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ABSTRACT
It is expensive to maintain strong data consistency dur-
ing concurrent execution. However, weak consistency lev-
els, which are considered harmful, have been widely applied
in analytical jobs. Their success challenges our belief: data
consistency, which is believed to be an essential to precise
computing, does not always need to be preserved. In this
paper, we tackle one of the core questions related to the ap-
plication of weak consistency: When does weak consistency
work well? We propose an effective explanation for the suc-
cess of weak consistency. We name it bad things do not come
in threes, or BN3. It is based on the observation that the
volume of data is far larger than the number of workers. If all
workers are operating concurrently, the probability that two
workers access the same data at the same time is relatively
low. Although it is not small enough to be neglected, the
chance that three or more workers access the same data at
the same time is even lower. Based on the BN3 conjecture,
we analyze different consistency levels. We show that a weak
consistency level in transaction processing is equivalent to
snapshot isolation (SI) under reasonable assumptions. Al-
though the BN3 is an oversimplification of real scenarios,
it explains why weak consistency often achieves results that
are accurate enough. It also serves as a quality promise for
the future wide application of weak consistency in analytical
tasks. We verify our results in experimental studies.

1. INTRODUCTION
Consistency1 has been treated as a troublemaker for a

long time. Maintaining data consistency needs subtle design
and implementation. All of these delicate protocols are still
time consuming. Moreover, consistency is involved in the
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1Unless otherwise stated, we refer to general data consis-
tency in this paper, which may include consistency and iso-
lation in ACID and single item consistency in replicated
databases.
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“CAP war”: it impedes availability or partition tolerance,
which are usually considered much more important. There-
fore more and more “NoSQL” data stores choose to dismiss
data consistency completely or to enforce only weak data
consistency. However, data consistency is in high demand
in real world applications. When the lower layer does not
provide mechanisms to ensure strong data consistency, ap-
plication developers have to implement “feral” mechanisms,
which usually contain mistakes [4, 55] and cause more prob-
lems. The “biggest mistake as an engineer” [1] of Jeff Dean
is not putting transactions in BigTable.

It seems maintaining (strong) consistency becomes an ex-
pensive penalty that people must pay. However, no con-
sistency (NoCon) or very weak consistency, which are con-
sidered harmful, have been widely applied in analytical sys-
tems. HogWild! [41] is the pioneer on using NoCon for op-
timization algorithms. The parameter server [32] enforces
latency-bounded consistency and achieves success in a wider
range of applications. Google’s Tensorflow [2] and Microsoft’s
Project Adam [9] expand the use of the parameter server to
deep learning. In graph analytics, asynchronous computing
shows its potential to achieve a faster computing speed in
certain tasks. Various asynchronous and semi-asynchronous
graph analytical systems have been proposed, for example
Grace [49], GiraphUC [20] and PowerSwitch [52]. Although
these systems use different computing models, communica-
tion mechanisms and correctness guarantees, their success
reveals one common discovery: data consistency, which is
believed to be a critical property for precise computing, does
not always need to be preserved.

The popularity of weak consistency systems brings both
challenges and opportunities to database research. In this
paper, we attempt to tackle one of the core questions related
to the application of weak consistency in analytical tasks:
When does weak consistency work well? Based on our weak
consistency studies, we propose an effective explanation for
the success of weak consistency. We name this explanation
bad things do not come in threes, or in short, BN3. Usually,
the volume of data is far larger than the number of work-
ers. Therefore, if all workers are operating concurrently, the
probability that two workers access the same data at the
same time is relatively low. Although it is not small enough
to neglect, the chance that three or more workers access the
same data at the same time is even lower. Therefore, we
propose BN3 which assumes the bad things (concurrent op-
erations) do not come with three or more workers involved.
As shown in Section 3, the probability that the BN3 holds
(when p = 10−4, c.f. Section 3) is more than 99.99% when a
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system has hundreds of workers, and more than 99.5% even
when there are one thousand workers. Based on the BN3

conjecture, we analyze different consistency levels on top of
analytical tasks. Under reasonable assumptions, we show
that the weakest consistency level in transaction processing,
such as NoCon, is equivalent to snapshot isolation (SI) if the
BN3 is always true. SI is believed to be one of the strongest
consistency levels.2 Although the BN3 is an oversimplifica-
tion of the real world scenarios, it explains why weak consis-
tency often achieves results that are accurate enough. It also
serves as a quality promise for the future wide application
of weak consistency in analytical tasks.

