
A Model for Fine-Grained Data Citation

Susan B. Davidson
University of Pennsylvania

Philadelphia, PA
susan@cis.upenn.edu

Daniel Deutch
Tel Aviv University

Tel Aviv, Israel
danielde@post.tau.ac.il

Tova Milo
Tel Aviv University

Tel Aviv, Israel
milo@post.tau.ac.il

Gianmaria Silvello
University of Padua

Padua, Italy
silvello@dei.unipd.it

ABSTRACT
An increasing amount of information is being collected in
structured, evolving, curated databases, driving the question
of how information extracted from such datasets via queries
should be cited. Unlike traditional research products, such
books and journals, which have a fixed granularity, data ci-
tation is a challenge because the granularity varies. Different
portions of the database, with varying granularity, may have
different citations. Furthermore, there are an infinite num-
ber of queries over a database, each accessing and generating
different subsets of the database, so we cannot hope to ex-
plicitly attach a citation to every possible result set and/or
query. We present the novel problem of automatically gener-
ating citations for general queries over a relational database,
and explore a solution based on a set of citation views, each
of which attaches a citation to a view of the database. Cita-
tion views are then used to automatically construct citations
for general queries. Our approach draws inspiration from re-
sults in two areas, query rewriting using views and database
provenance and combines them in a robust model. We then
discuss open issues in developing a practical solution to this
challenging problem.

1. INTRODUCTION
Citation is essential to traditional scholarship. It helps

identify the cited material so that it can be retrieved, gives
credit to the creator of the material, dates it, and so on.
In the context of printed materials, such as books and jour-
nals, citation is well understood. However, the world is now
digital, and an increasing amount of information is being col-
lected in structured and evolving curated databases, driving
database owners, publishers and standards groups to con-
sider how such data should be cited.

Unlike traditional publications which have a fixed granu-
larity to which citations can be attached – e.g. a conference
proceedings, or a paper in a conference proceedings – data

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well as allowing derivative works, provided that you
attribute the original work to the author(s) and CIDR 2017.

8th Biennial Conference on Innovative Data Systems Research (CIDR ’17). January
8-11, 2017, Chaminade, California, USA.

.

citation is a challenge because the granularity varies. For ex-
ample, the content of a scientific database frequently repre-
sents the effort of a large number of members of the scientific
community. Different portions of the database, with varying
granularity, are contributed and/or curated by different sub-
groups of these individuals. While a citation to the database
as a whole is typically provided as a traditional publication
(e.g. in the annual NAR Database Issue), whose author list
includes the owners and developers of the resource, there
is a growing belief that contributors/curators should be ac-
knowledged when their data is extracted and used. That is,
when the database is queried and a result set returned, the
citation for that data should include information about the
contributors/curators of the result set as well as of the data
used to compute it. The latter depends on the query.

Since there are a potentially infinite number of queries,
each accessing and generating different subsets of the database,
we cannot hope to explicitly attach a citation to every pos-
sible result set and/or query. Instead, we must find ways of
specifying citations for some semantically meaningful por-
tions of the database (possibly defined declaratively via queries),
and use these to automatically construct citations for more
general queries. Thus data citation is a computational prob-
lem, as argued in [3] and fleshed out in more detail here.

An interesting example of data citation, which we will re-
fer to throughout the remainder of this paper, is the IUPHAR/BPS
Guide to Pharmacology (GtoPdb) [8].1 GtoPdb is a rela-
tional database that contains expertly curated information
about drugs in clinical use and some experimental drugs, to-
gether with information on the cellular targets of the drugs
and their mechanisms of action in the body.

Users view information through a hierarchy of web pages:
The top level divides information by families of drug targets
that reflect typical pharmacological thinking; lower levels
divide the families into sub-families and so on down to indi-
vidual drug targets and drugs. The content of a particular
family “landing” page is curated by a committee of experts;
a family may also have a “detailed introduction page” which
is written by a set of contributors, who are not necessarily
the same as the committee of experts for the family.

