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ABSTRACT
In most Big Data applications, the data is heterogeneous.
As we have been arguing in a series of papers, storage en-
gines should be well suited to the data they hold. Therefore,
a system supporting Big Data applications should be able to
expose multiple storage engines through a single interface.
We call such systems, polystore systems. Our reference im-
plementation of the polystore concept is called BigDAWG
(short for the Big Data Analytics Working Group). In this
demonstration, we will show the BigDAWG system and a
number of polystore applications built to help ocean metage-
nomics researchers handle their heterogenous Big Data.

CCS Concepts
•Information systems→DBMS engine architectures;
Federated databases; Data federation tools; •Human-
centered computing → Visualization toolkits;

Keywords
Polystore Data management systems; Data Integration

1. INTRODUCTION
Real applications, as opposed to simplified problems used

for benchmarking, are complex. Data often spans multiple
storage engines with queries over diverse data models. Com-
mon data integration techniques based on replicating data
or forcing all data to fit into a single storage engine are not
an effective long term solution.

We believe problems based on complex heterogeneous data
are best addressed with polystore architectures; integrated
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systems composed of multiple storage engines with queries
that span multiple data models. We have been working on a
reference implementation of a polystore architecture called
BigDAWG [11] (short for the Big Data Analytics Working
Group).

In this paper, we describe BigDAWG and its use for Big
Data problems. Past work with BigDAWG focussed on med-
ical informatics with the MIMIC-II [23] data set. This pa-
per introduces a new problem for the BigDAWG project;
an oceanographic data set used for metagenomic analysis.
An additional contribution of this paper is a discussion of
the BigDAWG middleware components and how they map
queries and cast data between storage engines.

2. DATA SET: OCEAN METAGENOMICS
In our previous studies [14], we applied polystore systems

to medical data and achieved significant speedups over tra-
ditional approaches based on a single storage engine [16].
In this paper, we consider a new problem for BigDAWG in
collaboration with the Chisholm lab at MIT.

The Chisholm Lab (https://chisholmlab.mit.edu/ ) special-
izes in microbial oceanography and systems biology. Work-
ing with the GEOTRACES (http://www.geotraces.org/ ) con-
sortium, they collect water samples during cruises across
the globe and then release the marine chemical and hydro-
graphic data [18] to the research community. The Chisholm
Lab also archives frozen seawater samples from these cruises,
and sequences these samples to understand the relation-
ship between the diversity of marine cyanobacteria such as
Prochlorococcus [5] and environmental variables. They work
with large (many TB), diverse datasets that contain compo-
nents:

• Genome Sequences: Paired-end sequence data which
consists of two files (one from the beginning of the
sequence and one from the end) with an average of 20
million unique sequences per sample.

• Sensor Metadata: Data from the GEOTRACES con-
sortium with information about each sample and the
sensors used for data collection.



• Sample Metadata: Data from the GEOTRACES con-
sortium with information about hydrographic and chem-
ical measurements of individual samples such as con-
centration of different metals in the water and infor-
mation about the physical properties of the seawater
(e.g., macro-nutrient concentration, temperature).

• C ruise Reports: Free-form text reports written by re-
searchers on-board each cruise.

• Streaming Data: Data from the SeaFlow underway
flow cytometer system [25]: a system to continuously
measure the abundance and composition of microbial
populations in near real-time.

Chisholm Lab researchers are interested in relationships
between communities of cyanobacteria and environmental
parameters (e.g. light, temperature and the chemical com-
position of the seawater). These relationships are contained
in the data, but researchers often struggle with the manage-
ment of such complex scientific datasets. Often, they build
one-off solutions or solutions that do not scale with volume
or the addition of new data products.

This ocean metagenomics dataset is an excellent candidate
for a polystore solution. A single database management sys-
tem (DBMS) or data model (relational, graph, array, doc-
ument, key-value, etc.) will not be able to provide efficient
access to all parts of the dataset. For example, the free-form
text notes would work well with a key-value store while the
structured metadata would benefit from a relational engine.
Furthermore, the type of query may favor one store over
another. For example, an engine such as SciDB [6] is an
efficient choice for analytics that map onto linear algebra
operations, but key-value stores such as Accumulo [15] pro-
vide high performance for genomics problems [10].