The organization of the paper is as follows: In Section
2, we briefly introduce the computing model. In Section 3,
we propose the BN3. We also analyze the chance it holds
on large scale data in theoretical analysis and via empirical
studies. In Section 4, we state our main points of discussion.
We show our experimental results in Section 5. We discuss
related work in Section 6. We propose future work in Section
7 and conclude the paper in Section 8.

2. BACKGROUND
We briefly introduce the background of this paper, includ-

ing the computing model and system architecture in this
section.

This paper focuses on main memory analytics. We assume
the data is entirely held in memory and exclusively owned
by the user. The user’s main target is to perform analytical
analysis. In other words, we assume the data is static and
that the system aims to reduce computing time.

We assume the following, although our work does not rely
on these assumptions. The system provides random access
to the end user which is built on a shared memory archi-
tecture. In other words, the user utilizes two functions,
READ(x) and WRITE(x, v), to read and write data storage.
The storage is shared by all concurrent workers (CPUs). The
parameter server and shared memory multi-core server are
representative environments that satisfy the assumptions.
Recent systems based on RDMA usually provide random
access too. The random access shared memory assumption
simplifies our analysis and connects it closer to traditional
database theory. Our analysis also applies to the message
passing architecture.

Our study focuses on general purpose analytical tasks.
However, we borrow the notations from graph analytics. We
assume there is a graph G = (V,E). V is the set of vertices.
Each vertex could be a vertex in graph analytics, a vari-
able in optimization and a user/item in machine learning.
There are edges set E ⊆ V ×V . The end user implements a
user-defined function (udf) f(·). The udf contains the main
computing task. A udf reads and writes data via the READ

and WRITE APIs provided by the system. For example, one
possible Page Rank implementation f(v) is to read the Page
Rank of all v’s incoming neighbours, perform the computa-
tion according to a formula and write the new Page Rank
to v. Another example is in matrix factorization problem, a
vertex represents a column or a row and an edge represents
a item in the matrix. The udf on v reads the vectors in v’

2As illustrated by [5], most of the commercial available
databases offer default consistency levels equivalent to or
lower than SI.

neighborhood vertices, computes the new vector for v and
writes it back.

The system imposes no other restrictions on the end user.
The user is able to treat the system as a key-value storage
and write any program freely. However, for best practice
the udf often satisfies the following observations.

Observation 1. (Vertex-centric) Each udf f(v) is on top
of a vertex v. The user treats udf as an independent and
indivisible unit. The effect of one udf shall appear as a
whole. There are no particular orders to execute between
udfs on different vertices.

The vertex-centric computing encode update operations
in udfs. Each udf corresponds to one unit of a desired op-
eration, for example a vertex status update in graph analyt-
ics. The computing is performed in a decentralized manner
for better performance, thus each udf acts alone and their
relative order does not matter.

Observation 2. (Neighbour access pattern) Each udf f(v)
accesses the vertex v and its neighbours only.

It is common that each datum only communicates with a
specific subset of data. For example a vertex v’s Page Rank
value is determined by its neighbours’ Page Rank values.

Observation 3. (Read-compute-write) Each udf has three
phases in order as follows: read, compute and write. No data
are read more than once and no data are written more than
once.

It is easy to see common analytics following this observa-
tion. When a udf does not follow it, we can always rewrite
the udf without compromising the correctness with a user
cache.

In recent years, shared-memory architectures have been
widely applied in different domains. Not only can these
systems perform graph analytics but they are also capable
of supporting data mining, optimization, deep learning and
general purpose computing. Machine learning, especially
deep learning system [59, 11] usually provides random-
access shared-memory interface without no consistency con-
troller or with only weak consistency guarantee. Represen-
tative systems include Cyclades [39], Parameter Server [32],
TensorFlow [2], Project Adam [9], Petuum [54] and the
GPU-based GeePS [10]. There are also general purpose
systems which support asynchronized communication with
random-access interface, for example Malt [31], Aspire [48],
Husky [56], Spark-ASIP [18], and HSync [46].