The citations for these views of the database, which are
parameterized by the family id, therefore vary: the cita-
tion for GtoPdb as a whole is a traditional paper written by
the database owners, a citation to a family page includes the
committee members who curated the content, and a citation

1http://www.guidetopharmacology.org/



to a family detailed introduction page includes the contrib-
utors who wrote the content. Currently, citations for these
views are hard-coded into the web pages – queries are issued
against the underlying relational database to obtain content
for the page as well as the committee members or contrib-
utors. Thus, GtoPdb in fact does generates citations, but
only to a subset of the possible queries against the underly-
ing relational database, i.e. those corresponding to web-page
views of the data.

In the future, the owners of GtoPdb would like to allow
users to issue general queries against the relational database
and automatically generate a citation for the result. This
novel computational problem is what we address in the re-
mainder of the paper.

Our approach draws inspiration from results in two areas:
query rewriting using views, which has been well studied in
the context of query optimization, maintenance of physi-
cal data independence, and data integration [2, 6, 7]; and
database provenance [4, 5].

We start with a notion of citation views, through which
database owners specify how citations are attached to the
output of some number of queries (views) over the database
representing typical usage patterns. The citation to a gen-
eral query is then constructed by rewriting it to a set of
equivalent queries using the citation views, and combining
the citations attached to these views to construct a citation
to the query (Section 2).

To construct the citation, we leverage the fact that cita-
tions and provenance are both forms of annotation that are
manipulated through queries [4]. In particular, the joint (·)
and alternative (+) use of annotations within a rewriting
are modeled using the semirings approach of [5]; the model
is then extended to capture combinations of all alternative
rewritings (+R). As a consequence, the citations associated
with output tuples of a given query are independent of the
actual query rewriting employed by the optimizer. Finally,
the size of the resulting citation is reduced by lifting citation
annotations from individual tuples to sets of tuples via an
aggregation function (Agg). The database owner specifies a
policy by which citations to general queries are constructed
by choosing an interpretation of the combining functions +,
·, +R, and Agg. The citation semiring model, together with
several natural interpretations of the combining functions, is
presented in Section 3. We close in Section 4 by describing
the implications for database owners, and discussing several
open issues that must be addressed in developing a practical
solution to this challenging problem.

2. CITATION VIEWS AND REWRITING

2.1 Citation Views
We consider a relational setting with queries and views

expressed as Conjunctive Queries (see [1] for an overview).
Given a database D, we start with a set of view defini-

tions. Each view definition has an associated citation query
CV and citation function FV . A citation view consists of
a view definition, and its citation query and function. The
view and query are parameterized, by the same set of pa-
rameters. Intuitively for each valuation to the parameters,
the citation function defines a single citation for all tuples
in the instantiation of the view with the given valuation.

More formally:

Definition 2.1. A citation view is a triple (V , CV , FV )
where

• V is the view definition of form λX.V (Y ) : −Q;

• CV is the citation query of form λX. CV (Y ′) : −Q′;
and

• FV is the citation function which transforms the output
of the citation query into a citation in some desired
format, such as JSON or XML.

In V and CV :

• Q and Q′ are conjunctions of atoms;

• X = [x1, ..., xn], Y = [y1, ..., ym], Y ′ = [y′1, ..., y
′
p] are

ordered sequences of variables;

• X ⊆ Y are subsets of the variables in Q;

• X and Y ′ are subsets of the variables in Q′.

The terms x1, ..., xn are referred to as the parameters of V
and CV . Parameters are optional, in which case the λ-term
may be dropped. If there is a λ-term the citation view is
called parameterized.

Intuitively, a citation view is defined by a query Q which
is parameterized by X. For a given database instance, each
choice of values for the parameters may lead to a different
view output; we denote the view instance by applying the
view to the input parameter values, e.g. if the view is

λ(x1, . . . , xn)V (Y ) : −Q

and is passed parameter values (a1, . . . , an), we write

V (Y )(a1, . . . , an).

Since the citation queryQ′ is also parametrized byX, each
valuation of X leads to a different result for Q′. The output
of the citation function – the citation for the view – becomes
an annotation on each tuple in the output of the instanti-
ated view. Thus for every sequence of parameter values
(a1, . . . , an), the citation for all tuples in V (Y )(a1, . . . , an)
is Fv(Cv(Y ′)(a1, . . . , an)).

