

Indexing in an Actor-Oriented Database

Philip A. Bernstein Mohammad Dashti Tim Kiefer David Maier

Microsoft Research EPFL TU Dresden Portland State Univ.
philbe@microsoft.com mohammad.dashti@epfl.ch tim.kiefer@tu-dresden.de maier@pdx.edu

ABSTRACT

Many of today’s interactive server applications are implemented

using actor-oriented programming frameworks. Such applications

treat actors as a distributed in-memory object-oriented database.

However, actor programming frameworks offer few if any data-

base system features, leaving application developers to fend for

themselves. It is challenging to add such features because the

design space is different than traditional database systems. The

system must be scalable to a large number of servers, it must work

well with a variety of cloud storage services, and it must integrate

smoothly with the actor programming model.

We present the vision of an actor-oriented database. We then

describe one component of such a system, to support indexed

actors, focusing especially on details of the fault tolerance design.

We implemented the indexing component in the Orleans actor-

oriented programming framework and present the result of initial

performance measurements.

1. INTRODUCTION

1.1 Motivation
The classic architecture for on-line stateful services has three-

tiers: a database tier accessed via queries and stored procedures; a

middle tier that implements some application functions on a cache

and passes others through to the database; and a stateless client

tier that interacts with end-users. In this architecture, the database

is the center of attention. Users submit requests that invoke

functions that do some local processing and read and write the

database. There is non-trivial logic in many of those functions.

Often, the database is the primary bottleneck. Therefore, one

purpose of the middle and client tiers is to offload the database, so

the system can scale elastically by adding or removing

inexpensive servers that run the middle-tier and client-tier.

Many interactive applications developed today do much more

than simply read and write the database. For example, they often

manage a lot of state in the middle-tier, such as a knowledge base

or image cache. Some of this state needs to be read and written at

high rates. These applications perform heavy computation, such as

rendering images or computing over large graphs. They monitor

streams in near real-time to detect intrusion attempts or outlier

measurements. To handle this memory and processor load, they

need a large number of middle-tier servers.

To support this interactive middle-tier functionality, applications

manage what amounts to a distributed, in-memory object-oriented

database. An application is distributed for scalability and geo-

distributed for low-latency access by users world-wide. It stores

most data in-memory for fast response time. It encapsulates the

data as objects, to share common functionality and ensure data

integrity. Modeling the data as objects is quite natural, because the

data often represents physical real-world objects. The objects

comprise a database because many objects are standing objects,

that is, they need to live beyond the lifetimes of the procedures or

processes that created them. Some of them need to be persistent,

that is, resilient in the face of failures. These applications often

support a large community of users with intensive interaction and

computation, hence use a lot of processor and memory resources.

Thus, a deployment needs to scale out to a large number of

compute servers independent of storage servers.

For example, a large-scale multi-player game represents players

as objects. Players interact with each other, and with abstract

objects such as games, grid positions, lobbies, player profiles,

leaderboards, in-game money, and weapon caches. In a real-time

social app, people are objects that interact via chat rooms, mes-

sages, photos, and news items. An IoT application for buildings

represents sensors as objects, which detect the state of a room:

temperature, motion, light, moisture, and sound. More abstract

objects infer when to start or stop the air conditioning, when to

alert a security guard of a break-in, or when to shut off electricity

and water due to a flood. Applications with similar characteristics

can be found in the telemetry, mobile computing, and communi-

cations domains, among others. Together, these types of applica-

tions represent a large fraction of new application development.

All of the above-mentioned applications have several aspects in

common. First, since the real-world objects are independent, the

software objects that model them do not share state. To

communicate, they exchange messages asynchronously. If they

need common access to state, then that state is modeled as other

objects that they reference. To simplify the programming model,

such objects are often restricted to be single-threaded. Objects

with these characteristics are called actors [8].

Second, many, if not most actors that are in main memory

represent the latest state of the modeled entity, not a stale, cached

version whose freshest state is in persistent storage. Therefore, the

application runs most requests using these “active” actors, not by

executing stored procedures on persistent storage.

Third, as a corollary to the previous point, these applications use

storage more for persistence than querying. Hence, they typically

use document stores, storing the state of an actor as a record,

JSON document, or BLOB.

Fourth, many actors are not stored persistently. For example, the

state of a lobby actor in a game is the set of users connected to it.

After a lobby recovers from a crash, different users may connect

to it, so it is pointless to recover its state from storage. Some

actors have read-only state, e.g., a price list of weapons in a game.

Together, these four points suggest that an actor-oriented applica-

tion treats its actors as a database (DB). However, developers of

such applications do not make heavy use of a database

management system (DBMS). Rather, they typically use an actor

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution

and reproduction in any medium as well as allowing derivative works,

provided that you attribute the original work to the author and CIDR
2017. 8th Biennial Conference on Innovative Data Systems Research

(CIDR ’17). January 8-11, 2017, Chaminade, California, USA.

programming framework, such as Erlang [3], Akka [1], or Orleans

[4]. These systems provide functions to activate, invoke, store,

and recover actors. They often include a plug-in architecture to

map actor state to storage, and publish-subscribe plumbing to

stream events from external sources to actors and between actors.

They rarely include more advanced DB functionality, such as

queries, authorization, constraints, stream processing, and

transactions—and when they do, the functionality is often quite

limited. We view this omission as an opportunity.

1.2 Actor-Oriented Databases
We propose enriching a distributed actor framework so it becomes

a full-function actor-oriented database (AODB) as shown in

Figure 1. This extension entails adding plug-ins for transactions,

indexing, queries, views, triggers, geo-distribution, and replica-

tion. Transactions would enable a set of actor invocations to be

wrapped in an ACID transaction. Indexing would enable

retrieving the set of active or persisted actors based on secondary

key values. As in object-oriented databases (OODBs), queries

could be executed over actors that are grouped into a collection

[6]. Queries could be reused as view definitions or materialized.

The distinguishing features of an AODB are that it scales out

elastically to hundreds of servers, can use a variety of cloud

storage services, and is compatible with the actor framework’s

programming model.

Scale-out is best satisfied by inexpensive servers that cloud

vendors offer as virtual machines (VMs). An AODB cannot count

on accessing a VM’s storage devices after the VM recovers from

a failure, so it is driven to using cloud storage.

Application developers want freedom of choice and to avoid

being locked into a specific storage service. Therefore, an

AODB’s storage must be able to reside on a wide variety of

storage systems, such as page servers, BLOB servers, document

stores, and SQL databases. They may be storage services

managed by the cloud provider or open-source versions of these

components running on VMs managed by the application user.

An actor framework usually dictates the programming model for

actor invocation, lifecycle, threading, communication, and excep-

tion handling. It may also control load balancing and caching.

Developers want to work with one model, with no impedance

mismatch to database functionality. Moreover, they value a

framework with low cost of entry. Hence it must be possible to

start developing applications in the framework without mastering

all the database aspects first.

