloads, Janus treats each access to a vertex or to an edge
as a single transaction.

For example, assume that we want to compute a typi-
cal navigational query that finds a shortest path between a
pair of vertices within tens of hops. We employ a standard
Dijkstra shortest path algorithm. To better illustrate our
approach, see the example shown in Figure 3. Assume a
source S and a destination D vertex. We use a hash table
and a min-heap for intermediate storage. Starting from S,
we use VG (the VertexIndexTable described in the previous
section) to get the outgoing edges for S and their respective
distances. We update min-heap and store the shortest dis-
tances in the hash table. We continue until we find D at the
top of the min-heap. Each shortest path query executes as
a single transaction in a single thread.

Doing such computations as a single transaction is a unique
feature that enables our engine to concurrently run a large
number of navigational queries with up-to-date information.
And under the hood, FOEDUS transactionally guarantees
that the properties and existence of the vertices/edges are
not changed by concurrent updates. (Note, that in order
to compute the query result, the transaction may update
intermediate data in min-heap). A concurrent update on
unrelated piece of the graph does not cause any slowdown.
A concurrent update on a related piece is detected by Janus,
which then immediately retries the query to guarantee seri-
alizable result.

2.5 Analytics Workload
A typical analytics query touches virtually all vertices in a

graph, often hundreds of millions. This imposes additional
challenges to a graph engine. Janus performs such graph
computations as a large number of small transactions.

For example, assume a typical analytics computation like

Figure 4: Example analytics query

single source shortest path (SSSP), which starting from a
given vertex (source) finds the shortest path to every other
vertex in the graph that is eventually connected with the
source. In this case, we employ a standard Bellman-Ford al-
gorithm that can be nicely distributed to compute all short-
est paths from a single source vertex. A typical approach is
to run many workers that individually calculate and propa-
gate (‘relax’) distances from the source vertex. After prop-
agating the updated distance information, the worker also
communicates with another worker to request further calcu-
lation and propagation based on the information the worker
updated (‘activate’). The query ends when there is no more
distance information any worker can relax.

Janus follows the same idea, but with the twist that it
runs the calculation, propagation (‘relaxation’), and activa-
tion phases on a large number of cores as concurrent trans-
actions. The transactions guarantee consistency even when
two workers are concurrently updating the same vertex. In
particular, we maintain a table, VertexBF, with schema
[vid, distance, parent vertex vid]. See also the illustration
in Figure 4. Starting from a source vertex S, we use VG to
get its neighbors and their distances. At each iteration, we
update VertexBF. We build this algorithm in a transactional
aware fashion. We partition the vertices space into blocks
and assign each such block to a different worker, which is
handled by a different core (a thread is attached to a core
for NUMA awareness). When S reaches out to a vertex v1
we use a single transaction to get the distance from VG.
Then, we use a different transaction to update that distance
in VertexBF, while we lock v1.

This scheme guarantees transactional consistency (e.g.,
v2 cannot update the distance in the meantime) and this
fine-grained locking granularity is adding up to get a great
speedup comparing to state-of-the-art graph databases that
lock larger objects (partitions, tables). On the other hand,
this scheme uses billions of transactions even for a single
query, like SSSP. But having FOEDUS at the back-end,
which is a fast transactional engine, this becomes an ad-
vantage for graph computations.



Table 1: Data sets

data size vertices edges
small 2.1M 33.6M

medium 96.5M 1.61B
large 402.7M 6.46B

2.6 Mixed Workloads
Some graph systems segregate navigational and analytics

requests and send them to different engines. They also de-
pend on different partition schemes for navigational and an-
alytics requests. Janus neither segregates navigational and
analytics requests nor requires workload based partitioning
schemes. As one optimization, it may separate the work-
load to improve query performance (but it uses the same
engine/data storage).

All requests are handled as transactions sent to the same
storage engine. Janus uses multiple workers assigned to dif-
ferent cores to avoid possible update conflicts at L3 caches.
It also allows tuning the number of cores assigned to each
workload (e.g., at a rate 1:2 for navigational/analytics).

Our experiments show that this strategy has a negligi-
ble impact when running mixed workloads and brings Janus
ahead of existing state-of-the-art graph engines indicating
that emerging computer architectures could be excellent plat-
forms for big data graph applications.

3. EXPERIMENTAL EVALUATION
We built a prototype of Janus by adding a graph operator

layer on top of FOEDUS. The experiments were done on
a single node: HPE Integrity Superdome X equipped with
240 cores (480 physical threads) and 12TB memory over
16 sockets, running Redhat 7.2. Superdome X is a good
approximation of emerging servers in that it has hundreds
of cores and a large amount of shared main memory. In
the near future, emerging servers will come with non-volatile
memory, but the Superdome X we used has volatile memory,
so our experiments here focus on query performance rather
than fault-tolerance and availability.