Example 2.1. We use as a running example a simplified
database schema for GtoPdb, in which keys are underlined:

Family(FID, FName, Type)
FamilyIntro(FID, Text)
Person(PID, PName, Affiliation)
FC(FID, PID), FID references Family,

PID references Person
FIC (FID, PID), FID references FamilyIntro,

PID references Person
MetaData(Type, Value)

Intuitively, FC captures the committee members who cu-
rate the content of a family page while FIC captures the con-
tributors who author the Family Introduction page of a fam-
ily. The last table, MetaData, captures other information
that may be useful to include in citations, such as the owner
of the database (“Owner”, “Tony Harmar”), the URL of the
database (“URL”, “guidetopharmacology.org”) and the cur-
rent version number of the database (“Version”, “23”).

To express citation views for GtoPdb we start by defining
a set of view definitions.



λF.V 1(F,N, Ty) : −Family(F,N, Ty)
λF.V 2(F, Tx) : −FamilyIntro(F, Tx)

V 3(F,N, Ty) : −Family(F,N, Ty)
λTy.V 4(F,N, Ty) : −Family(F,N, Ty)
λTy.V 5(F,N, Ty, Tx) : −Family(F,N, Ty),

FamilyIntro(F, Tx)

All views except V 3 are parameterized. V 1 and V 2 re-
strict the output to a single tuple since the parameter, F,
corresponds to the key FID in Family; V 4 and V 5 restrict
the output to a subset of tuples. V 3 contains all tuples in
Family.

For each of the views, we define a citation query.

λF. CV 1(F,N, Pn) : − Family(F,N, Ty), FC(F,C),
P erson(C,Pn,A)

λF. CV 2(F,N, Tx, Pn) : − Family(F,N, Ty),
FamilyIntro(F, Tx),
F IC(F,C), P erson(C,Pn,A)

CV 3(X1, X2) : − MetaData(T1, X1),
T1 = “Owner”,
MetaData(T2, X2),
T2 = “URL”

λTy. CV 4(Ty,N, Pn) : − Family(F,N, Ty), FC(F,C),
P erson(C,Pn,A)

λTy. CV 5(N,Ty, Tx, Pn): − Family(F,N, Ty),
FamilyIntro(F, Tx),
F IC(F,C), P erson(C,Pn,A)

Since V1 and its citation query CV 1 are parameterized by
F, each valuation of V1 results in a single tuple and each
tuple may have a different citation. As an example, for the
family with FID=11 the citation is a function of the result
of CV 1(F,N,Pn)(“11”), which consists of the family id, name
and list of committee members. The citation function FV 1

could format this result in JSON as:
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”]}

Similarly, V2 and its citation function CV 2 are parame-
terized by F, resulting in a potentially different citation for
each tuple. For the family with FID=11 the citation is a
function of the result of CV 2(F,N,Tx, Pn)(“11”). FV 2 could
format this result in JSON as: {ID: “11”, Name: “Calci-
tonin”, Text: “The calcitonin peptide family”, Contributors:
[“Brown”, “Smith”]}

In contrast to V 1 and V 2, V 3 is not parameterized, which
means that all tuples have the same citation in V3. CV 3

uses the MetaData table to obtain the url and owner of the
database. FV 3 could format this result in JSON as:
{URL: “guidetopharmacology.org”, Owner: “Tony Harmar”}

The parameter of V 4 does not correspond to a key. This
means that a single citation will be produced for all tuples
with the same type. For instance, the citation for the view
tuples V 4(F,N, Ty)(“gpcr”)) could be
{Type: “gpcr”, Contributors: [{Name:“Calcitonin”, Commit-
tee:[“Hay”, “Poyner”]}, {Name:“Calcium-sensing”,
Committee:[“Bilke”, “Conigrave”, “Shoback”]}]}
V 5 produces a citation for all the introductions of the fam-

ilies with the same type. The main difference between V 4
and V 5 is that V 4 credits the committee members of fami-
lies, whereas V 5 credits the contributors who wrote the in-
troductions.