3. BAD THINGS DO NOT COME IN THREES
We introduce the BN3 formally in this section, and analyze

how likely a large scale data satisfies this conjecture. We
also consider how far the data deviates from it when this
conjecture is not satisfied.

We first consider the temporal and spatial relationship
between two udfs. For udf u and v, if all of u’s operations
are performed before of all v’s operations, we denote this by
u ≺ v. If neither u ≺ v nor v ≺ u is true, we denote this by
u ‖ v; otherwise, we say u ∦ v. Moreover, if a vertex a exists
where (i) both u and v access a and (ii) at least one of two
operations are write, we say u ∩ v; otherwise, we say u�∩ v.
We denote uu v when the condition (1) is satisfied (both of
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Notation Explanation
u ≺ v u precedes v
u ‖ v parallel (neither u ≺ v nor v ≺ u)
u ∦ v not parallel (u ≺ v or v ≺ u)
u ∩ v (operation) intersect
u�∩ v not u ∩ v
u u v (data) intersect
u�u v not u u v
u⊗ v u ‖ v and u ∩ v (bad event)

bu |{v|v ⊗ u}| (bad degree)
p collision rate (frequency of u)

Table 1: Notation Table

u ∦ v u ‖ v
u�u v

u�∩ v
X X

u u v
X X

u ∩ v X ×

Table 2: The relationship of u and v: (1) a universal
u ∦ v or u�∩ v eliminates the possibility of cycles; (2)
even u⊗v (u ‖ v and u∩v) does not always lead to cy-
cles; (3) we use static data-dependent frequency uuv
to estimate the severity of out-of-order executions.

them access a common data). u u v is a necessary but not
sufficient condition of u ∩ v: an extreme example is when u
and v are read-only; u u v may be true but u ∩ v is always
false. And we say u�u v when u u v is false.

If for all pairs of udfs u and v we have u ∦ v or u�∩ v,
then the execution is correct (i.e., equivalent to conflict seri-
alizability) even without any kind of coordination and con-
sistency maintenance. We leave the proof in Appendix. In
other words, the occurrence of u ‖ v and u ∩ v is the root
cause of udf interference, which further causes data incon-
sistency. Neither u ‖ v nor u ∩ v can be completely elim-
inated from the computing; therefore, we focus on the co-
occurrences of them, and let u⊗v represent u ‖ v and u∩v.
Informally, we call u⊗ v a bad event. To measure the sever-
ity of bad events, for each udf u we consider its bad degree
bu = |{v|u ⊗ v}|. We omit the subscript u when there is
no ambiguity. The ideal situation (embarrassingly parallel)
is bu = 0 for all of u, which guarantees weak consistency is
as good as strong consistency. bu serves as an upper bound
of data inconsistency: u⊗ v does not necessarily mean that
an integrity constraint is compromised. Depending on its
strength, a consistency controller may or may not help to
ensure the consistency. Even for weak consistency, there is
still a probability that executions are correct by chance.

The bad degree of udfs depends on two factors: the static
dataset and the dynamic runtime. To have an effective es-
timation of the common situations that the system usually
meets, we assume that the udfs are executed in no particu-
lar order. Therefore, we consider the concurrently executed
udfs independently. For the data-dependent factor, we de-

note the collision rate p by |{uuv}|
|{u}|2 . p represents the pro-

portion of udf pairs that are possible to develop into a ∩
relationship.

How many bad events: We measured the property p
of large scale datasets and report the results in Table 3.
The top four are graphs representing web graphs. The bot-

Dataset |V | |E| distance p
(×106) (×106) (×10−4)

uk-2007-05 106 3,739 15.42 4.2
uk-2014 787 47,614 20.61 3.7
eu-2015 1,070 91,792 12.45 5.8
claw 2012 3,563 128,736 12.84 1.4

wiseset 59 265 5.01 4.0
friendster 66 1,806 5.78 0.7

Table 3: Real Datasets

tom two are social networks. The datasets uk-2007-05, uk-
2014, eu-2015 are from WebGraph3 [7, 8]. The dataset claw
2012 is from Web Data Commons4 [36]. Dataset wiseset is
from WISE 2012 Challenge5 and friendster is from SNAP
dataset [28]. This table illustrates the number of vertices,
the number of edges, the average distances between all pair
vertices and the collision rate p. In the table, we find p
ranges from 7 × 10−5 to 6 × 10−4. Larger graphs tend to
have smaller collision rates.