3.1 Experimental Setup
We used two, best-of-class graph engines for comparison.

For navigational requests, we used the popular Neo4J graph
database (community ed. v2.2.5, Sept. 2015). For analyt-
ics requests, we used GraphLab, a main memory analytics
engine (latest open-source version as of Sept. 2015). We
tuned them both following best practices for the hardware
at hand according to their guidelines. In addition, we have
them both installed and fully executed (e.g., caches, storage)
in shared memory (/dev/shm).

In general, graph data consists of a graph topology and
graph metadata (i.e., properties). Many graph engines store
the graph topology in main memory and use external storage
for the metadata. Janus stores both in main memory provid-
ing guaranteed fast access times for both. In our comparison,
we intentionally used a data set without many properties as
a way to avoid computing this extra, othogonal overhead in
the results. For that, we generated data simulating a sim-
ple road network, where the vertex and edge tables have
schemata: Vertex [vid] and Edge [src id, dst id, distance].
Our data generator produces partitioned data files (both bi-

nary and text) using the sizing parameters px and py, which
partition the space in the x and y direction, respectively.
Each partition contains 32M vertices and each vertex has at
most 20 (average 16) outgoing edges. So for example, for
px = py = 4, we get 4 x 4 x 32M = 0.5B vertices. We report
here results on the three data sets shown in Table 1.

3.2 Data Loading
We first measured data loading in all three systems. Fig-

ure 5 reports elapsed time to load data from files in shared
memory (/dev/shm) to a graph engine. The figure shows
loading times only for Janus and GraphLab. Neo4J was
much slower and its loading times are not reported in the fig-
ure to ease the presentation of the other two systems. Indica-
tively, loading the small data set (vertex/edge tables/indices)
to Neo4J takes 46 minutes; a significant amount of this time
goes to indexing and logging. As we see, data loading in
Janus is very fast and increasing the data size does not sig-
nificantly affect load time unlike GraphLab, which makes a
couple of passes over the data.

Figure 5: Data loading on GraphLab and Janus
(time on y-axis in log-scale)

Next, we measured how each system processes workloads.
In particular, we measured throughput (in transactions per
second, TPS) for navigational requests and latency for an-
alytics request. As the experiments show, Janus processes
both navigational and analytics workloads very efficiently.

3.3 Experiments with navigational workloads
For navigational workloads, we used a randomly generated

query workload of navigational queries, such as the shortest
path between two vertices v1 and v2 placed at a small dis-
tance to each other, i.e., less than 10 hops away on average
(64 at most). We compared Janus to Neo4J. GraphLab is an
analytics engine and so it does not do well on this workload,
as we also noticed empirically in our experiments. As we see
next in Figure 7, Janus processes navigational requests quite
effectively. And it is orders of magnitude faster than Neo4J.
For space considerations, we omit detailed results here as
the difference from Neo4J is vast. Indicatively, for the small
data set, Neo4J processed on average 42 TPS, while Janus
throughput is around 150,000 TPS and this difference in-
creases a lot with the data size.

3.4 Experiments with analytics workloads
For analytics workloads, we measured latency (in millisec-

onds) with a representative analytics computation, namely



single source shortest path (SSSP), which visits a very large
portion of the graph. For fairness, both GraphLab and Janus
use the same distributed Bellman-Ford algorithm for this
computation [5]. Neo4J is a navigational engine and so it
does not perform well on this workload, as we also verified
in our experiments. Figure 6 illustrates the latency in exe-
cuting SSSP on both engines for the three data sets. Janus
is three orders of magnitude faster than GraphLab for the
same computation over the same data. The reason is that
Janus is designed from scratch as a scale-up engine for next-
generation servers, whilst GraphLab does not seem to scale
well and to leverage all the available computing resources.

Figure 6: Analytics on GraphLab and Janus (time
on y-axis in log-scale)

3.5 Experiments with mixed workloads
Next, we tested Janus with mixed, navigational and ana-

lytics workloads. Figures 7 and 8 show that Janus runs effi-
ciently and concurrently such workloads. In addition, both
figures show that the overhead in running mixed workloads
(represented as the relative difference between each pair of
bars) is quite small.