In this demo, we test our hypothesis that a polystore sys-
tem is well suited for such ocean metagenomics problems.
For this single data set, we leverage a number of DBMS en-
gines. Structured data is stored in PostgreSQL, streaming
data is directed to S-Store, text reports stored in Apache
Accumulo, and genetic sequences stored in SciDB.

3. THE BigDAWG POLYSTORE SYSTEM
In Figure 1, we show the major components of the Big-

DAWG polystore system. This design adheres to the funda-
mental tenets of the project:

1. There is no single data model for constructing queries.

2. The complete functionality of each underlying storage
engine is fully exposed.

Islands provide users with a number of programming and
data model choices; Shims connect islands to databases; and
Cast operations support migration of data from one engine
or island to another. A more thorough description of indi-
vidual components of the architecture can be found in [8,
16, 19, 14].

3.1 BigDAWG Components

3.1.1 Islands
Islands are a core concept in the BigDAWG polystore sys-

tem. An island consists of a query language and a data

model. Each island is associated with one or more stor-
age engines and may connect to multiple instances of the
same engine. Some islands use the language and the data
model adopted by a specific database engine; we call these
degenerate islands. Other islands do not conform to the lan-
guage layout or data model of a specific engine; we call these
virtual islands. Within each island, BigDAWG provides lo-
cation transparency for all data sets which are registered
to the BigDAWG middleware. The middleware maintains
a global catalog that maps engines and their corresponding
data objects to databases and islands.

A virtual island is typically the intersection of an island’s
constituent database engines: its query language supports
common semantics found in the languages of all associated
engines, and its data model implements features shared by
the data models adopted by those engines. The virtual is-
land is a unique construct proposed by the BigDAWG ar-
chitecture; therefore, our development effort has focused on
virtual islands. We currently support relational and array
virtual islands.

In our current implementation, relational and array is-
lands each implement a set of BigDAWG operators. The op-
erators themselves represent logical semantic symbols found
in database models such as the relational model governed
by relational algebra. The implementation of these opera-
tors take the form of Operator nodes; data structures that,
in addition to representing semantic symbols, hold informa-
tion for generating executable queries. Operator nodes are
organized in tree structures to represent queries issued to
the island. We will denote these tree structures as Abstract
Syntax Trees (ASTs). A sub-query of the original query
therefore corresponds to a sub-tree of the AST. BigDAWG
can swiftly manipulate the execution order and data move-
ment of intermediate results of a complex query by reshaping
the corresponding AST. This feature reduces the overhead
costs associated with polystore query optimization.

While virtual islands handle intersecting semantics across
multiple types of engines, degenerate islands cater to the
semantics of a single engine. The degenerate island allows
users to directly issue queries to an underlying engine, such
as SciDB. Users compose queries to the engine in the na-
tive query language of the data model and can use operators
uniquely available to that language. The BigDAWG middle-
ware supports degenerate islands for each of the four engines
supported: PostgreSQL, SciDB, S-Store [7], and Accumulo.
Since PostgreSQL and SciDB use operator-based languages,
their corresponding degenerate islands closely resemble re-
lational and array virtual islands.

3.1.2 Supported engines
The BigDAWG middleware currently supports PostgreSQL,

SciDB, S-Store and Accumulo. They differ from each other
in terms of their language, data model and user facing in-
terface. PostgreSQL is a relational database system used
mainly for traditional relational queries. SciDB is an ar-
ray database system optimized for data sets with a multi-
dimensional array layout and is well-suited for queries that
involve linear algebra operations. We provide partial sup-
port for SciDB’s proprietary Array Functional Language
(AFL). Accumulo is a distributed, persistent, multidimen-
sional sorted map, key-value store that can be queried with
the D4M language [17, 20]. S-Store is a stream engine that
runs on a relational data model and can be queried with pre-
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Figure 1: The BigDAWG polystore architecture consists of four layers - storage engines, islands, middleware
and applications. For clarity, we have not drawn every CAST operation. To relate this to the ocean metage-
nomics dataset, we also mention where components of the dataset are stored. The solid lines between islands
and engines correspond to Shims.

compiled SQL commands. It internally uses PostgreSQL to
store archived streamed data or data too old to persist in
memory.