These AODB features affect the traditional design space of many

database mechanisms. For example, you cannot assume that only

objects that have been persisted need to be indexed. Nor can you

assume the backing store supports indexing; most BLOB stores

and some table stores do not. Thus, you cannot always rely on the

indexing capabilities of the backing store. For transactions, there

may not be a shared log, so updates to two actors on the same

server may still require two-phase commit for atomicity. On the

other hand, the actor environment may have features that help

support DB features. For example, in an actor model where

objects are not explicitly created and destroyed, referential

integrity comes for free if based on object references.

1.3 Comparison to Existing Systems
AODBs are similar to OODBs in that programming language

types and operations define the database interface, rather than

embedding database types and operations into an independently

defined language. However, an AODB differs from OODBs in its

architecture and implementation. Most OODBs were targeted for

design applications, with server-attached storage and function

shipping to an object server (though a few did use data shipping).

Distributed object systems from the 1980’s and 1990’s are similar

to AODBs in their ability to scale-out. However, hardly any

focused on database applications. One exception is Thor [11][12],

but it used a custom object-server with server-attached storage.

Some of today’s DBMSs offer high-performance transactions

over a main memory database, often with stream processing. This

targets similar workloads as an AODB. Like an AODB, the data

in main memory is the latest state, while the data in storage may

be stale—a reverse-cache architecture. But unlike an AODB, the

programming model is stored procedures and SQL dialects with a

fixed DBMS. Also, most such systems can scale out only if the

data is fully partitionable, which many actor applications are not.

AODBs are also similar to enterprise computing platforms, such

as Java EE [9], in that they manage a middle-tier of application

functionality that communicates with databases. However, they

are not actor-oriented, in that their components are multithreaded

and communicate via synchronous RPC. Applications sometimes

use object-to-relational mappers, such as Hibernate or .NET

Entity Framework, in which case the database functionality is in

the database server, not the middle-tier.

To enable scalability, middle-tier applications often use cache

managers, such as memcached and Redis. However, these systems

cache records or structures, not objects, and hence do not support

actor-like functionality.

An AODB is similar to graph databases that add query functional-

ity to an object-oriented programming language, such as Tinker-

Pop and Gremlin [14]. They could be integrated with an actor-

oriented language, though we do not know of any that do. Often,

they implement the graph with their own representation, rather

than interpreting application objects and object-valued properties

as a graph, which would be the natural approach for an AODB.

1.4 Contributions
We are participating in a project to develop an AODB added to

Orleans. Orleans has a plug-in architecture for durable storage,

which enables actors to be read and written to different storage

systems. A recent project has added geo-distribution [5], and a

project to add distributed transactions is nearing completion [7].

In this paper we describe our work on a third project, to enable

actors to be indexed on secondary keys. Although indexing is well

known database technology, we will see that the distinguishing

Frontend
Clients

Transactions

Persistence

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB Plug-
ins

Cloud
Storage

Figure 1. Actor-Oriented Database System

features of an AODB lead to different problems than those faced

in building an indexing subsystem for a classical DBMS.

The main contributions of the paper are as follows:

 We introduce a new type of database system, AODB, to

support scalable, fault-tolerant, distributed, actor-oriented

applications.

 We define the challenges of indexing in an AODB and list

design requirements for an exemplary AODB, Orleans.

 We describe a novel, extensible indexing architecture for

AODBs that works with different types of storage systems.

 We present an algorithm for fault-tolerant, eventually-

consistent and causally-consistent indexing in AODBs.

 We describe our implementation of an AODB indexing

system and present the results of experiments that show the

relative performance of different features of that system.

The rest of the paper focuses on adding indexing to an AODB.

Section 2.1 gives background on Orleans, the actor framework in

which we embed our solution. Section 2.2 discusses implications

of Orleans features on the design of an AODB. Section 3 lays out

requirements for an AODB indexing system. Section 4 describes

the overall architecture of our indexing solution and the algorithm

for maintaining reliable consistent indexes without the use of

transactions. Additional implementation details are in Section 5.

Section 6 gives some preliminary performance results. Related

Work and the Conclusion are in Sections 7 and 8, respectively.

2. ORLEANS
The design space for an AODB component unavoidably depends

on details of the actor framework in which it is embedded. Our

indexing subsystem is embedded in Orleans, an open-source

actor-oriented programming framework that extends the .NET

Framework. Its main goal is to simplify the development of

scalable, fault-tolerant, distributed applications. It is widely used

by Microsoft (e.g., for the Xbox games Halo and Gears of War), is

available as open source [15], and is used by many third parties.

We give a brief introduction to Orleans, just enough to understand

how we added indexing to it. A complete description is in [15].

2.1 Actors in Orleans
Actors in Orleans cannot share state. Each actor has a location-

transparent identity, called its key, which is the only way to

reference it. These two characteristics of actors enable the Orleans

runtime to place each actor on any server. Typically, it distributes

actors randomly across servers of a deployment, to minimize the

chance that any server is a bottleneck; users can customize actor

placement using plug-ins.

Actors communicate asynchronously only. A method call

immediately returns a promise, after which the caller can

continue executing. It can later synchronously await for

fulfillment of the promise (i.e., wait for the method call to finish

executing and return). Under the covers, this interaction is

realized by messages in each direction.

If an actor is not currently running when one of its methods is

invoked, the Orleans runtime chooses a server on which to

activate the actor, executes the actor’s constructor on that server,

and then performs the method call. It retains a reference to the

actor in its distributed fault-tolerant actor directory so that future

invocations can be directed to it. If an actor is idle for too long,

the Orleans runtime calls the actor’s destructor and releases its

resources. Since, this model of activate-on-demand is very similar

to the demand-paging model of virtual memory, Orleans calls it

the Virtual Actor Model.

The mapping of actors to servers is dynamic. Each time an actor is

activated, it may (and often does) execute on a different server

than its previous activation.

Actors are fault tolerant. If a server fails, Orleans detects the

failure and updates its actor directory accordingly [4]. The next

invocation of an actor that died on the failed server causes that

actor to be re-activated on another server, just like any invocation

of an inactive actor.

Actors are single-threaded, and normally are non-reentrant. That

is, a method call must execute to completion before the next call

is processed. Optionally, an actor can be reentrant. In this case,

the steps of method calls can be interleaved. However, even in

this case, only one method call is allowed to be actively executing

inside the actor at any given time.

Orleans offers a simple declarative model of actor persistence,

where an actor type identifies its persistent properties. Orleans

maps those properties to persistent storage via a storage provider

plug-in. The app specifies the storage provider (and hence the

storage system) to use via a configuration attribute. Orleans uses

the storage provider to populate an actor’s state when the actor is

activated. An actor can call WriteStateAsync to save its state at

any time, e.g., just before returning from a method call that

modifies its state or just before it is deactivated. This approach to

persistence decouples actor implementation from its storage.