With the help of the p, we are able to calculate the bu
for the udf u. Assume there are C concurrent workers. For
simplicity, we consider the case that all udfs have the same
number of operations, all udfs proceed at the same pace
and all workers start at the same time. Therefore, for a udf
u, bu = 0 is when all other C − 1 concurrent udfs v satisfy
u�∩ v. Therefore, we have

Pr(b = 0) ≥ (1− p)(C−1)

Similarly, we have

Pr(b = 1) ≥ p× (C − 1)× (1− p)(C−2)

As illustrated in real datasets measurement (c.f. Table
3), the collision rate p is usually a small value. The above
two formulas show that 1 − Pr(b = 0) is O(p), which is a
small value. Moreover, 1−Pr(b ≤ 1) is O(p2), which is even
smaller. Base on this discovery, we propose the following
conjecture which suggests bu ≤ 1 is true everywhere or with
high probability.

Conjecture 1. We say bad things do not come in
threes, or BN3, if bu ≤ 1 for all udfs u. Informally, it
means a maximum of two udfs cause potential data incon-
sistencies. Or in other words, a “serial collision” does not
exist.

To reveal the BN3 in real datasets in Table 3, we show the
results in Figure 1 and Figure 2. In each figure, we vary
the number of cores in the x-axis, and draw the probability
of b for different p. Figure 1 illustrates the Pr(b ≤ 1) and
Figure 2 renders Pr(b = 0) and Pr(b = 1) separately. From
the figures, we see Pr(b ≤ 1) is close to 1. It is as large as
99.5% when p = 10−4 and the system has 1,024 cores. On
the other hand, Pr(b = 0) could be as low as 90% in the
same configuration.

Remarks: The above analysis assumes the access pattern is
uniform, e.g. each udf has equal chance to be executed. It

3http://law.di.unimi.it/datasets.php
4http://webdatacommons.org/hyperlinkgraph/
5http://www.wise2012.cs.ucy.ac.cy/challenge.html
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Figure 2: The Pr(b = 0) and Pr(b = 1) under different
collision rate p varying the number of cores

relies on following assumptions. First, there is no centralized
mutable components, for example a counter, a sketch or a
priority scheduler. Second, the schedule of udf does not rely
on data-dependent properties, for example a lexicographic
order of vertex (in a web-page graph), a BFS-based order of
vertex, or a priority scheduling of udfs.

However, a non-uniform access pattern does not neces-
sarily indicate BN3 is useless. A traditional way to monitor
the severity of out-of-order execution is by monitoring the
number and length of cycles in dependency graphs. Acyclic
means conflict serializability and a smaller number of cycles
could serve as a good indicator of better result quality. How-
ever, monitoring the number of cycles in a real-time manner
is time consuming.6 Instead we can just monitor the bu for
all vertex u or a sample of them. A straightforward solution
is to record the last-read and last-write timestamp (and the
reader/writer respectively) for all the vertices (or a sample
of them). Therefore for each udf u, we are able to know
whether there is a concurrent udf v such that u ∩ v by in-
specting the timestamps. This only involves O(1) space and
time per each operation, which is far more efficient than
monitoring the cycles.

4. WEAK CONSISTENCY IS STRONG
In this section, we show that under given assumptions,

NoCon actually produces results equivalent to snapshot iso-

6The current best algorithm (Johnson’s algorithm [24])
takes O(nec) time to list all cycles. n, e, c are the num-
ber of vertices, edges and cycles respectively.

lation (SI). Although the BN3 is an oversimplification of the
real world, it is true for almost all vertices in a large dataset.
Therefore, our results are close to real scenario. This helps
to explain why weak consistency performs well on a large
range of applications and datasets. Our results also serve as
guidance for the future application of weak consistency.