3.1.3 Shims
A shim is a bridge between an island and an engine. It

consists of a query parser, a query generator, and a query
dispatcher. Currently, PostgreSQL has a shim to the rela-
tional island, SciDB has one to the array island, and each of
the four engines has a shim that connects to its own degener-
ate island. The shim for PostgreSQL is implemented based
on JSQLParser [26] and the PostgreSQL JDBC. The SciDB
shim is implemented with the help of the SciDB JDBC. The
shims of Accumulo and S-Store were developed in-house. In
the future, we expect to implement new virtual islands for
the intersecting semantics of existing islands. An operator
node in the new virtual island will inherit fields and meth-
ods from single or multiple operator nodes of each island.
As a result, a developer will be able to quickly develop new
shims for existing engines. If each operater node from the
new island maps to one in an existing island, the developer
will be able to reuse an existing shim. Otherwise, they may
construct a new shim by first creating a mapping between
ASTs in the new island and ASTs in the old island, and then
wrap an existing shim in this new mapping layer.

3.1.4 Loader, Migrator, Planner and Executor
The BigDAWG middleware coordinates operations across

engines using islands, shims and casts. In addition, the mid-
dleware uses four other components to supports its opera-
tion:

1. The data loader: ingests data in parallel to improve
the performance of the underlying engine.

2. The planner: tracks the locations of data sets, and cre-
ates query execution plans within and among different
islands.

3. The executor: coordinates with multiple instances of
the same engine to carry out intra-island queries.

4. The migrator: collaborates with the Planner and Ex-
ecutor to move data sets between two instances of sup-
ported database engines.

We discuss how these four components function to support
a query in the next section.

3.2 BigDAWG processes

3.2.1 Data Loading
The first step in the data analysis pipeline is the data load-

ing process. The raw ocean metagenomic data is stored in
CSV or FASTQ format, both of which are text formats. The
raw sequence data (genomics data) represents the largest
portion of the ocean metagenomic dataset and is stored in
the FASTQ format. Most DBMSs can load data directly
from CSV files, however, the FASTQ format has to be trans-
formed before it can be loaded into a database. The data
in the FASTQ format has to be parsed during transforma-
tion, which constitutes the biggest consumer of CPU cycles.
Our approach is to transform the FASTQ format into a bi-
nary format which can be loaded directly into a database.
Databases, such as PostgreSQL, SciDB or Vertica, expose
native external binary formats which enable faster data load-
ing. An additional optimization is a division of the data into
many separate pipes or files during transformation. Thus,
the genomics data can be transformed into a binary for-
mat and loaded, for example, into SciDB in parallel from
many clients on separate nodes to fully leverage multi-core
and multi-node parallelism. The other types of data in the
ocean metagenomic data set, the discrete sample metadata
or sensor metadata, are much smaller than the genomic data
and their loading is not on the critical path. Finally, the
streaming real-time navigation data is sent directly to S-
Store, where it can be transformed and migrated to other
engines within BigDAWG.

3.2.2 Query execution
A user query may refer to many data sets distributed on

different engines across multiple islands. A sub-query is-
sued to many datasets on the same island is automatically



handled by the planner and the executor. To move an inter-
mediate result from one island to another, the user makes
an explicit cast call that invokes the migrator to move data
across islands.

We begin our discussion with intra-island queries (or sub-
queries). A query issued to the relational or array island
can be directly mapped to a tree expression using a set
of well-defined BigDAWGoperators. This allows the Big-
DAWG planner to employ a variety of polystore query op-
timization techniques. We denote islands such as relational
and array virtual islands as operator-based islands.

Other islands do not naturally support well-defined opera-
tor trees. For example, the Accumulo text island frequently
receives queries that are filled with procedures and functions
specified by the D4M language [17].

The S-Store degenerate island does not support ad hoc
queries; only precompiled, stored queries. In these cases,
the queries are passed-through unmodified to the underlying
database engine; hence, we refer to these as pass-through
islands.