Developers often override this declarative persistence model with

their own mechanism. For example, the developer can write

custom code in the actor’s constructor to initialize the actor state

from any source, and can include code to save the actor’s state in

any method.

2.2 Programming and Design Implications
Orleans takes a middleware-centric approach rather than the

database-centric one of standard 3-tier application architectures.

We discuss here some of the implications of that difference for the

programming model and design space for AODB features.

An actor type provides a naming scope. For a given key, a factory

associated with the type always returns a handle to the same

virtual actor. However, there is not an explicit type extent, that is,

an enumeration of the values of the type that are currently being

used. This is unlike a DBMS where each database table has an

explicit extent, namely its rows, but it is similar to most

programming languages. Thus, an indexing mechanism must not

rely on an explicit type extent. While it is certainly possible for an

application to maintain explicit collections of actors as a basis for

indexing, it is important that an indexing scheme does not impose

overhead on actors that do not participate in the collection, and

hence are not indexed. Thus, it could be useful for an actor to

know whether it participates in an index, and, if so, which one.

There are implicit extents in Orleans that could be targets for

indexing, such as all currently running actors or all actors that

have ever been initialized. While it might be possible to determine

membership in such extents by other means, an index is an expli-

cit representation of such extents, which can simplify applications

and avoid excessive interaction with the underlying run time.

In an AODB, such as one based on Orleans, the unit of consist-

ency is a single actor rather than the database as-a-whole. Since

other actors can only discover state changes of a given actor

through calls to that actor, an actor knows when any state changes

are visible to the “outside world”. Moreover, an actor is the

authority on its state. This is unlike an object in a 3-tier architec-

ture, which might have an out-of-date cache of the authoritative

state in a database. Thus, an actor can be relied upon to know an

appropriate point at which to update an index in which it

participates.

One consequence of actor-centric consistency is that an actor,

absent a multi-actor transaction capability, is never certain about

the state of another actor. The other actor's state could have

changed since the last communication with it. Thus, the only

guarantee is that any method result reflects some internally

consistent state of the actor. Any indexing mechanism by itself

can offer no better guarantee than that a returned object at some

point satisfied the search key. Experience with Orleans shows that

developers can write effective systems with these soft guarantees.

Also, separately, we are working on an optional transaction

mechanism to provide hard guarantees.

Fulfillment of promises is not guaranteed to be in the order of

method calls in Orleans. If the sender needs ordering guarantees,

it can hold off issuing a new request until it receives the result of

the previous request. Thus, an indexing mechanism should not

rely on implied order of method calls. On the other hand, it need

not be concerned that an actor invoking it is blocked on its

response, since the invocation is asynchronous.

With Orleans’ virtual actor model, the activation and deactivation

of actors is managed by the system rather than by applications. A

method call on an actor will activate it if it is not already running.

Thus, an indexing mechanism should avoid issuing additional

method calls on the actors it indexes. For example, a hash index

bucket might hold references to actors with different search keys.

While it could consult each actor in the bucket to determine if it

matches the current search key, that would activate inactive

actors. It would be better to store the search-key value with each

reference in the hash table.

3. THE INDEXING PROBLEM

3.1 Motivation
The state of an actor type is defined by member variables called

properties (a.k.a. attributes in some data models). Actor instances

can be gathered into explicit collections. If an application needs

access to a particular collection of actors, such as those with the

same value of a property, the app needs to create and maintain the

collection, i.e., a secondary index. This approach duplicates

functionality for each such scenario in the application and hence

complicates the code. Moreover, it is difficult to work out all

possible failure cases in a distributed system, so applications are

likely to miss some cases and end-up with inconsistent indexes.

For these reasons, it is beneficial to add generic functionality to

the framework that an application can use to index any actor if

needed.

In a conventional database system, an index serves only to accel-

erate existing functionality. In an actor app, by contrast, the index

enables the functionality (e.g., find all players at a given location).

In this sense, it is like a key-value store, where records can be

accessed by a key only if an index was previously defined.

3.2 Requirements
Based on conversations with developers of actor applications, we

identified the following requirements. The first two are familiar

database features: access actors based on a property value or a

range of property values; and optionally ensure uniqueness, i.e.,

ensure no two actors have the same value of the property.

The remaining requirements differ from those found in classical

database systems. First, in an actor system, it is usually sufficient

for each index to be causally consistent with respect to its base

actor type. By this, we mean the index may be updated after the

actor update commits, rather than bracketing both updates in a

transaction. However, the index update cannot be postponed

indefinitely. That is, each index must be eventually-consistent

with respect to its base type. Thus, after an indexed property is

updated, the corresponding index must eventually be updated—

ideally, shortly after the actor update. This implies that the

indexing solution needs to be fault tolerant to ensure that an index

update is never lost.

Second, to make the indexing feature appealing to application

developers, the API for accessing indexes should be tightly

integrated into the actor programming language. For example, it

should look very similar to the way actors are accessed based on

their identity.

Third, it must be possible to have an index only for active actors,

that is, that are currently running. Actors are added to such

indexes when they are activated and removed later when they are

deactivated. This feature is independent of whether the actor’s

state is saved in persistent storage. For example, a gaming

application might want to access all active players at a given skill

level, to offer them an ad hoc tournament. An actor’s active-status

approximates recent use. An application could explicitly track

recently-used actors in a collection and then index such actors by

skill level. Supporting indexes on active actors allows a

convenient substitute for such explicit tracking, and hence was

requested by users we consulted.

With the virtual actor abstraction, an actor's activation status is

transparent to the application, in that all actors can be accessed,

whether or not they are currently active. By indexing active

actors, we expose actors’ activation status and thus break the

virtual actor abstraction. Therefore, the indexing system must be

sensitive to activation status by not activating inactive actors. It is

not just an efficiency issue, as described at the end of Section 2.2.

It is a semantic issue in that it will increase the set of active actors

due to system behavior, rather than application behavior.

Fourth, the index implementation should work with any persistent

storage system, with only minor customization. In particular, it

should work with storage that does not support indexing, such as

BLOB stores or key-value stores. This entails explicitly storing

and maintaining the consistency of the index as another storage

object. We call this an AODB-managed index. On the other

hand, the indexing system should use the indexing functionality of

the storage system, if it exists. We call this a storage-managed

index.

Indexing should be optional. It should impose no overhead to an

application that does not use it. It should also be orthogonal to

other features, meaning that it can be used with any combination

of other AODB features.

4. INDEXING ARCHITECTURE
The high-level design of our indexing system is shown in Figure

2. The generic indexing functionality of an actor is encapsulated

in an abstract actor type IndexableActor. An actor type C must

inherit from IndexableActor to enable any of its properties to

be indexed. For each property p of C that is indexed, the

IndexableActor actor maintains two copies, a before-value and

after-value, which are the values of p before and after its last

update. These values are needed to do the corresponding update to

p’s index.

