
Dependency-Driven Analytics:
a Compass for Uncharted Data Oceans

Ruslan Mavlyutov
University of Fribourg

ruslan.mavlyutov@unifr.ch

Carlo Curino
Microsoft

ccurino@microsoft.com

Boris Asipov
Microsoft

basipov@microsoft.com

Philippe Cudre-Mauroux
University of Fribourg

pcm@unifr.ch

ABSTRACT
In this paper, we predict the rise of Dependency-Driven Analytics
(DDA), a new class of data analytics designed to cope with growing
volumes of unstructured data. DDA drastically reduces the cogni-
tive burden of data analysis by systematically leveraging a compact
dependency graph derived from the raw data. The computational
cost associated with the analysis is also reduced substantially, as
the graph acts as an index for commonly accessed data items. We
built a system supporting DDA using off-the-shelf Big Data and
graph DB technologies, and deployed it in production at Microsoft
to support the analysis of the exhaust of our Big Data infrastructure
producing petabytes of system logs daily. The dependency graph in
this setting captures lineage information among jobs and files and
is used to guide the analysis of telemetry data. We qualitatively dis-
cuss the improvement over the brute-force analytics our users used
to perform by considering a series of practical applications, includ-
ing: job auditing and compliance, automated SLO extraction of
recurring tasks, and global job ranking. We conclude by discussing
the shortcomings of our current implementation and by presenting
some of the open research challenges for Dependency-Driven An-
alytics that we plan to tackle next.

1. INTRODUCTION
Large companies operate increasingly complex infrastructures to

collect, store, and analyze vast amounts of data. At Microsoft, our
infrastructure consists of a number of very large clusters (up to 50k
nodes each) serving thousands of data scientists, running hundreds
of thousands of jobs daily, and accessing billions of files. The
exhaust of this infrastructure consists of petabytes of system logs
daily. These logs faithfully capture all relevant aspects of our in-
frastructure, applications, and data life-cycle. However, their sheer
size and loose structure make them very challenging and expensive
to access and analyze.

To address this problem, we built a system—currently in pro-
duction at Microsoft—that automatically extracts from the logs a
compact, higher-level graph representation capturing entities (e.g.,

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

 "message":"2015-08-09 2
2:52:27,978 INFO org.apa
che.hadoop.yarn.server.n
odemanager.containermana
ger.monitor.ContainersMo
nitorImpl: Memory usage
of ProcessTree 1927 for
container-id container_1
439134064263_0003_01_630
7591: 3.1 GB of 4 GB phy
sical memory used; 7.1 G
B of 8.4 GB virtual memo
ry used","@version":"1",
"@timestamp":"2016-03-10
T14:27:41.644Z","beat":{
"hostname":"diufpc314"

 TXT

Q1: “Blast radius of JobA”

010011110111010101110010
001000000111000001100001
011100000110010101110010
001000000111011101101001
011011000110110000100000
011000100110010100100000
011101000110100001100101
001000000110001001100101
011100110111010000100000
011100000110000101110000
011001010111001000100000
011010010110111000100000
011011110110111000100000
010000110100100101000100
010100100010110100110010
001100000011000100110111

 BIN

JobA

MachineD

FileB

User interface

Dependency graph

Ocean of log data

(2)

(1)

(3)

N

entities,
 relationships,
 properties...

Figure 1: Dependency-Driven Analytics: a log-analytics exam-
ple. (1) Petabytes of daily logs; (2) Dependency Graph that rep-
resents a lightweight “skeleton” of the logs used for navigation;
(3) User-level queries return bytes of aggregated data.

jobs, files, machines) and their dependencies (e.g., job reads file),
and provide this to our users as a compass to navigate this ocean of
raw data. The result is a declarative, directed and informed access
to the logs that saves users hours of development time, reduces the
computational cost of common analyses by orders of magnitude,
and enables interactive exploration of the logs—see Figure 1.

A key tenet of our paper is that the log-analysis scenario pre-
sented above is just one example of a broadening class of data an-
alytics we call Dependency-Driven Analytics (DDA). In DDA, raw
data are (automatically) preprocessed to extract a semantically rich
and compact graph structure that captures the key entities in the
data as well as their relationships—often dependencies among data
items, hence our choice of name. We expect DDA to emerge in
settings with massive volumes of loosely structured data, produced
by uncoordinated parties. In this context, we argue that two costs
become prohibitive: 1) cognitive costs for users to understand the
many quirks and local semantics of the data and to parse/analyze
such raw data, and 2) computational costs when scanning/filter-
ing/joining the data in their raw form.

Anecdotally, we observed these issues in production settings at
Microsoft for the log-analytics example introduced above; Users
and cluster operators alike were forced to write complex process-
ing scripts—and invest substantial computational power—to ex-
tract usable insight from these raw textual logs. These efforts be-
came unattainable in the long run, as the software components pro-
ducing the logs are owned by multiple teams and keep evolving
independently. Users often gave up or employed rough, indirect
measurements to estimate quantities that were precisely reported in
the logs. Section 2 discusses DDA as a pattern for data analytics,
and presents key application scenarios.

For those reasons, we embarked in building a system to support
DDA named Guider. Guider is built from off-the-shelf Big Data
and graph DB tools to support the access to very large log data in
a more effective and systematic way. Guider is in production today
and powers several key use cases at Microsoft, both in production
and research stages (the architecture and use cases for Guider are
discussed in Section 3).