For instance, the citation for the view tuples
V 5(N,Ty, Tx, Pn)(“gpcr”)) could be:
{Type: “gpcr”, Contributors: [{Name:“Calcitonin”, Commit-
tee:[“Nichols”, “Palmer”]}, {Name:“Orexin”, Committee:[“Alda”,
“Palmer”]}]}

2.2 Query Rewritings
Database owners specify a set of citation views, from which

the citation for a general query over the database will be con-
structed. Our approach is to rewrite as much of the query
as possible using the view definitions, and combine their ci-
tations to construct a citation for the input query. We start
by defining what a rewriting is.

Definition 2.2. Let R be a set of relation names, Q be a
query, and V be a set of views. The query Q′ is a rewriting
of Q using V if:

• the subgoals of Q′ are either relation names in R, views
in V, or comparison predicates;

• Q′ is equivalent to Q;

• no subgoal of Q′ can be removed and obtain an equiv-
alent query; and

• no subset of subgoals of Q′ can be replaced by a view
in V and obtain an equivalent query.

A rewriting is total if its subgoals contain only views and
comparison predicates; otherwise, if its subgoals also contain
relation names, it is partial.

We illustrate the trade-offs between different rewritings in
terms of the citations generated through two examples.

Example 2.2. Consider the following query which finds
the names of all gpcr families that have a detailed introduc-
tion page:

Q(N) : −Family(F,N, Ty), T y = “gpcr”,
FamilyIntro(F, Tx)

Q can be rewritten using either V 1 and V 2 or V 4 and V 2:

Q1(N) : −V 1(F,N, Ty), T y = “gpcr”, V 2(F, Tx)
Q2(N) : −V 4(F,N, Ty)(“gpcr”), V 2(F, Tx)

Both Q1 and Q2 are total rewritings, however in Q1 there
is a remaining comparison predicate. The main difference
between V 1 and V 4 is that Q1 uses V 1 while Q2 uses V 4;
the citation query CV 4 is parameterized by the family type
Ty, while CV 1 is not.
Q2 leads to a more specific citation than Q1 because the

comparison predicate Ty = “gpcr” in Q matches the lambda
term of V 4 and can therefore be absorbed as passing in a
parameter value, V4(F,N,Ty)(“gpcr”). This groups together
all tuples sharing the type “gpcr”, yielding a single citation
as described in Example 2.1. In contrast, Q1 would yield a
citation for each distinct gpcr family, since its lamba term
is F, which corresponds to the family id.

Example 2.3. As another example, consider a query which
finds the name and text of the introduction of families with
type “gpcr”.

Q(N,Tx) : −Family(F,N, Ty), FamilyIntro(F, Tx),
T y = “gpcr”



Q can be rewritten in several ways, including:

Q1(N,Tx) : −V 1(F,N, Ty), V 2(F, Tx), T y = “gpcr”
Q2(N,Tx) : −V 3(F,N, Ty), V 2(F, Tx), T y = “gpcr”
Q3(N,Tx) : −V 4(F,N, Ty)(“gpcr”), V 2(F, Tx)
Q4(N,Tx) : −V 5(F,N, Ty, Tx)(“gpcr”)

All of these rewritings are total, however Q1, Q2 and Q3

use two views, whereas Q4 uses only one view. The differ-
ence between Q1 and Q2 is that the former uses V1, while
the latter uses V3; CV 1 produces a citation for each distinct
family, whereas CV 3 provides a single citation for the entire
view. In this sense, V 3 is more general than V 1. In neither
case is the comparison predicate Ty = “gpcr” matched by
the lambda term of the view.

Both Q3 and Q4 use views whose lambda term (λTy)
matches the comparison predicate. They are therefore more
specific than Q1 and Q2. The difference between Q3 and Q4

is that Q4 uses one view whereas Q3 uses two.
Overall, we might prefer Q4 to the other rewritings be-

cause: (i) it is a total rewriting; (ii) it uses the smallest
number of views; and (iii) the comparison predicate of the
query is matched by the lambda term of the view, so there
are no remaining non-view predicates.