We focus our discussion of query execution on the more
interesting operator-based islands. Further, since the ap-
proach used for query execution with the array island is
directly analogous to that used for the relational island, we
restrict our discussion to the relational island.

When the planner received an SQL query, the query is
first sent to a dedicated PostgreSQL instance to be opti-
mized as a single-instance query. This step creates a query
execution plan whose filters are pushed down and unused
columns eliminated. The planner then converts the query
execution plan into an aforementioned AST. The BigDAWG
planner then begins constructing the intra-island execution
plan. Each sub-tree of the AST, which represents a query
that is readily executable on a single engine, is marked as
pruned. Each pruned sub-tree is wrapped in a separate query
container, which also identifies the database engine at which
the sub-query will be executed. The roots of these sub-trees
are subsequently replaced by scans of intermediate results
from the containers. After pruning, the planner either al-
lows an underlying engine to perform subsequent query op-
timization (if all tables are on the same engine) or interprets
the original AST as a stub whose leaves refer to intermedi-
ate results executed on different engines. Non-leaf nodes in
the AST signify how intermediate results are to be combined
and processed. The new AST is now denoted as a remainder
of the pruning.

The BigDAWG Planner takes the remainder as a näıve
intra-island execution plan and re-orders and combines its
nodes to optimize the plan. The containers and the updated
remainder collectively make up the final intra-island execu-
tion plan to be delivered to the Executor. The containers
are first executed and materialized in parallel and then asyn-
chronously joined or concatenated by the order specified in
the remainder. The Executor decides how a pair of engines
will migrate its result and how the results are combined. In
addition, since the executing engines may not support the
language of the island, the Executor will use shims to gener-
ate sub-queries coded in a langauge native to each executing
engine.

After the Executor performs an intra-island query, the re-
sult is either returned or cast by the user to another data
model for further processing. To invoke a cast, the user
provides a creation statement in the language of the desti-

nation island to provide type and data structure conversion
information. In the future, we envision that the cast will
be automatic: the user may choose not to provide any con-
version information and let the system decide what to do.
In case of ambiguity, the planner can prompt the user for
clarification.

3.2.3 Casts
A cast moves an intermediate result of an intra-island

query from one island to another to enable inter-island queries.
To call a cast, the user needs to name the destination island
and provide information necessary to convert data types and
layouts of the data set. In our current implementation, the
user provides a complete creation statement in the language
of the destination island. The BigDAWG planner internally
migrates the intermediate result to a default database in
the destination island as soon as it is materialized. In the
future, casting will become an interactive process: instead
of providing all details of the data conversion, a user may
only specify what will be cast and where it will be sent.
The BigDAWG planner will consult the catalog for suitable
type and data structure conversions and attempt to migrate
the intermediate result to the engine that will immediately
make use of the data. If it encounters ambiguities in the pro-
cess, the BigDAWG planner will prompt the user to provide
clarifications.

3.2.4 Data migration
The BigDAWG middleware utilizes data migration in two

ways: (1) transfer of intermediate results from query execu-
tions between database engines, and (2) migration of data
as the workload evolves to improve performance. We inves-
tigate data migration between PostgreSQL, SciDB, S-Store
and Accumulo.

Data migration is a pipelined three-stage process. First,
source data is exported from a source database. In this
stage, we extract the database object (e.g. table or array)
and its metadata (e.g. names and types). Second, the ex-
ported data must be transformed and moved to the desti-
nation database. This can involve changing the data model
and format. Finally, the transformed data is loaded to the
destination and if it does not exist, the target object is cre-
ated with the extracted metadata.

The data transformation module, which converts data be-
tween different formats, is the core module of the data mi-
grator. This module is implemented in C/C++ and tuned
with Intel VTune Amplifier [1] to eliminate bottlenecks and
achieve high performance. This is a complex piece of soft-
ware since binary formats require operations at the level
of bits and bytes. Many data formats apply encoding to
values of attributes in order to decrease storage footprint.
Furthermore, in BigDAWG this is extended to metadata in
the binary files. For instance, PostgreSQL’s binary format
stores the number of fields at the beginning of each row and
this information in the current version of PostgreSQL never
changes; thus, it can be easily encoded to further minimize
the data size.