A method that updates C’s state S must also update indexes that

are affected by updates to S. To do this, it calls the index handler

associated with C, passing it the before-value and after-value of

each indexed property. An empty before-value or after-value indi-

cates an insert or delete, respectively. The index handler accesses

the index registry to find information about the indexes defined

on C. It includes the list of indexed properties of C and the type of

index defined on each property, e.g., point vs. range, or

centralized vs. distributed index. This information is gathered

from the index annotations defined on C and enables the index

handler to invoke the appropriate index actor for each of C’s

indexes. There is a singleton instance of the index handler for C

on each server, which is shared among all actors of type C. The

actors of type C discover their corresponding index handler as a

part of their initialization.

We now refine this high-level view and show how indexing

requirements and aspects of the actor framework and cloud

storage architecture influence its design.

4.1 Programming Interface
For many real-world user scenarios, indexes in an actor program

not only optimize the program’s performance, but also enable the

core functionality of accessing a collection of actors. The explicit

definition of indexes is part of the application program itself.

Application programmers want the definition to be succinct,

intuitive, and customizable, and to integrate smoothly with the

programming language.

The generic actor type IndexableActor needs to know which

properties are indexed and needs to be notified about each update

to an indexed property. The syntax should allow for compile-time

type checking, to ensure that the properties being indexed are

indeed part of the actor’s state. To do this, a certain amount of

compiler magic and careful interface design is needed. To

simplify the explanation and avoid boilerplate, we describe it in

terms of class definitions. However, in fact, interface definitions

are also involved. The interface of an actor is separate from the

class that implements it and user programs only use the interface

to interact with the actor.

The IndexableActor actor type is the super-type of all

indexable actors and is defined to be generic, parameterized by an

ordinary class that contains all the properties of the actor

including the ones being indexed. For example, for the indexable

actor type Player, an ordinary class PlayerProperties is

defined. Each instance of Player includes an instance of

PlayerProperties, which contains all of ’s properties. The

indexed properties in PlayerProperties are annotated with an

attribute “[indexed]”, which the indexing system can find using

reflection. To pick up indexing functionality, Player inherits from

IndexableActor<PlayerProperties>.

Our use of inheritance to enable indexing functionality was a

compromise between programmability and ease of implementa-

tion. The main disadvantage is that it is not orthogonal to other

features, when used in a language that supports only single

inheritance. For example, in Eldeeb and Bernstein [7], an actor

enables transaction functionality by inheriting from

TransactionalActor. For an implementation to offer both

indexing and transactions to an application, it would also need to

allow an actor to inherit from IndexableTransactionalActor.

Clearly, the number of combinations of features grows

geometrically with number of AODB features, and is hence

undesirable from both a programmability and implementation

perspective. Replacing inheritance with a more suitable

mechanism is a high-priority item for future work.

Ordinarily, a client accesses an actor by feeding its key k to the

actor type’s factory, like this:

Player p = ActorFactory.GetActor<Player>(k)

Suppose Location is in PlayerProperties and has been

tagged as [indexed]. To retrieve players based on an index, one

can invoke a direct lookup method on the class, or use the

Language-Integrated Query (LINQ) facility of .NET to write:

IQueryable<Player> result =

 from p in ActorFactory.GetActors

 <Player, PlayerProperties>()

 where p.Location == "Redmond"

 select p;

Passing the PlayerProperties type to the GetActors method

in the above LINQ query looks redundant, because

PlayerProperties was passed as a type parameter to the

IndexableActor type that Player indexes. However, this deep

access to the generic type parameters is not supported in many

languages, such as C# and Java.

The decision to have an index is made at class-definition time, not

dynamically at any time via a CreateIndex operation. In an

AODB, indexes are an integral part of the application, not just an

optimization for query processing. If any change to the choice of

indexes is required, application code will change. These modifica-

tion will be applied the next time the application is deployed.

4.2 Capturing Updates to Indexed Properties
Any indexing mechanism on actors requires a way to capture

changes in the target actors. IndexableActor plays the role of

an interceptor that automatically captures the changes from actors.

This interception happens by calling the UpdateIndexes method

of the parent IndexableActor type. This method is also

implicitly called whenever actor tries to persist its state. By

default, before-values and after-values of the properties of the

actor are used for denoting the modifications. However, this is not

always the most efficient way to capture an update to an indexed

property. For example, the property could be a compound

structure that is indexed as a whole, but whose components are

independently updated.

To give the app developer flexibility in representing updated

properties, we define a class MemberUpdate that encapsulates an

update to an indexed property and offers methods to get the

property’s before-value and after-value of the property. The

instances of MemberUpdate are produced by an implementation

of the UpdateGenerator interface that are employed in the

UpdateIndexes method. An UpdateGenerator takes the current

properties of the actor and a previously generated MemberUpdate

if one is already stored inside the actor left over from a previous

index update. Then, it produces a new instance of MemberUpdate

that represent the change. This new instance of MemberUpdate is

stored inside the actor to be used in the next index update.

The default implementation of UpdateGenerator captures both

before and after values of an indexed property inside an instance

User-defined
Actor

Indexable Actor Index Handler Index

Index Registry

Figure 2. High-level index-system architecture

of MemberUpdate, but programmers can provide their own

UpdateGenerator implementations. Using a user-defined

UpdateGenerator in the example of a compound property

above, the MemberUpdate might include the full before-value but

the after-value of only components that changed, thus avoiding

redundant storage of identical before and after portions.

Programmers can determine the special UpdateGenerator for

the specific indexed properties using an additional parameter to

the [indexed] annotation.

Each call to UpdateIndexes of an actor creates a dictionary of

property names to MemberUpdates. This dictionary is passed to

the index handler for processing the updates with respect to the

indexes defined on each property of the actor type.

4.3 Processing Updates to Indexed Properties
The simple design of Figure 2 ignores the possibility of failures

during actor and index updates. This possibility is especially

troublesome for AODB-managed indexes, where the indexing

system has to write into both actor storage and index storage.

It is tempting to use transactions to simplify fault tolerance. This

is problematic for two reasons. First, most actor systems do not

support distributed transactions. Second, transactions add cost due

to concurrency control and two-phase commit, which is annoying

given that most users only require eventual and causal

consistency. We therefore consider designs both with and without

transactions.

If transactions are not used, then the process of updating an

indexed actor must execute as a multi-step workflow. A correct

implementation of actors and storage must satisfy the following

invariants:

P1. (Consistency of actor and indexes) For each update request R

to an indexed actor , if R’s update to succeeds (that is, ’s

updated state can be read), then eventually all of ’s indexes are

updated to be consistent with ’s updated state.

P2. (Causality) An index state is never ahead of actor states it

refers to. That is, if an index for value v of property P refers to

actor , then .P=v or .P=v where v was written to .P after v.