2.3 Preference Model
As demonstrated above, a single query may be rewritten in

multiple ways using a set of views. How should we define the
citation for the query result as a function of these rewritings?
A first observation is that some rewritings are preferable to
others in the sense that they lead to citations that are more
precise. For instance, if a query may be totally re-written
using a single view, then the most accurate citation would be
the citation for that view. More generally, plausible criteria
could aim at minimizing one or more of the following:

• We prefer rewritings that cover as many terms of the
query as possible using views, leaving a minimal num-
ber of terms “uncovered”, i.e. captured by directly ac-
cessing base relations or appearing as comparison pred-
icates. In other words, total rewritings are preferable
to partial ones, and total rewritings with no remain-
ing comparison predicates are preferable to those with
remaining comparison predicates, as illustrated in Ex-
ample 2.2. Such rewritings lead to citations that are
more “comprehensive”.

• We prefer rewritings that use the smallest number of
views. For example, the total rewriting Q4 in Exam-
ple 2.3 is preferable to Q3. Such rewritings lead to
citations that are more “focused” and compact.

In Section 3.4, these ideas will be generalized to an order
relation over rewritings.

We now define how to associate a citation with a query
result based on the possible rewritings and the citation views
used therein.

3. COMBINING CITATIONS
Having defined citations for views, we must now combine

them to form a citation for the query result. To do this,
observe that citations and provenance are both forms of an-
notation that are manipulated through queries [4]. We there-
fore take inspiration from work on database provenance, in
particular that of provenance semirings [5], to model the
different ways in which citations views are combined.

3.1 Semiring Model
In provenance semirings, provenance tokens (base annota-

tions) are associated with each tuple in a relational instance
(EDB). Restricting our attention to SPJU queries, there are
two ways in which tuples are combined through queries:

• Joint use, as in a join which combines two tuples to
form a new tuple. In this case, the provenance anno-
tation of the new tuple is the ‘·’ of the annotations of
the two input tuples.

• Alternate use, as when one or more tuples are “identi-
fied” via unions or projections to form a new tuple. In
this case, the provenance annotation of the new tuple
is the ‘+’ of the annotations of all input tuples.

In citations, annotations are defined through the citation
queries (and their corresponding citation functions). Cita-
tion views are combined in two different ways when provid-
ing a citation to general queries: they may appear jointly in
an equivalent rewriting of the query, or they may appear in
alternate rewritings of the query.

In the following, we will assign query output with cita-
tions that are the combination of results of citation func-
tions, through + and · based on the use of the views in
the query. The resulting structure of citations is that of a
commutative semiring: we start with a set of basic citations
C, and introduce an abstract operation + on it with the
properties that + is commutative, associative, and has some
neutral element 0 in C. Similarly we introduce an operation
· with the same properties, but with a different neutral ele-
ment 1. Last, we impose that · is distributive over +. The
resulting structure (C,+, ·, 0, 1) is a commutative semiring.

3.2 Citation Semirings
We start by defining a citation for a single binding of a

single rewriting of the query. This dictates a single output
tuple, and a particular valuation to the parameters of the
views. We define the citation of the output tuples as the
joint use of citations for the views and the valuations to
their parameters, denoted by “·”.

Definition 3.1. Let Q be a query, let V be a set of ci-
tation views and let Q′ be a (partial) rewriting of Q using
V 1, ..., V n ∈ V . Further let B be a binding to the variables
of Q′, yielding an output tuple t. The citation for t w.r.t.
Q,Q′, V, B, denoted as cite(t, Q,Q′, V, B), is defined as
FV 1(CV 1(B1)) · . . . · FV n(CV n(Bn))

where Bi is the application of B to the variables occurring in
an atom involving V i in Q′.