We begin with some background knowledge of transaction
processing. To be consistent with the transaction processing
literature [51], each udf is treated as a transaction, although
we aim for the isolation of “ACID” properties. The well-
recognized standard of transaction processing is serializabil-
ity. An execution history of a set of transactions is (conflict)
serializable if the execution of transactions is equivalent to a
serial execution. The dependency graph is used [51] to verify
whether a history is (conflict) serializable. Each transaction
is represented as a vertex in the dependency graph. For two
transactions, u and v, there is a directed edge u → v if a
data item a exists such that (i) both u and v access a, (ii)
at least one of the operation is a write operation and (iii) u
accesses a earlier than v. An important theorem in verifying
serializability is as follows.

Theorem 1 ([51]). An execution history is serializable
if, and only if, the corresponding dependency graph is acyclic.

Although serializability is important and useful, enforcing
serializability is time consuming. One of the strong con-
sistency (but weaker than serializability) is SI. It ensures
all reads made in a transaction will see a consistent snap-
shot of the data. SI has been widely applied in both com-
mercial databases and open source ones. Some commercial
databases do not even provide a consistency level that is
stronger than SI [5].

To distinguish between serializability and SI, the depen-
dency edge u→ v is categorized into three types depending
on the type of operation of u and v.

• Write dependency: u
ww−−→ v if v overwrites the u’s

written data.

• Read dependency: u
wr−−→ v if v reads the data written

by u.

• Anti-dependency: u
rw−−→ v if v overwrites the data read

by u.

The following theorem discovered by Fekete et al. [17] re-
veals the relationship between anti-dependency edges and
SI.

Theorem 2 ([17]). An execution history is under SI if

all cycles (if any) contain two adjacent
rw−−→ edges.

Before introducing our results, we introduce two addi-
tional assumptions that help us reach useful conclusions
without loss of generality.

Assumption 1. (Item commutativity) For a data item x, if
there are two write operations w1(x) and w2(x), w1(w2(x)) =
w2(w1(x)).

Started by MapReduce [12], large scale processing sys-
tems support and utilize commutativity. Graph analytical
systems, for example PowerGraph [19], GiraphUC [20] and
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MOCGraph [61], support it. Commutativity is also effi-
ciently used in numerical analytics since arithmetic oper-
ations satisfy commutativity. For example, deep learning
algorithms update variables by a delta value, and the addi-
tion operations of delta values are commutative.

Assumption 2. (Pull-mode) Each udf reads the informa-
tion from its neighbours and writes the update value to itself.

There are two modes [50] in vertex-centric analytics: push
and pull. The main difference between them is whether the
udf proactively pushes updates to its neighbours or pas-
sively pulls information. We assume the pull mode is being
used in analytics.

Here we introduce our main theorem. NoCon is the low-
est level in transaction processing: the reads and writes are
freely executed without any read or write locks.

Theorem 3. Under the above mentioned assumptions and
the BN3, the transactions executed in NoCon are SI.

To prove our theorem, we begin with some notations. By
the definition of dependency edge, if u�∩ v, there are no
edges between them. If there is an edge between u and v,
we mark it as a blue edge if u ≺ v or v ≺ u; otherwise (when
u ‖ v), we mark it as a red edge. Let the begin time btu
(resp. finish time ftu) of a transaction u denote the earliest
(resp. latest) time that u’s operations begin (resp. finish).
Clearly, btu < ftu. And we have the following corollary.

Corollary 1. (Timely ordered) If there is a blue edge
from u to v, we have u ≺ v and thus ftu < btu.

Before we start proving our theorem, we introduce two
lemmas.

Lemma 1. (Partial ordered acyclic) We assume there is a
graph and an assignment h(v) : V → R (from vertices to real
numbers) that for all edges from vertex u to v, h(u) < h(v).
Then the graph contains no cycle.

The partial ordered acyclic lemma is from graph theory.
We introduce a simplified proof here.

Proof. Suppose there is a such cycle v1, v2, . . . , vk, v1.
Therefore we know h(v1) < h(v2) · · · < h(vk) < h(v1) which
implies h(v1) < h(v1). This is a contradiction.

Lemma 2. Under the BN3, for any two different transac-
tions u and v, such that u ⊗ v, their execution follows SI
when executed in NoCon.