To design a workflow that satisfies these invariants, we require

index updates and their inverses (i.e., undo operations) to be

idempotent. Most index updates are naturally so. For example, to

change the value of an actor ’s indexed property P from u to v,

we delete a reference to from u’s index entry and add it to v’s

index entry. When re-executing the update, if is not found in u’s

index entry then no action is needed; if it is found in v’s index

entry then it need not be added again. In ambiguous cases, each

update can be identified by a version number or similar state

variable, which is written to the index along with the updated

value or tombstone to ensure idempotence.

In the following description of the workflow, most writes to

storage are lazy. These writes execute periodically but frequently,

so that under high load they persist the result of many update

operations to the relevant actor. Batching writes improves

throughput under high load at the cost of some latency in replying

to the relevant request.

Figure 3 shows a workflow that satisfies the above invariants. It

starts with an update request R from some caller K to an indexed

actor . Downstream, for each actor, such as , there is a

Workflow Queue actor WQ that manages requests to process

index updates on behalf of . There is also an Index actor that

processes lookups and writes to an index over . We assume each

actor is single-threaded and non-reentrant. The steps are as

follows:

1. When has finished processing R and before it writes ’s

updated state to storage, it creates a workflow record wR and calls

WQ to append wR to the queue.

2. Next, WQ eagerly writes wR to WQ’s storage and sends an

acknowledgement to when it is done. If there is already an in-

progress storage write to the queue, then WQ waits for the write to

complete before issuing another, which includes other workflow

records that have been added to the queue in the meanwhile. This

batching improves throughput under high load.

If times out waiting for a reply from WQ, then it assumes

(possibly incorrectly) that wR was not written to storage. So un-

does the update it performed for R and throws an exception to K.

3. This step applies if and only if updated a property that has a

unique index. In this case for each unique index that is affected by

the update to , tries to insert the new value into the index. If it

succeeds (i.e., there is no duplicate), then it marks the new index

entry as tentative, and marks the index entry for ’s previous

value as tentatively deleted. After all tentative updates are written

to storage, continues with step 4. If any tentative insertion fails,

then undoes any previous tentative updates, undoes its update to

’s state, and throws an exception to K.

Subsequent lookup operations should ignore entries flagged as

tentative and should ignore a tentatively-deleted flag by treating

the index entry as present, for two reasons. First, R might fail and

the updates will be undone. And second, even if R succeeds, since

 has not yet been written to storage, reading the corresponding

index updates would violate causality.

4. Actor adds the identity of the workflow record wR to its state

and writes its state to storage. After the storage update completes,

it replies to K, thereby completing the call.

5. There is a dispatcher DWQ associated with WQ that executes

workflows in batches. In each batch, for a workflow record wR on

actor , in step 5.1 DWQ ensures that the update to occurs before

updates to any of ’s indexes by first calling to check that

still has a reference to wR and wrote it to storage. It might not,

because the update that generated wR did not complete, or because

wR was processed by an earlier execution of DWQ, but there was a

failure before it deleted wR from storage. If it does not hold, then

DWQ undoes any updates it did to unique indexes and writes them

lazily to storage. Then it deletes wR from the queue in storage.

If still has a reference to wR, then in step 5.2 the dispatcher

updates the relevant index entries. This includes changing

tentative updates to unique indexes into permanent ones. It does

these index updates in batches, per index. Next, if the index is

App actor

Actor
Storage

Index

Index
Storage

Workflow
Storage

Workflow
Queue

6.2
2 5.4

5.3 4

5.1 3

1
5.2

Figure 3. Workflow to propagate updates to an index

6.1

durable, in step 5.3 it lazily writes the index to storage. After the

write completes, in step 5.4 it deletes wR from the queue and lazily

writes the updated queue to storage.

6. Finally, in step 6.1 the dispatcher calls one last time to delete

the pointer to wR from ’s state. Since the state of has changed,

in 6.2 lazily writes its state to storage.

4.4 Correctness
We need to show that the protocol for actor updates is correct,

despite any failures that might occur. In Orleans, there are two

main categories of failures: server failure and message timeout. If

a server fails, all actors on that server lose their memory state and

disappear. A message timeout occurs when a method call does not

return to the caller within its timeout period. An individual actor

never fails. It can catch exceptions, but it cannot silently die.

To explain why the workflow in Section 4.3 is correct, we need to

show that properties P1 (consistency of actor and indexes) and P2

(causality) always hold, despite the failure of any step in the

workflow. We argue correctness by analyzing each workflow

step, in turn.

Step 1: Actor updates its memory state and sends wR to WQ.

Since is non-reentrant, its state cannot be read until it returns to

K in step 4. Therefore, P1 and P2 are trivially satisfied.

If ’s server fails, then ’s state is lost and its caller K will time

out waiting for a reply to R. When is activated again, it has no

information about wR, since wR is not written to ’s storage until

step 4. Possibly, appended wR to WQ before failed. We will

show in step 5 that WQ will remove any downstream effects of wR

in this case. Hence, wR has no effect, as required by P1 and P2.

Step 2: Actor asks WQ to write workflow record wR to storage.

This has no effect on the state of or its indexes, and hence has

no effect on P1 and P2.

Step 3: If there are no uniqueness violations or failures while

updating the unique indexes, then like step 1, step 3 finishes in a

state where ’s state cannot be read and tentative updates in

unique indexes will be ignored. Hence, P1 and P2 are trivially

satisfied.

If any of ’s updates to unique indexes fails, it undoes any

previous tentative updates to the indexes and to ’s state. Thus,

and its indexes revert to their original states, so P1 and P2 are

trivially satisfied. If there is a failure before this undo activity

finishes, then it will be repeated when wR is processed in step 5.

Step 4: After this step, ’s state can be read. Thus, P1 requires

that later steps ensure that indexes are eventually updated.

Step 5: This step updates ’s indexes. Dispatcher DWQ first

checks that has a reference to wR. If so, then since is non-

reentrant, must have completed step 4. Hence, updating the

indexes will satisfy P2. If not, then DWQ undoes tentative updates

to unique indexes, thereby deleting all effects of R, and trivially

satisfying P1.

If did complete step 4, then DWQ makes tentative updates

permanent, and after they are in storage, it deletes wR from WQ. If

WQ fails before finishing this work, it is reactivated by a reliable

reminder service [4]. On recovery, it will process wR again, which

is safe since index updates are idempotent. Thus, index updates

are eventually processed, satisfying P1.

4.5 Transactions
Consider how we could use transactions to simplify recovery. One

possibility is to group steps 1-4 into a transaction. This requires

updating at least two actors (the queue and) and possibly unique

indexes. Since these actors are almost certainly not co-located in

storage, this will require independent writes to storage and hence

two-phase commit (2PC). They can do the writes in parallel,

rather than sequentially, as in Section 4.3. However, there is an

extra write in 2PC, which partly neutralizes this advantage.