Example 3.1. Consider the rewriting Q1 from Example
2.2, and consider the binding to its variables
F=“11”, N=“Calcitonin”, Ty = “gpcr” and Tx=“The calci-
tonin peptide family”. The resulting tuple is (“Calcitonin”),
and the citation we get for this particular binding is the ci-
tation assigned in V 1 to family “11” (note that the lambda
parameter of V 1 is F ), combined via · with the one assigned
in V 2 to the same family (i.e., FV 1 · FV 2):
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”]}
· {ID: “11”, Name: “Calcitonin”, Text: “The calcitonin pep-
tide family ”, Contributors: [“Brown”, “Smith”]}.

So far we have only defined the citation for a single bind-
ing. Multiple bindings lead to multiple alternative citations,
which we capture using +.



Definition 3.2. Let Q,V,Q′ be as in Definition 3.1, and
let βt be the set of all bindings for Q′ that yield a tuple t.
The citation for t w.r.t. Q,Q′ (denoted as cite(t, Q,Q′, V ))
is denoted as ΣB∈βtcite(t, Q,Q

′, V, B).

Example 3.2. Recall Q1 and assume now that the family
name N=“Calcitonin” is shared by two families, with identi-
fiers 11 and 12. This leads to two bindings to the variables
of Q1, and intuitively to two possible ways of using the views
to get the output tuple (“Calcitonin”). The citation for the
tuple, in this case, will be a “+” over the expression in Ex-
ample 3.1 and a similar expression for family id 12.

Similarly, a query may have multiple rewritings, each lead-
ing to a possibly different citation. These are again alter-
natives, but the function used to combine the citations for
them may be different than the one used for multiple bind-
ings for a single rewriting. We therefore use +R (“+ for
rewritings”) to denote this function, whose operands are el-
ements of the citation semiring (i.e. polynomials using +
and ·). +R has a neutral value 0R, and is associative and
commutative. Note that this is a formal semantics, not a
means of computation: going through all rewritings would
be an impractical implementation.

Definition 3.3. Let Q,V be as in Definition 3.1, and
let Q be the set of possible rewritings of Q using V . The
citation for t w.r.t. Q (denoted as cite(t, Q, V )) is denoted
as ΣRQ′∈Qcite(t, Q,Q

′, V ).

Example 3.3. Consider the query Q from Example 2.2,
and recall its two rewritings Q1, Q2 (assume for simplicity
these are its only rewritings). Now consider input tuples
Family(“13”, “b”, “gpcr”) and FamilyIntro(“13”, “Familyb”).
Together they yield an output tuple (“b”) for Q. According
to Q1, the citation for (“b”) should be CV 1(F,N,Pn)(“13”) ·
CV 2(F,Tx)(“13”). According to Q2 we get a different cita-
tion: CV 4(F,N,Ty)(“gpcr”) · CV 2(F,Tx)(“13”). Combining
the two citations and assuming distributivity of · over +R,
we get the final citation for the tuple:
(CV 1(F,N,Pn)(“13”) +R

CV 4(F,N,Ty)(“gpcr”)) · CV 2(F,Tx)(“13”).

Note that, since we sum (via +R) over all possible rewrit-
ings, the citations obtained for two equivalent queries will
always be the same (since by definition, equivalent queries
have the same set of rewritings); in other words, the cita-
tions are insensitive to query plans, as expected.

To conclude the model, note that often one is interested
in obtaining a single citation for the entire output. This
is captured by an abstract aggregation function (Agg). We
only require that it is associative and commutative and with
some neutral value.

Definition 3.4. The citation for a query Q w.r.t. a set
of views V and an input database D (denoted as cite(D,Q, V ))
is defined as Aggt∈Q(D)cite(t, Q, V ).

Agg can also be used, through its neutral value, to in-
clude citations that are needed regardless of the query out-
put, in particular when the output is empty. For example,
this could be the database name or its NAR Database issue
publication.

Example 3.4. Consider a rewriting Q1 such that for ev-
ery citation view V used, every lambda parameter of V is
equated to a constant in Q1 (or V has no lambda terms).
In this case, all assignments to Q1 yield exactly the same
citation. Assuming that + is idempotent (a+ a = a, e.g. as
in set union), we get a single citation (possibly with multiple
parts, combined via ·) for each tuple. If we further assume
that Agg is idempotent then we get a single citation for this
rewrite for all output tuples.