Our vision for DDA goes well beyond the initial capabilities of
our system, that was custom built for the log analysis instance of
DDA. We expect the process of extracting the dependency graph
from the raw data to be eventually fully automated, leveraging tech-
niques akin to entity extraction and deduplication. The graph itself
is potentially very large and calls for improved scale-out graph and
DB technologies—in Guider we are forced to use multiple narrow
projections of the original graph to support different applications
scenarios. Novel language support is also required to effectively
access the graph, relational and unstructured data in a unified way.
We present a research agenda in support of DDA in Section 4.

We begin by introducing the notion of Dependency-Driven Ana-
lytics in more detail below.

2. DEPENDENCY-DRIVEN ANALYTICS
Dependency-Driven Analytics (DDA) is a new pattern in data an-

alytics in which massive volumes of largely unstructured data are
accessed through a compact and semantically-rich overlay struc-
ture: the dependency graph. The dependency graph fulfills two
roles: it serves as 1) a conceptual map of the domain being mod-
eled as well as 2) an index for some of the underlying raw data.

Conceptual Map The dependency graph is a structure overlaid on
the raw data, which takes the form of a highly specialized graph and
acts as a cognitive guide for the analytics process. Both its nodes
and edges are typed. Nodes represent the main entities (e.g., users,
jobs, tasks, machines or files) that are captured by the raw data,
while edges represent their relationships or dependencies (e.g., a
job reads a file, or a task executes on a machine). Instead of sifting
through massive volumes of shapeless data, the user of a DDA sys-
tem can navigate this conceptual map, and quickly correlate data
items which are very far apart in the data but directly or indirectly
connected through the dependency graph. Our experience indicates
that this drastically lowers the cognitive cost of accessing the un-
structured data. The dependency graph can be seen as a knowledge
base or ontology derived from the raw data; One major difference
from standard Knowledge Base Construction [15], however, is that
in DDA we do not aim at extracting all pieces of information from
the logs, but rather we aim at building a sparse skeleton of key
pieces of information that users leverage to traverse and access the
raw data.

Index The second key role of the dependency graph is to index key
portions of the logs and allow for highly efficient access patterns
for DDA, avoiding intractably expensive scans and joins (recall we
deal with potentially petabytes of raw data, created by several in-

dependent pieces of software). For some of the queries, the graph
itself will be sufficient (i.e., the dependency graph is a covering
index for some queries), allowing for interactive querying.

We postpone to Section 3 the description of how the graph is
ingested, stored, and queried. In the remainder of this section, we
introduce three application scenarios that we believe are a good
match for DDA.

2.1 Application Scenarios
DDA provides a pattern of analytics that is most suitable under

the following conditions: 1) analyses are mostly localized, 2) large-
scale data, 3) mostly unstructured data, and 4) data produced by
loosely coordinating parties. The combination of these properties
makes standard Big Data solutions largely ineffective. The cogni-
tive/development cost of understanding all data formats, of parsing
and finally analyzing the data is prohibitive. Similarly, the cost of
performing scans/joins/aggregates is excessive with respect to the
relatively localized type of analysis. We present three application
scenarios for DDA below, which all exhibit the properties described
above.

2.1.1 Infrastructure Logs Analysis
The many systems that make up the Microsoft Big Data infras-

tructure produce a massive volume of system-level logs (petabytes
daily), which capture every aspect of our infrastructure, data, and
applications lifecycle. These systems are owned and operated by
multiple teams and keep evolving independently. Users and cluster
operators alike are forced to write complex processing scripts, and
to invest substantial computational power, to extract insight from
those raw textual logs. The resulting “cooked” data are surfaced in
purpose-built monitoring tools, dashboards, and alert systems.

This log analytics scenario is the one we target with our produc-
tion system and it is discussed in greater detail in Section 3.

2.1.2 Enterprise Search
A large fraction of the information created and processed by

large companies is unstructured. Often, the same entities (e.g., cus-
tomers, transactions or employees) are found in dozens of differ-
ent enterprise systems ranging from email or document servers to
calendars, instant messaging systems and internal social networks.
Traditional enterprise search solutions build an inverted index from
all sources and let end users query the resulting system through
keywords. Such solutions are however incapable of reconstructing
the context in which the entities operate, for example to link trans-
actions to their customers, employees forming a team, or track the
approval of a spreadsheet. A DDA solution would precisely answer
those needs, by modeling key entities in the enterprise and by re-
constructing their interdependencies through a dependency graph
for further analysis. As extracting from this type of documents
is likely more challenging than from more regular infrastructure
logs, natural language text analysis solutions (such as [15]) could
be leveraged in this context.

2.1.3 Internet of Things (IoT)
Embedded and mobile devices are increasingly connected, form-

ing webs of physical things1. Large Webs of things can intercon-
nect thousands of heterogeneous devices at the application layer.
Each device, however, maintains its own logs (browse logs, com-
mits, errors, etc.) Building analytics on top of such systems re-
quires to identify, and then match entities across devices. One
example is building a graph of users across devices for advertis-

1http://webofthings.org/

ing purposes2. Further examples include following a single event
across multiple sensors, and debugging or auditing complex webs
of things. All cases directly match the DDA process sketched above,
where a dependency graph has to be modeled, and then instantiated
by collecting and analyzing massive amounts of heterogeneous and
unstructured data.