Proof. We inspect all possible cycles formed by these
two transactions. There are three possible edges (rw, ww
and wr) from u to v and vice versa. Keeping symmetry in
mind, we analyze them case by case. Following Theorem 2,
we attempt to show either there is no cycle or each cycle has
at least two adjacent rw edges.

• u
ww−−→ v and v

ww−−→ u. This case is not possible
because either u writes before v or vice versa since
there is only one write operation in each transaction
(c.f. Assumption 2). They cannot occur together.

• u
wr−−→ v and v

wr−−→ u. This case is also not possi-
ble. Let r(v) (resp. w(v)) represent the read (resp.

write) part of v, and r(v)
RCU−−−→ w(v) represent

our Observation 3. We have r(v)
RCU−−−→ w(v)

wr−−→
r(u)

RCU−−−→ w(u)
wr−−→ r(v). This is in contradiction

with the monotonicity of time.

• u
rw−−→ v and v

rw−−→ u. The cycle of two adjacent
rw−−→ edges is allowed in SI.

• u
wr−−→ v and v

ww−−→ u. Consider the data a over-
written by u. The only possible time order is v
writes a, which is overwritten by u and then read
by v. In other words, v reads from a after writing
to it. This is in contradiction with our Observation
3.

• u
rw−−→ v and v

wr−−→ u. Similar to the last case,
consider the data a over-written by v. The only
possible time order is u reads a, which is overwritten
by v and then read by u again. u reads a twice,
which is in contradiction with our Observation 3.

• u
rw−−→ v and v

ww−−→ u. Since u writes after v, the
time order of the operations must be r(u), w(v)
and w(u). Through item commutativity, it is safe
to swap w(v) and w(u) under the assumption of the
BN3.

Thus, we prove of lemma above.

With the help of Lemma 1 and 2, we can prove our The-
orem 3.

Proof. We consider the possible color combinations of
the cycles. First, consider cycles that are made of blue edges
only. For a blue edge from u to v, we have ftu < btv < ftv.
The first inequality is from Corollary 1 and the second is
trivial. Therefore, with the help of Lemma 1 (ft as h(·)),
we claim that pure blue cycles do not exist.

Next, consider pure red cycles. From the definition of
the BN3, for each transaction u, we have bu ≤ 1. In other
words, each transaction’s red degree, which is the number
of red edges, is no more than 1. Because the relationship ⊗
is reflective, when u⊗ v, we have v⊗ u. Therefore, the only
possible cycles that are made by red edges only are the cases
listed in Lemma 2. They satisfy SI as proved in Lemma 2.

Finally, consider mixed color cycles. We repeatedly shrink
two vertices (in the dependency graph) connected by one red
edge. To shrink two vertices u and v, we remove them from
the graph and add a new vertex w. The edges connected to
u and v are now connected to w. btw = max(btu, btv), and
similarly, ftw = min(ftu, ftv). We continue the shrinking
process until all red edges are eliminated. First, we find
that the shrinking operation does not break timely order
property during the process. It is easy to see that btw < ftw
still holds when u and v are connected by red edges. Now,
consider other vertices x connected to u and/or v by blue
edges. We can see that the timely order holds when x is an
inbound neighbour of either u or v, or both of them. We
can handle the outbound neighbour cases in a similar way.
x cannot be an inbound neighbour of u and an outbound
neighbour of v or vice versa. Therefore, there is no cycle at
all in the remaining blue-only graph, as shown in Lemma 1.
We also find that the shrinking operation does not eliminate
mixed color cycles. Therefore, mixed color cycles does not
exist before shrinking.
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We show a counter example that without BN3, the trans-
actions do not follow SI. In other words the BN3 is necessary
for NoCon to be SI.

Example 1. Let wu(x) represent a write operation issued
by transaction u on data x. Similarly we define rw(x) as
read operation.

The following transaction history does not follow SI.

ra(x) wb(x) rc(x) wc(y) wa(y)

It contains the following cycle

a
rw−−→
x

b
wr−−→
x

c
ww−−→
y

a

The cycle contains only one rw edge.