New data formats will arise from time to time. Hence, ex-
tending the transformation module must be simple. To this
end, we extract common parts of data formats, (e.g. file
(or row) header and footer, attribute metadata and values),
and design generic interfaces so when a new data format is
added, only the read and write interfaces have to be imple-



Figure 2: Screenshot of Ocean metagenomic explorer application.

mented and plugged into the transformation module.
Within the data transformation module, a tight loop iter-

ates over values in the input file and produces the output file.
This loop is optimized by removing unnecessary branches.
At a conceptual level, a list of attributes with proper types
is prepared before the main data processing. Inside the loop
a value is read from a given input, transformed according to
its type, and finally written to the output binary file. Hence,
the type selection is done only once and memory consump-
tion is kept to a minimum.

4. DEMONSTRATION

4.1 BigDAWG Demo Architecture
To address the challenges presented by the dataset de-

scribed in section 2, we have developed a number of poly-
store applications that can be used by oceanographers to
explore, query, and analyze ocean metagenomic data.

The architecture of this demonstration system is shown in
Figure 1. As described in the figure, we currently leverage
the open source database engines Accumulo, PostgreSQL,
S-Store, and SciDB. In our demonstration, we will lever-
age multiple PostgreSQL instances used to store structured
components of the data such as sensor and sample metadata
as well as historical data collected from the SeaFlow instru-
ment. Accumulo is used to store free-form text reports as
well as certain pieces of the genomics dataset. S-Store is
leveraged for recording and processing streaming SeaFlow
data and SciDB is used for storing and processing compo-
nents of the genomic data.

Interaction with these engines occurs through a number
of islands, casts and shims as described previously. We also
leverage a number of visualization and analysis engines. The
open source Vega environment [24] and ScalaR [4] are used
for interactive visualizations; Tupleware [9] for data analy-
sis and machine learning tasks; and Macrobase [3] for auto-
mated outlier detection.

4.2 Demonstration Applications
The demonstration includes four applications.

1. Exploration: The exploration application leverages the
BigDAWG relational island, PostgreSQL, and the vi-
sualization engine Vega. This application is designed
to give researchers a quick look at the overall dataset.
For each data collection station, users can plot depth
vs. nutrient concentration. A screenshot of the appli-
cation is given in Figure 2

2. Navigation: The navigation application uses stream-
ing data from SeaFlow to help reduce the cost of data
collection cruises. In this screen, a researcher can enter
a parameter of interest and our system will use histor-
ical tracks or real-time streaming tracks to offer navi-
gational suggestions. For example, for greater concen-
tration of a parameter of interest, turn left. This appli-
cation utilizes the streaming data store S-Store, rela-
tional database PostgreSQL and BigDAWG streaming
and relational islands. A screenshot of the application
is given in Figure 3.

3. Text and Geo Analytics: This application helps re-
searchers explore the free form text components of the
dataset. Users can look for details about cruise sta-
tions and search cruise logs within a particular region
to look for keywords of interest. This application uti-
lizes the key-value store Accumulo, D4M [17], Post-
greSQL and the BigDAWG text island.

4. Heavy analytics: The final component of our demon-
stration will describe our approach to analytics that
cut across metadata and genomics data. We developed
an outlier detection system and a spatial predictive
model. The outlier detection system leverages Mac-
robase using BigDAWG to look for outliers in meta-
data stored in PostgreSQL and genomic data migrated
from SciDB. The spatial predictive model utilizes Tu-
pleware for analyzing track data and sample descrip-
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Figure 3: Screenshot of Ocean metagenomic navigation application.

tions stored in separate PostgreSQL instances. These
applications utilize the BigDAWG relational and array
islands.

All of the applications run on the MIT Engaging One clus-
ter using the SuperCloud database management system [22].
A video of the current state of the demonstration can be
viewed at: http://tiny.cc/iul1dy.