Next, we present a practical implementation of DDA for infras-
tructure log analysis.

3. Guider: A PRACTICAL TAKE ON DDA
Historically, Guider was built to support only auditing and com-

pliance applications (see Section 3.2.3). Therefore, it employed
a dependency graph focused on tracking provenance information.
Provenance is tracked at different levels of granularity (pipeline/-
datasets, job/file, and task/column), allowing for different levels of
inspection. The graph also captured all ingress/egress operations
from outside the cluster. Over time, we realized that focusing only
on provenance was restrictive, and we started to track telemetry in-
formation for every entity that appeared in the dependency graph.
For example, the total CPU hours consumed by JobA over time,
or the timestamp when FileB is read by JobC. This enabled a much
broader set of analyses, which we discuss in the second part of Sec-
tion 3.2, and provided the seed for our DDA vision. At the time of
writing, the deployed version of Guider sits somewhere in between
its original tightly focused mission and the more ambitious DDA
vision.

3.1 Architecture overview
With reference to Figure 2, Guider’s architecture is organized as

follows:

Dependency Definition: an offline modeling step akin to schema
design for relational databases or ontology definition for the Se-
mantic Web, where key entities and their dependencies are man-
ually or automatically defined. Each entity/dependency is associ-
ated with a set of extraction rules, instructing the DDA runtime on
how to derive identifiers, relations, and attributes from the raw data.
This step can be challenging for free-form textual data [15], but is
typically easier for unstructured data produced by automated sys-
tems (e.g., IoT or infrastructure logs), whose highly regular struc-
ture is easier to learn from and more conducive of rule-based ex-
traction. In our current implementation of Guider this step is com-
pletely manual, however in Section 4.2 we discuss ways to auto-
mate this process.

As an example of extraction rules, we show how the total CPU
hours consumed by a job can be derived from logs. The com-
ponents of our BigData infrastructure track job execution at each
worker node in our clusters, collecting telemetry at the granularity
of each task/process that belong to a job. Specifically, infrastruc-
ture daemons running on each node monitor and log to local disk all
state transitions of a job’s task, and timestamps them precisely. The
two main transitions we care about are the ones marking the start
and end times of a task, logged respectively in a ProcStarted
and ProcEnded files. From this, we can then derive the duration
of each task, which can be then aggregated to compute the total
processing time consumed by the job.

Since this information is potentially scattered over 100k individ-
ual files (2 files for each of the over 50k nodes that make up our
larger clusters), these logs are continuously uploaded to our DFS,
where they can be processed further. The rule takes the form of a

2See the 2016 CIKM Cross-Device Challenge: https:
//competitions.codalab.org/competitions/11171

SQL-like script [5] shown below. This script collects and parses
the logs. The textual logs are transformed into a tabular format
by means of an EventExtractor C# UDF, which behaves like
a very robust parser (automatically correcting or skipping oddly
formed lines). The tabular representations are then joined, and ag-
gregated into a <JobId, procHours> summary table that is
stored as an intermediate file processingHours.csv.

extStart = EXTRACT *
FROM "ProcStarted_%Y%m%d.log"
USING EventExtractor("ProcStarted");

startData = SELECT ProcessGuid AS ProcessId,
CurrentTimeStamp.Value AS StartTime,
JobGuid AS JobId

FROM extStart
WHERE ProcessGuid != null AND
JobGuid != null AND
CurrentTimeStamp.HasValue;

...

procH = SELECT SUM((End - Start).TotalMs)
/1000/3600 AS procHours,
endData.JobId,
EndTime.Date AS Date

FROM startData INNER JOIN endData ON
startData.ProcessId == endData.ProcessId AND
startData.JobId == endData.JobId

GROUP BY JobId, Date;

OUTPUT (SELECT JobId, procHours FROM procH)
TO "processingHours.csv";

Dependency Graph Extraction: this is a runtime phase in which
the rules described above are applied to the raw data. This is akin
to an ETL step for a relational data warehouse, but differs as the
dependency graph is a sparse structure, which only acts as a guide
to access the raw data. In Guider today, we solve this through the
notion of a data scanner, a batch process running daily. Each scan-
ner processes the logs of a different system component and collects
a different portion of the dependency graph (e.g., we have a job
telemetry scanner analyzing solely job-level telemetry from the ap-
plication logs, or a file-access scanner, consuming filesystem logs
and collecting all read/write events for each file).

The script shown above is one of the scripts used by the job
telemetry scanner. At our scale, the “small” input logs from the
example above consists of multiple TBs of daily data. An extended
version of the above script runs in 6-7 min by employing over 3k
parallel tasks. The computation spans hundreds or thousands of
machines, as the underlying infrastructure optimizes task location
to make data accesses node or rack-local.

This batch-oriented solution, while very scalable, prevents us
from achieving real-time analysis as the logs are being produced.
While micro-batching style techniques [20] could be leveraged to
improve the time-to-insight, we are currently working on a substan-
tially more efficient approach, specialized for log collection and
aggregation.

Dependency Graph Storage: given the extracted nodes and edges,
we need to effectively and compactly store the resulting graph.
The key intuition in that context is that dependency graphs are
highly structured compared to standard graphs. Nodes and Edges
are typed and therefore can be stored and indexed very efficiently.