5. EXPERIMENTS
Experiment Setting: We have conducted extensive ex-
periments on one Amazon EC2 c4.8xlarge instance with 36
cores and 60 GB memory. The experiments that use more
than 36 cores are conducted in x1.32xlarge instance which
has 128 cores and 1,952 GB memory. We implemented all
methods in C++ and compiled them with gcc 6.2.0.

Synthetic Dataset: We generate synthetic graph datasets
for experiments. Given a vertex number V and an average
degree d, we generate a graph using the preference attach-
ment method proposed in [13]. We use synthetic datasets
instead of real graphs because they have a tunable “knob”
A. A controls the “power-law-ness” A

d
. Smaller A helps to

generate more skewed degree distribution, i.e. more high de-
gree vertices, which in further leads to higher collision rate
p. Therefore A helps us control the p. In our experiments
we choose V as 10 millions and d as 10. We index the graph
with the subscript of A: that G10 is the graph with param-
eter A = 10.

5.1 BN3: Is It True?
First, we measure the collision rate p in synthetic data.

We report the results in Figure 3. The collision rate p ranges
from 2 × 10−1 to 4 × 10−5. The graph with smaller A has
larger p. In real graphs (c.f. Table 3), the collision rates are
close to 10−4.

We also measure the probability that bu ≤ 1, in other
words the BN3, holds on the graphs. The results are illus-
trated in Figure 4. We vary the number of cores in the
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Figure 5: The probability Pr(b = 0) and Pr(b = 1) in
graphs

x-axis and draw Pr(b ≤ 1) in the y-axis. When p is larger
(in graphs with smaller A), the probability that BN3 holds
is lower. However, for graphs which have the p values close
to real graphs’ p values, the probability that BN3 is true is
high. For G20, BN3 holds on 99.94% of the vertices when
there are 128 cores. It holds on 98.2% of vertices even with
1024 cores. In real world practice, the user tends to use a
reasonable number of resources compared with the volume
of data: 128 cores already “overkill” our data by finishing 1
iteration of Page Rank in less than 0.1 second (c.f. Section
5.3). Therefore, we have confidence that BN3 is true for a
wide range of data (and user environments).

To show that bu ≤ 1 is necessary and cannot be replaced
by bu = 0, we separate Pr(b = 0) and Pr(b = 1) and illus-
trate them in Figure 5. For space reason we only draw 128
cores and 1024 cores. Take the G10 graph as an example,
Pr(b = 0) is about 95% when we have 128 cores. However
Pr(b ≤ 1) is 99.94% for the same setting.

5.2 Weak Consistency in BN3
The bu only acts as an upper bound of serializability vi-

olations. To measure the exact number of violations, we
execute the Page Rank algorithms. We record all the read
and write operations during the execution and calculate the
number of cycles in dependency graphs.

We start from an empty dependency graph and add the
edges formed by operations, following the chronological or-
der. If the new edge causes any cycle, we discard it and
record the cycle. Otherwise we add it to the dependency
graph. The cycle detection algorithm is time consuming, so
we only measure the cycles of length 2, 3 and 4. We try all
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Figure 7: The residual after 50 iterations (on 128
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Figure 8: The number of UDFs executed per second
(on 256 cores)

graphs and vary the number of cores. The number of cycles
is less than 100 for most of the case. Smaller A and large
number of cores cause more cycles.

5.3 Weak Consistency and Analytical Jobs
We conduct experiments on executing analytical tasks on

weak consistency environments. We choose Page Rank as
the analytical task. We implement four consistency levels,
namely NoCon, Read Uncommitted (RU), Read Committed
(RC) and Serializability.

We measure the time cost per udf executions and the
convergence per udf executions. For the former, we report
the number of udf executions per second in Figure 6 and
8 when there are 128 and 256 cores. The trends are similar
on different number of cores. The weaker consistency levels
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Figure 9: The residual after 50 iterations (on 256
cores)

NoCon, RU are at least 1.5x faster in all cases. Note when a
graph has smaller A, the high degree vertices are more likely
to concentrated in a dense area. This prolongs the lock wait-
ing time significantly. For the later, we measure the residual
after 50 iterations in Figure 7 and 9, for 128 cores and 256
cores respectively. The smaller residual, the better conver-
gence. Stronger consistency has smaller residual only when
the graph has larger collision rate p, i.e., smaller A. In G1,
to reach the same convergence levels, serializability uses 48
iterations while NoCon uses 50 ones. However, serializability
is at least 10x slower than NoCon.