Figure 7: Navigational vs. Mixed on Janus

In particular, Figure 7 illustrates throughput in million
TPS (MTPS) for a navigational only workload versus a mixed
workload. The mixed workload contains the exact same nav-
igational requests as the navigational workload and in ad-
dition, it contains a number of analytics requests to be run
concurrently with the navigational ones. Throughput was

expected to be constant among the various data sets be-
cause each query touches roughly the same number of ver-
tices. However, throughput for the small data set is lower
because this data set is too small, fits in one partition, and
is processed by only one core.

Figure 8: Analytics vs. Mixed on Janus

Figure 8 shows latency in milliseconds (msec) for an an-
alytics only workload versus a mixed workload. The mixed
workload contains the exact same analytics requests as the
analytics workload and in addition, it contains a number of
navigational requests to be run concurrently with the analyt-
ics ones. Observe here that Janus runs the mixed workload
with very similar latency as the analytics one.

Note that for mixed workloads, as an optimization Janus
can employ different numbers of cores assigned for naviga-
tional and analytics requests. In the experiments shown
in the plots, we used an 1:2 core ratio for navigational, 4-
cores/socket, and analytics, 8-cores/socket, for a total of 16
sockets available in our configuration.

4. RELATED WORK
State of the art graph management systems are optimized

for different kinds of workloads and can be broadly classiffied
into two categories [9]: i) navigational or online, and ii)
analytics or offline.

Navigation graph management systems provide high through-
put and low latency for short requests that access relatively
few graph vertices and edges, e.g., nearest neighbor, reach-
ability query, etc. Typical examples of such graph systems
include key-value stores as Neo4j [15], HypergraphDB [8],
etc. and RDF stores such as Jena [3, 21] and Allegro-
Graph [1]. Analytics graph management systems support
long, resource-intensive, analytical computations and iter-
ative batch processing that access a signifficant fraction of
a graph, e.g. PageRank computation, social network anal-
ysis, etc. Examples of graph systems of this type include
Giraph [2], GraphLab [12], Pregel [13], etc. However, most
graph engines can efficiently support one workload class, ei-
ther navigational or analytics. Those that claim to do both
either segregate the workloads (and send them onto different
engines) or maintain separate partitioning schemes, or both.
Such solutions have a significant performance and computa-
tion overhead.

Many analytics engines are scale-out (e.g., GraphX [6]).
Some other graph engines follow another approach for scale-
up and use extremely light-weight threads as in Ligra [18]



and Galois [16]. These systems are tuned only for analytics
however. External memory graph processing systems like
FlashGraph [22] and in-memory graph processing systems
like GEMS [14] focus only on graph algorithms for large
graphs. Teradata’s graph engine offering with Aster [19] en-
ables native processing of large-scale graph analytics queries,
but does not support navigational, short query requests.

The distributed, in-memory graph system Trinity [17] sup-
ports low-latency online query processing and high-throughput
offine analytics on large graphs. However, Trinity is tuned
more for offline analytics, does not handle updates, and does
not support the workloads concurrently as Janus does.

5. CONCLUSIONS
We presented Janus, a general purpose graph engine that

provides excellent scale-up performance for navigational and
analytics requests executing concurrently. Janus is archi-
tected for modern, many-core servers with large memory. It
relies on transaction processing logic to enable real-time and
consistent graph requests in the presence of concurrent data
ingestion and to efficiently parallelize complex computations
onto a large number of CPU cores enforcing robust concur-
rency control. Our first experiments show a significant per-
formance benefit comparing to existing graph engines.

Although transaction processing can significantly improve
the performance of several classes of graph queries, we do not
believe that this holds for all possible graph queries. Based
on our current knowledge and experience, our hypothesis is
that optimization problems and algorithms, such as shortest-
path, on a large graph generally have a good fit to Janus
because they can leverage the benefits of serializable com-
munications between CPU cores. Without such guarantees,
the algorithms might have to repeat forever without conver-
gence. On the other hand, probabilistic inference, such as
topic modeling, might not benefit tremendously from trans-
action processing because both the intermediate and final
results are probabilistic. Non-serializable communications
might suffice in those cases.

Janus is at a prototype stage and thus, as far as future
work goes, there are several possible directions to follow and
features to add. An interesting problem is to optimize the
latency of tiny updates (e.g., changing just a few edges)
while Janus is running queries. Prior work [20] shows that
FOEDUS, Janus’ underlying data management engine, can
efficiently handle concurrent updates and queries with fre-
quent read-write conflicts. An additional future task is to
evaluate Janus scalability against real-world graph applica-
tion workloads.

We believe that next-generation computer architectures as
HPE’s The Machine are coming fast and graph applications
could benefit tremendously from them. We are looking for-
ward to an interesting discussion with the CIDR community.
We appreciate and welcome feedback and suggestions.
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