In our current implementation, the dependency graph is parti-
tioned by node and edge type, as well as by time (each day makes
up a separate partition). The primary storage is a DFS [5]. In or-
der to enable interactive access, we designed several projections

Raw
Data

Extraction

Dependency
Definition

Storage

Querying

Scope/
Cosmos Neo4J

dependency
graph

Schema +
extr. rules

Big Data
System

Graph
System

Raw
Data

Raw
Data

Figure 2: Guider’s architecture.

of the graph that fulfill specific application needs. For example,
the telemetry information we derive with the above rule is stored
in multiple files (one per day), and it is kept separate from other
job-level metadata. This allows us to perform cheap file-level fil-
tering of the provenance graph contents, and load 1 day worth of
telemetry information in a single-node Neo4J [16] instance.

Beside basic partitioning, we also perform various aggregations
on the graph, such as leveraging the recurrent nature of the jobs
to produce a summarized provenance-only graph that captures re-
curring jobs (and files) in a compact, non-redundant way. This al-
lows us to load up to 30 days of provenance-only information in a
single-node instance of Neo4J and power the auditing/compliance
scenario of Section 3.2.3.

When full-detail (e.g., task-level) and long time-horizons are re-
quired (e.g., for the SLO extraction use case), we resort to slower
but massively scalable Big Data infrastructures accessing this graph
representation directly from the DFS—as we discuss next.

Dependency Graph Querying: the querying patterns to support
DDA queries are unique, as they involve both graph traversals,
graph algorithms, as well as relational and unstructured data pro-
cessing. This is the next logical step in the progression from re-
lational to Big Data querying. In Big Data querying, the focused
has shifted from relational-only queries to the support of unstruc-
tured data and arbitrary UDFs and UDAs. With DDA, we intro-
duce the need to also handle graph data. Our current solution is
quite limited in that regard, as it allows to run pure graph queries
on one Neo4J instance only, or complex analytics using a full-
fledged, scan-oriented, Big Data solution (running over the DFS
version of the data or the raw logs). We considered several other
graph technologies, including TitanDB, Spark GraphFrames, Tin-
kerpop/Tinkergraph, but at the current state of stability/develop-
ment they were not sufficiently capable for our setting. This expe-
rience indicates that industry is in desperate need for a fully capa-
ble, scale-out graph solution that can handle complex, large, and
structured graphs, as well as a unified surface language for graph,
relational and unstructured data handling.

The above limitations forced us to expose different APIs for dif-
ferent tasks:

• Most users simply access the data through our system front-
end UI, which provides an interactive browsing and search
experience, as shown in the partially-anonymized screenshot
of Figure 3. The figure shows a user analyzing the upstream
and downstream dependencies of a file of interest (non-des-
criptively named Output.ss.

• Highly interactive graph queries are supported through graph
query languages (Cypher/Gremlin) and are executed on a
fraction of the overall data, which is loaded in the main mem-
ory of a Neo4J single-instance server. Through a currently

Figure 3: Guider’s interactive browsing UI.

somewhat inelegant process, we can support arbitrary parti-
tions to be loaded to Neo4J.

• Full-graph OLAP-style analysis of the graph need to be coded
in a SQL-like scripting language, and operate directly on a
DFS-resident copy of the data.

Guider is currently in use at Microsoft to support a combination
of production and research efforts that require obtaining detailed in-
sight from the data. We report on a few of those next, starting from
the auditing/compliance use case that initially motivated building
Guider

3.2 Applications
We introduced our prototype to several product and research teams

inside Microsoft, which proposed and helped us implement a sur-
prisingly high number of applications for Guider We briefly de-
scribe some of these applications below.

3.2.1 Global Job Ranking
Estimating the importance of the various jobs running on the

cluster is often essential, for example when selecting the order in
which jobs should run, or to cope with capacity impairments (if
only a fraction of jobs can run, how do we choose?). There are
many ways to define the importance of a job, one being the job
contribution to future cluster operations. The number of jobs con-
suming the job output or their derivatives is a first approximation
of that metric. We implemented a Global Job Ranking tool at Mi-
crosoft using that metric and leveraging Guider to traverse the de-
pendency among jobs. This is equivalent to performing query Q1
(shown below) for all jobs. This operation is daunting when per-
formed on raw logs, but becomes a rather standard graph traversal
and aggregation when leveraging the dependency graph.
Example Q1: “job failure blast radius”. Consider a user/op-
erator who wants to quantify the impact of a failed run of a re-
curring production job JobA on downstream jobs—where impact
is measured as the sum of CPU-hours of the affected jobs, and
“downstream jobs” are jobs that directly or transitively depend
on JobA’s output (see Figure 4). This user has to: access mas-
sive amounts of logs, finding the entries for each historical run
JobAi of job JobA, parse the job-execution logs, collect a list of
output files out(JobAi), search for all job instances Ji such that
input(Ji)∩ output(JobAi) 6= ∅, repeat recursively until no more

JobA_1
...

FileA_1

FileB_1

JobB_1

JobA_1 impact

JobA_i

failed

......

Failed run impact
JobA_2

...

FileA_2

FileB_2

JobB_2

JobA_2 impact

Time

Figure 4: Impact of a failed run for recurring job JobA—the “blast radius” of Example Q1.

jobs are found, deduplicate this job list, join it with the correspond-
ing telemetry logs, sum all CPU-hours used by the jobs downstream
of each daily run JobAi, and finally average across runs.