6. RELATED WORK
Generally speaking, data consistency is necessary for com-

puting that may contain arbitrary read/write sequences.
However, if the systems rely on certain special properties of
udfs, it is possible to use weaker consistency or no consis-
tency at all while still ensuring correctness. Bailis [3] inves-
tigate the consistency constraints that could be protected
without coordination. Rinard et al. [43] explore commu-
tativity that can avoid certain consistency. Operations on
CRDT [47] do not require consistency maintenance either.
If user is able to specify the side effect of udfs in higher level
language, some systems are able to derivate when the consis-
tency can be eliminated safely [6, 44, 33, 53, 29, 30, 27, 21,
26]. It is also able to detect [15] and classify [38] data races
(consistency anomalies). If all data races are classified as be-
nign, the consistency controller could be removed from the
system without introducing any error. Recently, Holt et al.
propose protocols [22] that preserves consistency constrains
approximately. The approximated constraints in database
community traces back to epsilon-serializability [40]. How-
ever, these works do not investigate the relationship between
operational-level weak consistency and the accuracy of ana-
lytical results.

HogWild! [41] proposes an algorithm without the require-
ment consistency view of the data. It removes all locking
operations on the stochastic gradient descent (SGD) algo-
rithm. Motivated by HogWild!, people propose consistency-
tolerant variations on other algorithms, like stochastic coor-
dinate descent (SCD) [34], stochastic dual coordinate ascent
(SDCA) [23], variance deduction (VR) [42] and non-convex
problems [45]. There are variations of these problems which
can adaptively adjust their parameters according to the la-
tency of the data storage [60, 35, 14, 25, 37]. However, these
algorithms’ correctness rely on special properties of under-
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lying problems, including but not limited to (strong) con-
vexity, Lipschitz continuous, bounded derivative, bounded
staleness, etc.

Zellag et al. [57, 58] propose methods for detecting and
classifying the consistency anomalies. Fekete et al. propose
necessary conditions [16, 17] for identification of the anoma-
lies in snapshot isolation (SI). These works target on OLTP
environment. A critical requirement for OLTP workload
is zero-tolerance of consistency anomalies as the imaginary
application of OLTP, for example e-banking, does not al-
low any client’s account to be compromised by bad data.
According to their results, they are not able to scale to hun-
dreds of thousands transactions per second. This paper tar-
gets a different angle of consistency maintenance: the data
consistency in a parallel shared-memory system. We assume
the target of end-user is to finish the job as soon as possible
while ensuring the general accuracy of the final results (as a
whole).

7. FUTURE WORKS
This paper proposes the conjecture of BN3. Although we

believe it is almost true everywhere, it is better to monitor
the bu for all or some of the udfs in a real-time manner.
However, how to minimize the overhead of such monitoring
is critical to the performance of the system.

Sometimes BN3 is not hold while weak consistency sys-
tems still produce high quality results. Investigating the
root cause of why weak consistency is also strong under such
situations without the assumption BN3 is important to help
unleash the potential power of weak consistency systems.

8. CONCLUSION
We investigate an important but underexploited phenomenon:

weak consistency works well on analytical tasks where strong
consistency is supposed to be indispensable. We propose
a simple and effective explanation to reveal why and when
weak consistency is actually strong enough. We take a novel
data-centric approach, which shed light on future studies on
designing and utilizing weak consistent systems. We con-
duct systems to verify our discoveries.
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APPENDIX
Theorem 4 (c.f. Section 3). If for any two transac-

tions u and v we have u ∦ v or u�∩ v, the execution satisfy
conflict serializability.

Proof. We utilize Lemma 1 to prove this theorem. Here
we choose the finish time ft(v) as the assignment function
h(v) in Lemma 1. Therefore we need to prove for any edge
from u to v, ftu < ftv. If there is at least an edge from u to
v, we have u∩v, in other words u�∩ v is not true. Therefore
we must have u ∦ v. By definition u ∦ v means either u ≺ v
or v ≺ u. Since there is an edge from u to v we know u ≺ v.
Therefore ftu < btv < ftv.
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