Since such a rewriting would lead to a very concise cita-
tion, it is plausible that it would be preferable to all other
possible rewrites (see discussion of the order relation over
views below). Under this preference function, we then get a
single citation (multiplicand) for the entire result set.

3.3 Interpreting the Functions
So far we have kept the functions +, +R, · and Agg ab-

stract. There are several natural interpretations of these
functions that the database owners could use, which we il-
lustrate below. For example, · could be union, join, or the
least upper bound in some ordering of the views. Likewise,
+ could be union, and +R could min for some ordering on
(sets of) views (see discussion of the order relation below).

Example 3.5. Recall the citation result
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”]}
· {ID: “11”, Name: “Calcitonin”, Text: “The calcitonin pep-
tide family ”, Contributors: [“Brown”, “Smith”]}

One natural interpretation of · is simply the union of the
records, leading to a citation of the form:
{ {ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”]},
{ID: “11”, Name: “Calcitonin”, Text: “The calcitonin pep-

tide family ”, Contributors: [“Brown”, “Smith”]} }
A different choice of · “joins” the records, i.e. factors out

common elements, to obtain:
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”],
Text: “The calcitonin peptide family ”, Contributors: [“Brown”,
“Smith”]}

Similarly, we could interpret +R as union or join, e.g.:
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”]}
+R {ID: “11”, Committee: [“Brown”], Contributors: [“Smith”]}
=
{ID: “11”, Name: “Calcitonin”, Committee: [“Hay”, “Poyner”,

“Brown”]}, Contributors: [“Smith”]}
Aggregation can be used to combine the citations for indi-

vidual output tuples, e.g. by using union and/or merge, in
addition to adding the database name (as explained above),
to form a single citation for the result set.

3.4 Introducing Order
As explained in Section 2.3, some citations are preferable

to others. Such preference relations can be encoded through
partial orders, as follows. We first define a partial order ≤
over monomials in the citation semiring (possibly stemming
from some order relation over base annotations, see exam-
ples). We then impose that a + b = a if b ≤ a: intuitively
if we can obtain two different citations and one is prefer-
able to the other, we would like to keep only the preferable
one. Such order relation can then be lifted to order relation
over polynomials: to compare polynomials p1 and p2 we
first tranform each polynomial into a “normal form”, remov-
ing every monomial M2 for which there exists a monomial
M1 ≥ M2. Then, we say that p2 ≤ p1 if for every mono-
mial M2 in the normal form of p2 there exists a monomial



M1 in the normal form of p1 such that M2 ≤ M1. Finally,
we impose p1 +R p2 = p1 if p2 ≤ p1. Intuitively, given two
possible rewritings such that a citation obtained for one is
preferable to that obtained for the other, we keep only the
preferable one.

We next exemplify some order relations over monomials
that could be used in the above construction.

Example 3.6. Consider the preference relation preferring
rewritings using the smallest number of views. For that, we
can define M1 ≤M2 for two monomials M1, M2 if the num-
ber of multiplicands in M1 is greater or equal to that of M2

(note that we only cite views, not base relations).

Example 3.7. Consider preferring rewritings using as few
“uncovered” terms as possible. For that we need a slight tech-
nical modification to our model, where we designate a cita-
tion atom CR to be placed in the citation whenever the query
uses a base relation R. Now we can define M1 ≤M2 for two
monomials M1,M2 if the number of atoms of the form CR
in M1 is greater or equal than that in M2.

Example 3.8. Finally, consider an order relation on views
based on view inclusion. Intuitively preferring the use of V1

over V2 if V1 is included in V2, ensures that we are citing
views that are “best fit” to our needs rather than very gen-
eral ones. To capture that, define a ≤ b if a, b are citations
stemming from the citation functions for V1, V2 respectively,
and V2 is included in V1. This may be lifted to monomials,
e.g. we may first “normalize” each monomial w.r.t. the or-
der relation, i.e. define a · b = a if b ≤ a, and then define
a1 ·...·an ≤ b1 ·...·bn if for every ai there exists a bj such that
ai ≤ bj. Intuitively, for every view used in the first citation,
there is a more compact view that could be used instead in
the second citation (so the latter is preferable).