Answering query Q1 requires a detailed understanding of the log
format and its many quirks (e.g., inconsistent field naming, differ-
ent system components reporting time in UTC or local time-zones,
etc.). This translates in hundreds of lines of complex analytics
scripts, which need to be run on a Big Data infrastructure burn-
ing tens or hundreds of CPU-hours to scan and dissect potentially
many TBs of textual logs.

On the other hand, given a dependency graph capturing job/file
lineage as well as basic telemetry information, the user can answer
Q1 with minimal effort. Using a language akin to Gremlin as our
graph query language, query Q1 can be expressed as:
graph.traversal().V()
.has("JobTemplateName","JobA_*")
.local(emit().repeat(out())
.times(100).hasLabel("job")
.dedup().values("TotalCPUTime").sum())
.mean()

This can be written in minutes, without any knowledge of the log
format, and can be run on a single-node, in-memory, graph database
(e.g., Neo4J) in a matter of seconds. Next, we introduce a more
navigational and challenging DDA use case:

3.2.2 Debugging

Example Q2: “Debugging a recurring job” Consider the task of
debugging the failure of instance JobAi of the recurring job JobA
from Example Q1. Isolating the root cause of the failure (e.g., a
misbehaving UDF in an upstream job) is non-trivial, as this may
be local to JobAi or due to a malformed input file produced by a
buggy upstream job. The job’s owner starts by analyzing the logs of
JobAi. If nothing looks suspicious, the user will turn to analyzing
the job’s input. This means looking for log lines listing the input
files for the job, and separately inspecting their metadata. If an
input looks unusual (e.g., smaller than normal), the user can scan
the logs again looking for jobs that wrote to this file (before JobAi

attempted read). The user then inspects those logs. This alternation
of navigation and inspection continues until evidence of the root
cause is located. Note that the logs explored in this manner are
potentially generated by a multitude of systems (Front-end nodes,
Job Runtime, Cluster Scheduler, DFS, UDFs, etc.)

Performing the above task over raw logs is painstaking, as key
information such as job input/output are buried in the middle of
massive amounts of unstructured text logs—most of which are ir-
relevant to the task at hand. On the other hand, given a depen-
dency graph, the navigational portion of Q2 becomes trivial—a ba-
sic graph traversal similar to the one from query Q1. Moreover,
since the job being investigated is recurrent, the job’s owner can
perform simple graph analytics in search of abnormalities (e.g., in
the size of the inputs to JobA). It is important to point out that the
overall process still requires direct access to some of the raw logs,
to determine the root cause of JobAi’s failure. This is quintessen-
tial of DDA, where the dependency graph acts as a guide to access

raw data. The development and computational cost is however re-
duced by orders of magnitude, as the user access of raw logs is
targeted.

3.2.3 Auditing and Compliance
Data within large organizations are often stored in multiple in-

frastructures and across several geographic regions subjected to dif-
ferent regulations. Current storage and access technologies guaran-
tee data integrity and protect against unauthorized access, but can-
not enforce legal regulations or business rules. A number of impor-
tant regulations prevent data to flow across geographic regions, like
European Union regulations prohibiting the copy of “personal data”
beyond jurisdictional boundaries. There are also laws and business
rules for data at rest, for example requirements to delete personal
data identifying users access to online services after a given pe-
riod of time (e.g., 18 months), or business agreements restricting
3rd-party data access to certain scenarios [3].

Current data stores are unable to identify policy violations in that
context (e.g., based on flexible business rules). At Microsoft, we
have deployed a monitoring system leveraging DDA for that pur-
pose. The resulting Compliance Monitoring system is rule-based.
Compliance managers derive compliance rules from business re-
quirements and regulations, and enter them using a Web interface.
“User IP addresses must not be retained over 180 days” or “Per-
sonally identifiable information must not be combined with anony-
mous identifiers” are typical examples of such rules.

The core of the system is a Big Data job operating on the depen-
dency graph and taking the list of compliance rules as an input. The
system returns a list of violations, which are used to generate noti-
fications to compliance managers. Prior to the introduction of the
DDA-based Compliance Monitoring system, all auditing was man-
ual, and substantially more costly. Once deployed, the automated
DDA-based Compliance Monitoring system detects compliance vi-
olations on a continuous basis, providing improved coverage and
latency.

3.2.4 Morpheus
Morpheus [9] is a research system running on top of the resource

management infrastructure of our clusters. It enforces jobs dead-
lines (decreasing deadline violations by an order of magnitude),
while retaining a high cluster utilization. Morpheus uses Guider
to access the dependency graph as its main inference tool. The
graph is used to infer user expectations as explicit SLOs inferred
from historical data. In the process, the system makes heavy use of
telemetry information (job resource consumption, job temporal ac-
cess pattern, etc.). The data stored in the graph allow to group job
instances into groups of periodic jobs (Job Templates)—see Fig-
ure 4. For every periodic job, we query Guider to obtain the earli-
est possible submission time (earliest time when all input data are
available) as well as the latest completion time (latest time before
any of the job’s output is consumed by other jobs or egress oper-
ations). Having access to rich information about the jobs such as
their validity intervals, usual job running times or resource utiliza-
tion profiles enables Morpheus to automate this complex process.