4.3 Cross Island Queries
Cross-island queries are the backbone of BigDAWG poly-

store applications. They allow us to query multiple engines,
migrate intermediate results, and mix languages in a single
query. Consider the following cross-island query (simplified
for the article):

bdarray ( f i l t e r (
bdcast (

bdre l ( s e l e c t bodc s tat ion , time stamp
, i n t e r p o l a t e d s a l i n i t y
from sampledata . main )

, i n t r p s a l i
, ’<bodc s ta t i on : in t64

, time stamp : datet ime
, i n t e r p o l a t e d s a l i n i t y : double>

[ i =0 :∗ , 1000 ,0 ] ’ )
, i n t e r p o l a t e d s a l i n i t y < 35))

We now break this query down into its components to
explain the structure of the query in more detail. At the
top level, this query is a filter operator on the array island
(bdarray) to return all readings near a BODC station that
have a salinity level less than 35.

bdarray ( f i l t e r (
<<< array >>>

, i n t e r p o l a t e d s a l i n i t y < 35))

The array is generated by a cast from data residing in
a PostgreSQL database within the relational island. The
data in question is all BODC stations for which salinity data
is available. This is formed by the following SQL query
addressed to the relational island (bdrel).

bdre l ( s e l e c t bodc s tat ion , time stamp
, i n t e r p o l a t e d s a l i n i t y
from sampledata . main )

The cast operation (bdcast) takes the result from the SQL
query and casts it into an array named intrp sali with three
attributes for the BODC station, a time stamp and the salin-
ity value.

bdcast (
bdre l ( <<< SQL query>>>)
, i n t r p s a l i
, ’<bodc s ta t i on : in t64

, time stamp : datet ime
, i n t e r p o l a t e d s a l i n i t y : double>

[ i =0 :∗ , 1000 ,0 ] ’ )

The final line describes the layout of data rows within SciDB.
Cross-island queries provide an expressive, compact nota-

tion for queries that span multiple data models. The cast
operations play a key role by letting the result from one is-
land directly feed into a subquery that targets a different
island.



4.4 Data Migration
We have investigated many techniques which can acceler-

ate data migration. We describe three in detail: migration in
different data formats, task-level and data-level parallelism.

4.4.1 CSV, binary with transformation, and direct bi-
nary migration

In the development of our data migrator, we implemented
and tested a number of potential migrators [12]. First, a
CSV based migrator: it is highly portable but inefficient
as it consumes a significant amount of CPU cycles during
the parsing (finding delimiters and other special characters)
and deserialization (data type conversion from text to binary
representation). Second, we developed a migrator based on
external binary formats, which are exposed by many DBMSs
for faster data loading and export. Each database requires
clients to adhere to its own binary format, thus this type of
migration necessitates an intermediate binary transforma-
tion. This approach removes the need for type conversion;
however, it incurs an additional conversion step. Third, we
changed source code of one of the databases to directly gen-
erate binary data that can be processed by both source and
destination DBMSs. In our experiments, the migration with
intermediate binary transformation is nearly 3X faster than
CSV migration and the direct binary migration is about 4X
faster than CSV migration.

4.4.2 Task-level parallelism
To achieve rapid data migration, parallelization is required

for each stage of data migration [12, 13, 21]. First, Post-
greSQL allows us to load data in parallel from many clients
to a single table but does not support parallel export. We
present how we enable parallel export from PostgreSQL. Sec-
ond, data partitioning is an inherent property of S-Store, so
we can easily harness parallelism by exporting data from
separate partitions simultaneously.

The default implementation of data export from Post-
greSQL executes a full table scan, processes data row by
row, and outputs a single file. We parallelized this process
by distributing data on the level of database pages. Each
page is distributed in round-robin fashion to separate files.
We run many database clients, each of which processes and
exports (to a single file) part of a table (a range of pages),
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Figure 4: Parallel data export from PostgreSQL
(data from TPC-H [2] benchmark of size about 10
GB). The degree of parallelism is equal to the num-
ber of output files.