Another possibility is to avoid the workflow entirely and do all

the updates in a transaction. This too requires two rounds of writes

for 2PC, so there is no improvement in latency. Depending on the

concurrency control protocol used to update the indexes, it may

entail more delay and/or aborts. It is not obvious to us which of

the strategies will have the best throughput and latency. Exploring

these alternatives is a topic for future work.

5. IMPLEMENTATION DETAILS
This section discusses more detailed aspects of the types of

indexes we implemented.

5.1 Index Variants
There are three dimensions for the possible index types in an

AODB: the type of query that can be directly answered using the

index lookup, i.e., equality, range, or spatial query; the target

collection of actors that is being indexed, i.e., only active actors or

all persisted actors; and the way an index is distributed among

multiple servers, i.e., logically partitioned based on key,

physically partitioned based on actor location, or directly

managed by the underlying storage. Each point in this three-

dimensional space represents a specific index type with special

consistency properties and fault-tolerance requirements.

In this paper, we focus on equality queries using hash indexes,

over all initialized actors or over only active actors. An initialized

actor is one that was activated at least once and whose state is in

persistent storage. Once initialized, it remains initialized forever,

even if it is subsequently deactivated. An active actor can be

indexed whether or not it has persistent state. An index over

initialized actors is called an I-index, and an index over active

actors is called an A-index.

5.2 Distribution and Partitioning
Next, we discuss possible distribution strategies. The simplest

form of index is a single actor that maintains the whole index.

Even though it is a single point of contention, it is a practical

option for small indexes with a low access rate. In fact, it can

handle a moderately high update rate by batching updates, as we

will see in Section 6.1.

In many cases, distributed indexes are preferable because they

scale out. An index can be divided into buckets, where each

bucket is a distinct actor. In theory, buckets can overlap, but to

simplify index update and fault-tolerance processes, we ensure

they are disjoint. There are two major ways that index entries can

be partitioned into buckets: logically based on key or physically

based on location.

In logical partitioning, each bucket is assigned a set of indexed

value(s) it can contain. For example, when indexing the Location

of Players, one way to assign buckets is by hashing the Location

of each player. For a given Location, its hash value plus

Location’s index identifier uniquely identifies the actor maintain-

ing that bucket of the index.

Ordinarily, actors with the same value of the indexed property are

randomly distributed across servers. Therefore, a disadvantage of

logical partitioning is that to process an update to an actor’s

indexed property, the actor’s accesses to the index buckets are

likely to be remote.

Another problem is providing users with consistent results. Often,

an update to an actor’s indexed property requires deleting the

actor from one index bucket and inserting it into another one.

Suppose the delete precedes the insert, and in between them, a

caller issues two read requests, for all actors with the old value

and for all with the new one. The reader fails to read the actor

with the in-flight update, with no obvious fallback to find it.

Instead, we should insert into the new bucket before deleting from

the old one. This might result in seeing the actor in both buckets.

But the reader can recover by checking the indexed property when

accessing the actor. Unfortunately, this insert-before-delete

strategy cannot be guaranteed when updates to index buckets are

batched. For example, if one player moves from Location X to

Location Y, while another player moves from Y to X, and if X

and Y hash to different buckets, then the first bucket to be written

to storage will cause one of the deletes to precede its

corresponding insert.

In physical partitioning, an index has one bucket on each AODB

server. The actors that are instantiated on a server send their index

updates to the local index bucket on the same server. One benefit

of this approach is that index updates are always handled locally.

Another is that index updates are atomic, because moving an actor

reference from the old inverted list to the new one can be done as

one operation on the bucket. A third benefit is fault tolerance, in

that a server failure causes actors and their indexes to fail

together. This leaves the other servers in a consistent state. This

property makes physically partitioned indexes a natural choice for

indexing active actors (i.e., A-indexes), as it is fault-tolerant by

design if the unit of failure is a server.

A downside of physical partitioning is that each index lookup

requires a fan-out to all buckets on all servers. However, these

lookups happen in parallel and the first result returned from one of

the servers can be streamed back to the user.

Physical partitioning of I-indexes has a serious drawback. If an

index is physically partitioned and if an indexed actor located

on server S previously existed on another server S', then might

still have an index entry on S' (something that cannot happen with

an A-index). Therefore, an update to an I-indexed attribute of

requires a fanout lookup to partitions on all servers, followed by

removing the previous index entry if one exists, and then updating

the index bucket on S. This is much more expensive than

updating a logically partitioned I-index, which can usually be

done with a blind write. Overall, we believe that physically-

partitioned I-indexes are not worth offering.

5.3 Handling Data Skew
The values of the indexed attributes are not always uniformly

distributed among the index buckets. When dealing with a very

large number of actors, special techniques are needed to handle

this skew.

The index skew problem happens when an index bucket

overflows. Skew can be either real or artificial. Artificial skew

happens when the buckets are too coarse-grained. It can be

mitigated by having finer-grained buckets, e.g., more buckets for

a hash-index distributed across many servers. This requires a

repartitioning of buckets, which can be minimized by any form of

dynamic hashing, such as consistent hashing [10].

Real skew arises when a large number of actors have the same

value of an indexed property. In this case, finer-grained buckets

do not help. A solution is to define a logical super-bucket

comprised of multiple physical buckets. When an ordinary bucket

reaches its configuration-defined maximum size, it is converted to

a super-bucket. The physical buckets of a super-bucket can be

chained in a list with the super-bucket as header. Or the super-

bucket can contain a list of pointers to the physical buckets. The

latter is preferable, since it enables parallelizing delete operations,

and fast access to the last bucket for insertions. Also, for I-

indexes, it enables parallel retrieval of physical buckets from

storage.

Another skew problem arises when the access rate on an index

exceeds the ability of a single actor to serve it. Since reads usually

predominate, this problem can be addressed by enabling an actor

to allow multiple concurrent read threads and one write thread. To

avoid interference between readers and the writer, the actor can

use a multi-version representation of its state. This is a general-

purpose capability that can apply to any type of actor, not just

index buckets.

5.4 Implementation Status
So far, we have implemented the following features: I-indexes and

A-indexes; AODB-managed and storage-managed indexes; the

fault-tolerant, multi-step workflow for index update; single-bucket

indexes; distributed indexes partitioned by key-value; physically-

partitioned A-indexes; indexes that have very large buckets due to

data skew; a programming interface that is integrated into the

Orleans actor framework; and a modularized way of capturing

updates from actors. Features that are high on our list are range

indexes, and using transactions as appropriate for reducing I/O

and simplifying fault tolerance.

The implementation is approximately 6K lines of C#. Nearly all

of it is at application level, with just a few changes to the Orleans

runtime library for performance-sensitive operations. We plan to

release it soon as open source.