Table 1: DDA vs raw log baseline
Q3: “Average Count of inputs per Job”

Raw Graph on DFS Neo4J
LoC 50 25 7
Run-time 58min 11min 4.9sec
CPU-time 563h 25h <40sec
IOs 18.6TB 61GB <24GB (RAM)

3.2.5 Datacenter Migration
The Big Data clusters we operate at Microsoft are multi-tenant

and often serve hundreds to thousands of customers from several
business units. As their computational demands grow and saturate
the clusters (after all possible capacity expansion), some tenants
must be relocated to new clusters. The difficulty of that task comes
from the fact that the business units share a lot of data and often
have complex interdependencies at the job level (jobs of one busi-
ness units often consume the job outputs of other business units).
We recently leveraged Guider to find an optimal solution to that
problem. By querying Guider we constructed a specialized projec-
tion of the graph at the tenant level, with edges storing the amount
reads/writes shared by two tenants. At this point, determining which
tenants are easier to migrate becomes a matter of performing a par-
titioning of the graph (i.e., searching for a graph cuts that fit in the
target clusters, and minimizing the cost of the edges being cut).
In practice, this is further complicated by the presence of business
restrictions. We solved this using an Integer Linear Programming
formulation that captures all business restrictions as well as cluster
capacity limitations and cross-tenant data sharing. This provided
invaluable input to the migration team, and helped minimizing the
cost of the migration.

3.3 Preliminary Evaluation
As a demonstration of the DDA concept and the Guider system,

we showcase two queries (Q3 and Q4) performing simple aggre-
gates on jobs and files over one month of data. Q3 computes the
average count of inputs for each recurring job, while Q4 calculate
the ratio of jobs that are recurrent vs ad-hoc. These two queries
are routinely evaluated and displayed as part of a monitoring dash-
board. They were chosen as they are easily expressed both on the
dependency graph and over raw logs.

We compare three variants for each query: 1) a baseline access-
ing the raw logs3 using a SQL-Like Big Data runtime [5], 2) the
same runtime operating on the DFS-resident copy of the depen-
dency graph, and 3) a Cypher query running on a single-instance
Neo4J graph DB [16]. Recall that in Neo4J we load only a projec-
tion of the data sufficient to answer the two queries. In all cases,
the IOs reported are after all possible partition pruning.

The results are presented in Table 1. Even for these simple
queries, the differences are substantial. Comparing Q3 and Q4 on a
DDA system vs operating directly on the raw logs, we observe: 1)
almost an order of magnitude less code, 2) up to 3 orders of magni-
tude less IOs, 3) up to 5 orders of magnitude less cpu-time, and 4)
up to 3 orders of magnitude shorter run-times.

Our only goal with this preliminary evaluation is to highlight
through a couple of simple examples the large potential of DDA
and of systems like Guider in drastically reducing development and
computational costs.

3To be precise the logs accessed are already partially preprocessed,
as computing on the truly raw logs would require an additional 1 or
2 orders of magnitude IO and computational costs.

Q4: “Ratio of recurring vs Ad-hoc Jobs”
Raw Graph on DFS Neo4J

LoC 22 21 3
Run-time 8min 24min 10.9sec
CPU-time 41h 14h <90sec
IOs 966GB 638MB <24GB

4. RESEARCH AGENDA
Guider is a first practical step towards building a DDA system.

We describe below fundamental research challenges to achieve the
full DDA vision. Some of the challenges we discuss below are new,
while some will look familiar. In the latter case, our discussion
serves as further evidence of their industrial relevance and potential
for impact.

4.1 Graph Storage and Querying
Creating, storing and manipulating the dependency graph at scale

is a major technical issue; our current solution leverages two dif-
ferent back-ends, and lacks an integrated language surface. This is
far from optimal. There is a clear need for more efficient and scal-
able graph data management solutions, which could also elegantly
integrate with mechanisms for non-graph data manipulation.

One interesting avenue for future work is to leverage the prop-
erties of the dependency graph to optimize storage and query pro-
cessing. For example, the dependency graph in the log analytics
use case is a temporal DAG with causal edge semantics, whose
nodes and edges are typed, with strict domains and ranges. Stating
it more generally, the dependency graph is more “structured” than
typical graphs, i.e., it has a clearer schema. This opens up many
options for optimization, and to support a blurring of the graph/re-
lational divide. As an example, recall our running example Q1;
Without special optimizations, a relational system would require
multiple joins between all nodes and edges. The fact that the struc-
ture we operate on is a causal, temporal graph allows us to prune
all nodes/edges that “precede” the source node JobAi chronologi-
cally. This pruning can be pushed down to the storage of the graph
(like we do in our time-partitioned DFS copy of the graph) to dra-
matically reduce IO. The fact that nodes and edges are typed can
also be used for pruning, further reducing the cardinality of scans
and joins. We advocate for a system that automatically derives such
complex constraints4 (as part of the dependency definition process),
and leverages them during query optimization.

4.2 Automated Dependency Graph Construc-
tion

As stated above, our current prototype requires users to manually
write log mining scripts, and to update them whenever the log for-
mat gets updated. However, we envision to automate this process.
The reason for automation is obvious: even for a reasonably simple
instance of DDA such as log analysis, the process of defining all rel-
evant entities/dependencies and their extraction rules is costly, and
given a fast evolving ecosystem, likely requires continuous main-
tenance. To orient the reader on how costly this process is, Hadoop
alone has 11k log statements, spread over a 1.8M lines codebase,
that received 300k lines of code change in 2015 alone. And this
is just one of the many interacting systems in the ecosystem. As
observed in [10], standardizing shared formats is impractical even
within a single company, as too many different teams contribute to
the software ecosystem. The remaining alternative is to automate

4Note that the constraints in this example enable push-down pred-
icates across tables, enabling sophisticated query rewritings.

the a-posteriori ingestion of logs. In the following, we describe our
current efforts towards that end.