Figure 5: The execution time for parsing (finding
new lines) with and without SIMD. The achieved
speed-up is about 1.6X. (during loading of the
lineitem table from the TPC-H [2] benchmark).

instead of the whole table. Additionally, the consecutive
batches of pages can be processed by each client to improve
sequential I/O. To illustrate the performance of our method,
we extract 10 GB of TPC-H data from PostgreSQL using our
parallel page-wise export. The parallel export is even 20X
faster than the traditional single-threaded data extraction
from PostgreSQL (Fig. 4)1.

We extended the S-Store database to export data in the
binary formats supported by PostgreSQL and SciDB. The
partitioned data in S-Store enables us to export each parti-
tion in a separate process. Our experimental results indicate
that binary migration is much faster than a CSV-based mi-
gration for low degrees of parallelism, however, the speed of
two methods converges as parallelism increases.

4.4.3 Data-level parallelism
We investigated how SIMD (SSE 4.2) can be used for

faster CSV parsing during data loading to PostgreSQL. Pars-
ing in PostgreSQL is split in two phases: (1) extract lines,
(2) identify fields. First, it scans through the input file and
searches for new lines. Once a new line is found, it is copied
to a separate line buffer and sent to the next stage which
finds fields (within the same line buffer). It occurs that the
most time consuming part of the parsing process is extract-
ing new lines. The process of finding lines for a plain text
and CSV format is fused into a single block of code whereas
there is a separate processing of fields for both plain text and
CSV format. A new buffer is prepared for each line during
parsing. The size of the line is not known beforehand (as
there can be fields of varying size), thus we have to check if
the new characters to be added do not exceed the size of the
buffer and re-size it from time to time.

Finding lines requires many comparisons for each char-
acter. Thanks to SIMD, we skip many if-else comparisons
for each character, as they are executed much faster using
the equal any programming model from SSE 4.2. Moreover,

1The experiment was conducted on IntelR© XeonR© CPU E7-
4830 @ 2.13GHz (32 physical cores), 32 KB L1, 256 KB
L2, 24 MB L3 cache shared, 256 GB of RAM, running
Ubuntu Linux 12.04 LTS (64 bit) with kernel version 3.2.0-
23. RAID-0 disk bandwidth about 480 MB/sec for writes
and 1.1 GB/sec for reads. For all of our experiments, we
compile PostgreSQL 9.6 (dev) with -O2 and -march=native
flags (gcc 4.9.4).



skipping many characters means avoiding many checks for
the line buffer and coping more characters to the buffer at a
time. For line parsing, we keep the SIMD registers full - we
always load and process 16 characters in a SIMD register un-
til the end of the file. In our micro-benchmark, we changed
the parsing of lines in PostgreSQL and measured directly
its performance while loading the lineitem table from the
TPC-H benchmark. The achieved speed-up for finding new
lines with SIMD is about 1.6X (Fig. 5)2.

5. CONCLUSION
This paper describes a demonstration of the BigDAWG

polystore system. We considered real data from the the
Chisholm Lab at MIT and analysis workflows from the ocean
metagenomic community.

The unique contribution of this paper is its focus on the
shims and casts within BigDAWG and how they interact
with queries to support polystore applications. Other pa-
pers introduce these BigDAWG components [8, 16, 19, 14],
but this paper is unique in that it describes how they work
together to solve real problems.

We describe BigDAWG as a “reference implementation”
of the polystore concept. Polystore systems are a relatively
new approach for integrating data in complex systems. A
great deal of work is required to fully develop the polystore
concept. As just one example, consider the “N-squared”
casting problem. As each new storage engine is added to
a polystore system, the total number of engines (N) grows
and the number of cast operations grows as the square of
N. For all but the smallest values of N, this can make the
cost of adding new storage engines prohibitively expensive.
Further research will explore ways to automate generation
of cast operations.

The greatest value of a polystore system is the ability
to issue queries that span multiple storage engines. This
has always been possible at the application level by issuing
independent queries, materializing the results, and integrat-
ing them together on a case by case basis. We expect and
have shown elsewhere [16], however, that an additional ben-
efit of polystore systems will be enhanced performance from
matching data to the storage engine. We do not have a di-
verse range of examples, however, demonstrating this perfor-
mance advantage. Future research will be needed to validate
and fully characterize these performance advantages.
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