6. PERFORMANCE
We evaluate our indexing system in the exemplary three-tier setup

shown in Figure 4. Multiple clients concurrently invoke methods

on actors that are hosted by an actor middle tier. Both front ends

and middle tier servers are virtual machines hosted in Microsoft

Azure. Persisted actors, indexes, workflow records, and auxiliary

data are stored in Azure Table, one of Microsoft’s hosted key-

value stores.

We have experimented with moderately sized setups of up to 20

middle-tier servers. We overprovision the front ends to ensure

they are not the bottleneck, typically with twice as many servers

as the middle tier. Each client and server is an Azure “A4 worker

Cloud Storage
(Azure Table)

Actor Middle Tier: Orleans
(Azure VMs)

Front end Clients
(Azure VMs)

Figure 4. Performance evaluation configuration

role,” which is an 8-core 1.6GHz processor with 14GB of

memory. The middle-tier servers run the latest Orleans release,

version 1.3.1. The clients run the Orleans 1.3.1 client library,

which enables calls to actors executing in the middle tier.

The performance numbers that we present here are preliminary

and not comprehensive. There is a lot of room for optimizing the

system before using it in production. These results are intended to

give the reader intuition about the behavior of our indexing

system, but not its absolute performance.

To emphasize the latter point: The latest release of Orleans runs at

~200K requests/second on their nightly load test on 25 servers, on

a private cluster outside of Azure. In this load test, each client call

has two hops, which implies 16K requests/second per server (i.e.,

2*(200K/25)). Our baseline tests run at less than half that number.

To have high confidence in our absolute numbers, we need to

investigate the source of this discrepancy.

6.1 Scalability of A-Indexes
A major feature of Orleans is that it scales out to many servers. It

is important that indexed actors scale out too. To test this, we ran

a workload consisting entirely of updates to non-persistent actors.

The middle-tier application consists of a single actor type with

one indexed attribute. We compare three partitioning and

distribution strategies for a hashed index:

 a single-bucket cluster-wide index

 an index that is partitioned logically based on key values, and

 an index that is partitioned physically, with one partition per

server that indexes all actors on that server.

For a given number of servers, we did successive runs of two

minutes, where each run offered more load (i.e., requests/second)

than the previous run. To get stable numbers, we found it was

important to gradually increase load in this way, rather than

flooding the system with the maximum load it could handle and

waiting for it to stabilize. For each run, we measured throughput,

average latency, and 90th-percentile latency. Starting with a

relatively low request rate as the offered load from the front ends,

we gradually increased the request rate until either the average

latency of completed requests reached one second or the 90th-

percentile latency reached 3 seconds (whichever came first), and

recorded that as the throughput for that number of servers. We did

this for 5, 10, 15, and 20 servers, with a comparable number of

servers doing the load generation. The variance across runs was

typically 5-10% and never more than 15%. We omit error bars,

since they would make the graph unreadable.

A quick look at the graph in Figure 5 shows that throughput grows

as a function of the number of servers, validating the absence of

any major bottlenecks. It also shows a similar difference between

the throughput with no index and with each of the different index

types. We found this to be surprising. Whereas an index update to

a one-bucket or per-key index usually adds an RPC to the

execution, an index update to a per-silo index is a local call, which

should be much faster. After some investigation, we discovered

that our technique for ensuring per-silo calls were local was

effectively doing an RPC through the entire network stack and

hence was much slower than it should be. Avoiding this overhead

is a future-work item.

We define the scalability ratio as the fractional-increase in

throughput divided by the fractional-increase in the number of

servers. Ideally, we would like the ratio to be 1.0, but in fact it

was significantly less. For example, with no index the throughput

increases from 38K to 84K when going from 5 servers to 20

servers, which means the scalability ratio is 0.56, calculated as

follows: ((84K/38K) / (20/5)) = .56. For the one-bucket, per-key,

and per-silo cases, the scalability ratio is .61, .56, and .68,

respectively.

Figure 5. The performance scalability of different A-Indexes

Next, we study the effect of adding different numbers of A-

indexes to a non-persistent actor type. Each index is over a string-

valued property and is stored in one bucket. The configuration

uses 5 servers. The results, in Figure 6, show that adding one

index reduces peak throughput by 33%, due to the overhead of

capturing updates and forwarding them to index buckets. The

incremental cost of adding more indexes is lower, an additional

6%-13% per index.

Figure 6. Effect of adding A-indexes for non-persistent actors

6.2 Effect of Actor Persistence on Indexing
Although some actors are only memory resident, many can also

be persisted. We conducted an experiment to find out the effect of

actor persistence on the performance of different index types.

In this experiment, we consider a single actor type C with a string

property p. There are 10,000 instances of C initialized on 5

servers. The only operation done on the actors of C is UpdateP,

which updates the value of p with a value selected randomly from

1000 predefined values and then persists the actor. We

experimented with different index types: A-index, I-index and

storage-managed index. The non-fault-tolerant and fault-tolerant

variants of our AODB-managed I-index are represented as NFT I-

index and FT I-index respectively, where the latter uses the

workflow mechanism explained in Section 4.3. The storage-

managed index (SM I-index) uses a key-value store as its

20

30

40

50

60

70

80

90

5 10 15 20

Th
ro

u
gh

p
u

t
(k

ilo
 r

eq
u

es
ts

/s
ec

o
n

d
)

Number of middle-tier servers

none one-bucket

perkey persilo

5

10

15

20

25

30

0 1 2 3 4

Th
ro

u
gh

p
u

t
(k

ilo
 r

eq
u

es
ts

/s
ec

o
n

d
)

Number of Indexes

backend. The results are shown in Figure 7 and compared to a

baseline that has no-index on C.

Figure 7 The effect of index type on update throughput

As you see in Figure 7, there is not a big difference between the

performance of various indexing mechanisms if actors are

persisted. The reason is that storage is network-attached and the

indexing throughput is bounded by the throughput of network

connections initiated from each server. In the default storage

model supported by Orleans, each actor is persisted individually.

The writes to storage are not batched, which puts an upper bound

on the per-server throughput of operations on persistent actors.

Extending the Orleans storage model to support batch writes is a

subject for future work.

For persisted actors, some of the overhead related to indexing is

hidden by the necessary storage access. Hence, in this scenario,

the relative update throughput of A-Index is as high as 90% of the

update throughput for actors without an index.

To quantify this effect in isolation, we ran a simple experiment to

measure the combined effect on update throughput of persisted vs.

non-persisted actors and of indexed vs. non-indexed actors using

an A-index. In this experiment, updates to the index are

propagated lazily. The results are summarized in Figure 8.

By persisting actors, throughput drops by 82%, from 35K to 6K.