Automatically constructing the dependency graph from log data
requires understanding the semantics of the logs, including all enti-
ties appearing in the logs as well as all relationships between them.
In rare cases, the text of the logs is self-contained and is sufficient
for human readers to understand all the entities and relationships
that are mentioned. However, in most cases the logs favor brevity,
are difficult to read even for humans, and do not contain extensive
information on the way the system operates. Non-experts who do
not have a deep understanding of the system architecture often have
troubles reconstructing the processes that are described in the logs.
In addition, important relationships are often not explicitly stated in
the log (in Hadoop, for instance, the fact that an application created
a file has to be inferred by joining data from both HDFS and YARN
logs). Sometimes also, log data is stored in a tabular form, giving
little to no context to infer semantics.

Given those limitations and our own experience, we believe that
inferring log semantics from the logs themselves is impractical in
general. Instead, we propose an alternative solution that takes ad-
vantage of the fact that the source code of the system producing the
logs is often available. Having the source code available offers us
a number of key benefits:

• The source code is by definition interpretable by machines.
Hence, the parsers, compilers or interpreters that were writ-
ten for a particular programming language can be leveraged
for manipulating the source code.

• The source code holds a full description of all the entities ap-
pearing in the logs, including what kind of classes of entities
are being used and how the entities interact with each other.

• The code describes exactly how the log lines are getting pro-
duced and how the entities and relationships are serialized,
precluding the need to apply Data Mining or NLP techniques
like named-entity recognition for vertical domains [14] or
word-embedding to capture such information.

Running the code in debug or tracing mode may give precise
information on the entities, on how they interact and on how they
are serialized in the log lines. However, such a process is costly and
often impossible to automatize taking into account the distributed
nature of many systems. Instead, we suggest to use static code
analysis below.

Code parsers used in modern IDEs (e.g., javaparser.org) are able
to reconstruct class hierarchies (when considering the OOP paradigm),
associated objects, as well as invoked methods for each particular
instance. That information allows us in turn to associate log lines
with particular method invocations generating the log messages.

By combining data on several levels of the function call stack, we
automatically build a set of templates for the log messages. Each
template is a string with slots for placeholders. Each slot is charac-
terized by a (Java) class name and the property (or method name)
that is used to get the placeholder’s value. We give some examples
below:

Template:

<System.currentTimeMillis()>
INFO
<FSNamesystem.class.getName()>:
allowed=<TicketService.Allowed()>
ugi=<UserGroupInformation.ToString()>
(auth:SIMPLE)
ip=<InetAddress.ToString()>
cmd=<"listStatus">

src=<Path.ToString()>
dst=<null>
perm=<null>
proto=<Server.getProtocol()>

A log message associated with the template:

2016-02-19 23:59:54.458 INFO
FSNamesystem.audit: allowed=true
ugi=hbase (auth:SIMPLE)
ip=/134.21.215.91
cmd=listStatus
src=/hbase/archive
dst=null perm=null
proto=rpc

The set of templates that can be extracted in that way can then
be used to parse the log dataset. Log parsing produces a stream
of values, each associated with particular properties (which in our
context correspond to classes in the source code). The next step is
to associate them with specific objects (class instances). Our main
idea in this context is to identify and rely on discriminative object
fields (those that have a unique value for every instance of a class).
Usually these fields are primary keys or unique names that can be
expressed as UUIDs or strings.

The underlying idea is that every log message, while providing
some information about one or several objects, should also clearly
identify such objects. As such, we may expect to find in each tem-
plate several mentions about a given class, with at least one of them
being discriminative (to uniquely identify the entity in the log mes-
sage).

Extraction of discriminative fields can be undertaken in a rule-
based manner or via Machine Learning. There are several factors
that could hint for discriminative properties:

• The frequency of the field in the templates should be in the
same ballpark as the frequency of the class. Typically, the
discriminative fields of a class are also those that are appear-
ing most frequently.

• The type of the field. We can expect discriminative fields to
be expressed via strings or UUIDs. From our own analyses,
the likelihood to have them as numeric values is very low.

• The field name as well as its context in the template often
give additional information about its role.

The overall approach consists then of three steps:

• Identify templates and their structure;

• For every object class, identify discriminative fields;

• Join data for every object based on discriminative field val-
ues.

We are currently experimenting with this process. We still face a
number of issues in that context:

• Identifying the life cycle of entities and how they evolve from
a given state to another is hard and requires to correctly iden-
tify and interconnect the various stages in the log messages;

• Identifying the lifespan of an entity is often challenging, given
that both the creation and the destruction of the entity can be
missing from the logs;

• Generally speaking, relationships between entities can only
be inferred based on the fact that they co-occur in log mes-
sages. The message type is often the only descriptor of such
relationships, whose semantics are hence very difficult to
guess.