With such an order relation in place, there is hope for
generating a citation for a query output which avoids an ex-
haustive materialization of all rewritings. How to do so ef-
ficiently, and under which conditions on the views, semiring
and order relation, is a fundamental task for future work.

4. CONCLUSIONS
We present an approach for automatically constructing ci-

tations to information extracted from a database via general
queries. In this approach, owners of the database specify ci-
tations to a small set of (possibly parameterized) views of the
database which represent typical usage patterns; they also
give interpretations to the combining functions +, ·, +R,
and Agg. A query against the database is then rewritten
using the views, and a citation for the result set constructed
using the interpretations of the combining functions.

The model is robust, describing tuple-level citation anno-
tations but also lifting citations to groups of tuples in the
views, and thus indirectly to query results. It can therefore
be used for constructing citations using only schema level
information (as is done in query optimization using views)
as well as using citation annotations attached to tuples (as is
done with reasoning about provenance). Note that reasoning
at the tuple level requires changes to an existing database
both in terms of the schema (to capture citation annota-
tions on view tuples) and in terms of query processing (to
combine citation annotations).

A number of interesting research questions arise from this
approach. First, while we have formally defined a model for
citations for query results, we have not given efficient means
for computing them. In particular, it is infeasible both in
terms of run time and the size of the resulting citation to
go through all rewritings and all assignments within each of
them. A precursor for algorithms in this respect is further
modeling of (some of) the “black boxes” of the model, which
include the citation functions, the semiring operations, and
the order relations. We have demonstrated initial ideas in
this respect, such as the assumption of idempotence over
+ and its use in some cases. Another promising direction is
designing a language for the specification of the black boxes,
allowing for their analysis.

Even for restricted cases, designing efficient algorithms for
computing citations is a non-trivial task. To this end, our
future work will also study further connections to relevant
classic problems in the literature such as query inclusion
(which we have mentioned as useful for the preference rela-
tion); query rewriting using views; using logs to understand
database usage and decide what citation views should be
specified; caching and materialization; and the maintenance
and presentation of data provenance.

Last, we have not discussed fixity: data may evolve over
time, and citations should bring back the data as seen at
the time it was cited. Thus data sources must support ver-
sioning, and citations must include timestamps or version
numbers. Furthermore, the choice of proper citation for out-
put tuples may change. This may be captured in our model
by including a “timestamp” attribute in base relations, with
lambda variables in views corresponding to this attribute.
Then, citations could vary across timestamps, and our alge-
braic operators may be used to aggregate (or choose some
out of) these citations. Further exploring the evolution of
citations is another intriguing goal for future work.

Acknowledgments. The authors would like to thank Peter
Buneman and Val Tannen for many fruitful discussions re-
lated to this work. In particular, Peter Buneman initially
formulated several of these ideas in the context of hierarchi-
cal databases. This work has been partially funded by NSF
IIS 1302212, NSF ACI 1547360, and NIH 3-U01-EB-020954-
02S1; by the European Research Council under the FP7,
ERC grant MoDaS, agreement 291071; by the Israeli Sci-
ence Foundation (1636/13); and by a grant from the Blavat-
nik Interdisciplinary Cyber Research Center.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] F. N. Afrati, C. Li, and J. D. Ullman. Using views to
generate efficient evaluation plans for queries. J.
Comput. Syst. Sci., 73(5):703–724, 2007.

[3] P. Buneman, S. Davidson, and J. Frew. Why data
citation is a computational problem. CACM, 59, 2016
(to appear).

[4] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and
Trends in Databases, 1(4):379–474, 2009.

[5] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, pages 31–40, 2007.

[6] A. Y. Halevy. Answering queries using views: A survey.



VLDB J., 10(4):270–294, 2001.

[7] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[8] A. J. Pawson, J. L. Sharman, et al. The IUPHAR/BPS
Guide to PHARMACOLOGY: an expert-driven
knowledgebase of drug targets and their ligands.
Nucleic acids research, 42(D1):D1098–D1106, 2014.