We ran 4K actors/server with 5 servers and overprovisioned

storage bandwidth, to ensure that this performance drop is entirely

due to processor overhead. By adding a non-persistent A-index to

non-persistent actors, throughput drops by 34%. When combining

both features, with an A-index over persistent actors, throughput

drops by 85%, which is only slightly more than adding persistence

alone. Since indexes are updated lazily, most of the overhead of

updating the A-index overlaps with the update I/O.

 Persisted Actor Non-persisted Actor

Indexed 5,400 23,600

Not Indexed 6,200 34,800

Figure 8. Comparing the effect of indexing and persistence on

update throughput (expressed in updates/second)

7. RELATED WORK
We compared AODBs to existing systems in the introduction.

Although we do not know of work on indexing that closely relates

to this paper, our indexing work is somewhat similar to

approaches to supporting a database cache in middle-tier servers.

For instance, MTCache by Larson et al. [11] caches relations in

the middle tier as materialized views. However, the cached data is

read-only and updates are always performed on the base data. It

uses SQL Server replication features to propagate changes in the

base data one complete transaction at a time in commit order (i.e.,

the caches are transactionally consistent but may not reflect the

latest state). A similar approach is infeasible in actor-oriented

databases because it relies on a (not generally available) mecha-

nism to trigger index updates from inside the storage system.

A lot of work has been done on maintaining materialized views.

The special case of lazily maintaining views is related to our work

as the same technique can be used to lazily update indexes.

However, systems like the one proposed by Zhou et al. [18] rely

on capabilities of the relational database system, namely a version

store to access before images of rows and transactions to update

the base table and create delta information atomically.

A recent work by Tang et al. [16] proposes a transparent indexing

middleware component between applications and log-structured

key-value stores, such as BigTable, HBase, or Cassandra. The

approach is to store an inverted index as a table alongside the base

data and to enrich the API with a GetValue method. Since this

index middleware is oblivious to the programming framework, it

can be used in an AODB as a storage-managed index.

Tai et al. describe an optimized replication strategy for indexing

when many indexes are supported on the same table [16]. Using

their optimized strategy, the number of replicas is less than twice

the number of indexes. This strategy could be applied to the

storage for our AODB indexes, thereby offering the benefit of

multiple indexes along with the fault tolerance benefit of

replication.

We note that ActorDB [1] also casts itself as a database inspired

by the actor model. However, there are some significant differ-

ences between that system and our AODB approach. An actor in

ActorDB is essentially a shard of a larger database, running as an

independent DBMS instance. For example, in an ActorDB

database that supports blog posts, each actor might contain tables

for the posts and comments for a single user. As in AODBs, actors

in this approach do not share state, but unlike AODBs, that state

in ActorDB is always persistent. Further, there is no direct actor-

to-actor messaging in ActorDB. Rather, applications interact with

one or more actors using SQL inside transactions. Relative to

Orleans, another difference is the actor life cycle: ActorDB actors

are explicitly created and destroyed.

8. CONCLUSION
We presented our vision of an actor-oriented database system and

the distinctive challenges in building one. We described an

indexing component for an AODB, which exemplifies many of

these challenges. We identified requirements for indexing actors

in an AODB and a system design that satisfies them. In particular,

we explained how to make indexes fault-tolerant and provided

details of our implementation. Our preliminary measurements

suggest that our implementation has good performance.

Achieving the vision of a fully functional AODB requires further

research on the other database features that are missing from actor

frameworks, including transactions, queries, views, stream

processing, triggers, and replication. This calls for a tailored

design of these components and their underlying algorithms to

keep up with scalability, fault tolerance, and programmer

friendliness of actor frameworks.

Acknowledgments: We are grateful for help with many aspects

of this work from Sebastian Burckhardt, Sergey Bykov, Julian

Dominguez, Tova Milo, and Jorgen Thelin. We also thank

1

2

3

4

5

6

7

not
indexed

A-index NFT
I-index

FT
I-index

SM
index

Th
ro

u
gh

p
u

t
(k

ilo
 r

eq
u

es
ts

/s
ec

o
n

d
)

Index Type

engineers in Microsoft Studios and the Orleans community for

suggesting and validating requirements for indexing actors.

9. REFERENCES
[1] ActorDB, actordb.com

[2] Akka documentation, http://akka.io/docs/

[3] Armstrong, J., “Erlang,” CACM 53, 9 (2010), pp. 68–75.

[4] Bernstein, P.A. et al., Orleans: Distributed Virtual Actors for

Programmability and Scalability, MSR-TR-2014-14,

http://research.microsoft.com/apps/pubs?id=210931.

[5] Burckhardt, S. and P.A. Bernstein, “Geo-Distribution for

Orleans,” https://www.youtube.com/watch?v=fOl8ophHtug.

[6] Cattell, R. et al., The Object Data Standard: ODMG 3.0,

Morgan Kaufmann Publishers, 2000.

[7] Eldeeb, T. and P.A. Bernstein, “Transactions for Distributed

Actors,” MSR Technical Report, https://www.microsoft.com/

en-us/research/publication/transactions-distributed-actors-

cloud-2, October 2016.

[8] Hewitt, C., P. Bishop, and R. Steiger, “A Universal Modular

Actor Formalism for Artificial Intelligence,” IJCAI, 1973.

[9] Java EE documentation, http://www.oracle.com/technetwork/

java/javaee/documentation/index.html

[10] Karger D., E. Lehman, T. Leighton, R. Panigrahy, M.

Levine, and D. Lewin: Consistent hashing and random trees:

distributed caching protocols for relieving hot spots on the

World Wide Web. STOC '97.

[11] Larson P.-Å., J. Goldstein, J. Zhou, “MTCache: Transparent

Mid-Tier Database Caching in SQL Server”, ICDE, 2004.

[12] Liskov, B., M. Castro, L. Shrira, A. Adya: Providing Persis-

tent Objects in Distributed Systems. ECOOP 1999: 230-257.

[13] Powers, D. M. W.: Applications and explanations of Zipf's

law. NeMLaP3/CoNLL '98: 151-160.

[14] http://tinkerpop.apache.org/

[15] Orleans, http://dotnet.github.io/orleans

[16] Tai, A., M. Wei, M.J. Freedman, I. Abraham, D. Malkhi,

“Replex: A Scalable, Highly-Available, Multi-Index Data

Store,” 2016 USENIX Annual Technical Conf., pp. 337-350.

[17] Tang, Y. et al., “Deferred lightweight indexing for log-

structured key-value stores.”, CCGrid 2015.

[18] Zhou, J., P.-Å. Larson, and H.G. Elmongui, “Lazy

Maintenance of Materialized Views”, VLDB, 2007

http://research.microsoft.com/apps/pubs?id=210931
https://www.youtube.com/watch?v=fOl8ophHtug
http://www.oracle.com/technetwork/java/javaee/documentation/index.html
http://www.oracle.com/technetwork/java/javaee/documentation/index.html
http://tinkerpop.apache.org/
http://dotnet.github.io/orleans