To further complicate this task, our next challenge is to achieve
all this in near real-time as data items are produced across hundreds
of thousands of machines. At Microsoft, we have built solutions
to ingest logs at such a massive scale, but stream-oriented entity
extraction and linking at this scale remains an open problem.

5. RELATED WORK
Provenance and versioning systems: Provenance management
for databases and scientific workflows has been extensively stud-
ied [17, 6, 8, 19, 18, 11, 2]. Both theoretical and system efforts
have focused on capturing fine-grained provenance for complex
queries. In this regard, Guider is less ambitious as it focuses on
coarser-grained provenance, and lacks many of the sophistications
proposed in the literature. File-level and object-store provenance
tracking was explored in [12] and [13] respectively.

Our effort is, in spirit, closest to the Goods effort from Google
[10]. Both approaches reconstruct provenance a-posteriori from a
multitude of systems and operate at massive scale. We use prove-
nance as a skeleton to analyze telemetry and raw logs, while Goods
focuses on metadata indexing and dataset search. DDA extends to
a wide range of application scenarios beyond provenance.

Datahub [4] focuses on facilitating collaboration by providing
Git-style versioning for databases. This relates to our effort, but
assumes that data owners are actively engaging with the datahub
ecosystem. Scale and legacy issues makes this impractical in our
setting.

Entity extraction and linking is a hard and well studied problem,
especially for free form textual data. Efforts such as [15] will be
instrumental to DDA in settings such as Enterprise Search.

Graph technologies: In building Guider, we tested several graph
databases: TitanDB, Graphframes [7], Tinkerpop, and Neo4j [16].
Neo4j was the most mature and performant system we found, but
its lack of support for scale-out forced us to resort to project/reduce
the graph sizes until each of our applications could fit in one ma-
chine. Support for scale-out graph computing is in large demand.
Also, we believe there is a strong industrial need for better lan-
guages and systems that support mixing graph, relational and un-
structured data. Two particularly interesting efforts in that context
are [7], introducing support for graph processing in Spark and [1]
exploring theoretical as well as practical aspects of graph/relational
query optimization.

6. CONCLUSIONS
We presented a vision for a new pattern in data analytics: Depen-

dency-Driven Analytics (DDA). DDA solutions pivot around the
automatic extraction of a dependency graph from large volumes of
mostly unstructured data, to guide users in efficiently navigating
and querying the data. We made this vision concrete by present-
ing a production system that implements DDA for a specific use
case: log analytics. The benefits observed through this use case
and related industry trends inspire us to pursue the broader vision
of DDA.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers and

conference chairs, for their thoughtful comments. We are also in-
debted to many present and former colleagues: Carrie Culley, Sud-
heer Dhulipalla, Chris Douglas, Raman Grover, Saikat Guha, Tim
Hermann, Virajith Jalaparti Konstantinos Karanasos, Subru Krish-
nan, Rahul Potharaju, Sriram Rao, Javier Salido, Leena Sheth, Arun
Suresh, Kai Zheng. They offered invaluable advises and practical

guidance, that helped shape the DDA vision, and its initial imple-
mentation.

8. REFERENCES
[1] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded:

A relational engine for graph processing. In SIGMOD, 2016.
[2] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. Proceedings
of the VLDB Endowment, 5(4):346–357, 2011.

[3] K. Bellare, C. Curino, A. Machanavajihala, P. Mika,
M. Rahurkar, and A. Sane. WOO: A scalable and
multi-tenant platform for continuous knowledge base
synthesis. PVLDB, 2013.

[4] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande,
A. J. Elmore, S. Madden, and A. G. Parameswaran. Datahub:
Collaborative data science & dataset version management at
scale. arXiv preprint arXiv:1409.0798, 2014.

[5] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. VLDB, 2008.

[6] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4):379–474, 2009.

[7] A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and
M. Zaharia. Graphframes: an integrated api for mixing graph
and relational queries. In Workshop on Graph Data
Management Experiences and Systems, page 2. ACM, 2016.

[8] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In SIGMOD, 2008.

[9] S. A. J. et al. Morpheus: Towards automatic slos for
enterprise clusters. To appear: OSDI, 2016.

[10] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis,
S. Roy, and S. E. Whang. Goods: Organizing google’s
datasets. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 795–806, 2016.

[11] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo,
M. Kim, T. Millstein, and T. Condie. Titian: Data
provenance support in spark. Proc. VLDB Endow.,
9(3):216–227, Nov. 2015.

[12] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. I. Seltzer. Provenance-aware storage systems. In ATC,
2006.

[13] K.-K. Muniswamy-Reddy, P. Macko, and M. I. Seltzer.
Provenance for the cloud. In FAST, volume 10, pages 15–14,
2010.

[14] R. Prokofyev, G. Demartini, and P. Cudré-Mauroux.
Effective named entity recognition for idiosyncratic web
collections. In WWW, 2014.

[15] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré.
Incremental knowledge base construction using deepdive.
PVLDB, 2015.

[16] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner.
Neo4j in Action. Manning, 2015.

[17] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, pages 262–276, 2005.

[18] E. Wu and S. Madden. Scorpion: Explaining away outliers in
aggregate queries. PVLDB, 2013.

[19] E. Wu, S. Madden, and M. Stonebraker. Subzero: A

fine-grained lineage system for scientific databases. In ICDE,
2013.

[20] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant model for
stream processing on large clusters. In Presented as part of
the, 2012.

