
Adaptive Concurrency Control: Despite the Looking Glass,
One Concurrency Control Does Not Fit All

Dixin Tang
The University of Chicago

totemtang@uchicago.edu

Hao Jiang
The University of Chicago

hajiang@uchicago.edu

Aaron J. Elmore
The University of Chicago

aelmore@cs.uchicago.edu

ABSTRACT
Use of transactional multicore main-memory databases is
growing due to dramatic increases in memory size and CPU
cores available for a single machine. To leverage these re-
sources, recent concurrency control protocols have been pro-
posed for main-memory databases, but are largely optimized
for specific workloads. Due to shifting and unknown access
patterns, workloads may change and one specific algorithm
cannot dynamically fit all varied workloads. Thus, it is de-
sirable to choose the right concurrency control protocol for
a given workload. To address this issue we present adap-
tive concurrency control (ACC), that dynamically clusters
data and chooses the optimal concurrency control protocol
for each cluster. ACC addresses three key challenges: i) how
to cluster data to minimize cross-cluster access and main-
tain load-balancing, ii) how to model workloads and perform
protocol selection accordingly, and iii) how to support mixed
concurrency control protocols running simultaneously. In
this paper, we outline these challenges and present prelimi-
nary results.

1. INTRODUCTION
The demand for high-throughput transactional“many core”

main-memory database management systems (DBMS) is grow-
ing due to dramatic increases in memory size and CPU core
counts available for a single machine [21]. A high-end mod-
ern server can have hundreds of gigabytes to dozens of tera-
bytes of main memory and dozens to hundreds of cores, such
that most datasets are entirely stored in memory and are
processed by a single server. Concurrency control enables
ACID transactions to read and update records, while po-
tentially executing operations across many cores. Due to
the elimination of a traditional performance bottleneck, disk
stalls, recent concurrency control protocols address new bot-
tlenecks raised in a main-memory system. Some protocols
try to minimize the concurrency control overhead [8], while
other protocols strive to avoid single contention points across
many cores [18]. These protocols are typically designed for
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specific workloads and exhibit high performance under their
optimized scenarios.

The access patterns of a workload may be unknown before
deployment of user-facing applications or be unpredictable
and fluctuate in response to users’ requests. For example,
administrators may not know popular items or cannot esti-
mate their hotness a priori; a set of records that become hot
due to breaking news article may only remain popular for
a short time; or the set of potential popular records can be
unpredictable and the velocity of records becoming hot or
cold is unknown. A challenge with an unknown and shift-
ing workload is that databases are often not adaptive and
use a fixed concurrency control protocol. Though such pro-
tocols achieve ideal performance in their optimized work-
load scenario, they fail to maintain the same performance
with fluctuating workloads. Consider H-Store’s concurrency
control protocol using coarse-grained locking [8]. It works
well for partitionable workloads, which means the whole
dataset is partitioned into disjoint partitions such that a
transaction is highly likely to access only one partition. But
this approach suffers low throughput with increasing cross-
partition transactions [21, 18]. Although reconfiguration can
decrease cross-partition transactions for some scenarios [17],
certain workloads may never exhibit access patterns that are
amenable for partitioning. For these cases an optimistic pro-
tocol may be ideal if the workload mainly consists of read
operations or has low-skew access patterns, otherwise a pes-
simistic protocol may be ideal.

In this paper we consider how workload features, such
as record conflict rates and how partitionable the workload
is, impact the comparative performance of concurrency con-
trol protocols. We illustrate the impact of workload fea-
tures on a transactional main-memory database using three
representative concurrency control protocols. Specifically,
it includes a partition based concurrency control (PartCC )
from H-Store [8], an optimistic concurrency control (OCC )
based on Silo [18], and a no-wait two-phase locking method
(2PL) based on VLL [21, 14]. We use a YCSB benchmark
to test their performance under workload variation, with
a detailed configuration given in Section 6. Under work-
load variation, the fluctuation of performance among con-
currency control protocols is evident in Figure 1. We see
the throughput of all concurrency control protocols greatly
varies, and each protocol has cases where it performs best.
At first, OCC works best when the workload is not parti-
tionable and its record conflicts are low (WL1), then the
workload becomes well partitioned and PartCC is the best
choice (WL2), and finally 2PL is ideal when the workload
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Figure 1: Throughput in the presence of workload variation

turns into non-partitionable with a high record conflict rate
(WL3). For the three workloads, the best protocol has 4.5x,
2.6x and 1.9x higher throughput than the worst protocols.
This highlights that no single concurrency control is ideal
for all workloads and that the wrong concurrency control
protocol can have significant performance degradation.

Instead of statically choosing a single concurrency control
in a DBMS, multiple concurrency control protocols should
be supported simultaneously and chosen according to the
current workload. However, relying on database adminis-
trators to manually choose concurrency control algorithms
is not a feasible solution since workload variation can be fre-
quent or difficult to predict such that manual tuning fails to
follow changes in demand. Therefore, concurrency control
in transactional databases, in addition to preserving ACID
properties, should adapt to workload changes without man-
ual intervention or disrupting performance.

In this paper, we propose adaptive concurrency con-
trol (ACC), a holistic solution to varied and dynamic work-
loads for main memory OLTP databases. ACC automati-
cally clusters data and workers (e.g. cores), and selects the
optimal concurrency control protocol for each cluster ac-
cording to the current workload. Building ACC requires
addressing the following major research challenges.

Data Clustering In ACC, we partition the dataset into
clusters and assign each cluster with a concurrency control
protocol. We also allocate dedicated CPU cores to each clus-
ter for transaction execution. A good clustering algorithm
should maintain that most transactions execute on a single
cluster, cluster utilization is balanced, and overall through-
put is maximized. This problem introduces the following
challenges that have not been previously addressed. First,
workloads on each cluster should be balanced with flexible
assignment of cores to clusters to balance computing capac-
ity and synchronization overhead. Second, the number of
clusters is not determined in advance and may change on
the fly. Finally, cross-cluster access costs may vary when
different protocols are applied to the clusters.

Workload Modeling and Protocol Selection For a
cluster of data, we need to choose an optimal protocol ac-
cording to the current workload. The challenge is how to
model the comparative performance of different concurrency
control protocols given a workload. This is difficult because
the model may encounter workloads that have not been stud-
ied before. To enable this model, databases statistics (or
features) need to be collected online from runtime protocols.
Feature extraction should be lightweight and fast such that
ACC can have a timely response to workload changes. We
embed feature extraction into transaction workers to paral-
lelize this process. One key problem is, given a workload
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how to normalize features across different protocols when
concurrency control workers exhibit various behaviors and
signals for a feature.

Mixing Concurrency Control Protocols As each clus-
ter can have a different protocol, ACC needs to address chal-
lenges raised by mixed concurrency control protocol execu-
tion: how to maintain an isolation level (e.g. serializable)
when transactions span clusters (and subsequently proto-
cols) without introducing extra concurrency control over-
heads, and how to mix durability and recovery algorithms
of different protocols. Protocols adopt various methods to
guarantee properties of isolation and consistency, but they
fail to maintain these properties when transactions span pro-
tocols without the use of distributed commit protocols. Pre-
vious work [20] proposes a general framework to address
this issue by introducing an extra layer of locking mecha-
nism to coordinate conflicts across different protocols. This
extra locking mechanism may limit the scalability of the
databases and become the performance bottleneck with high
core counts. On the other hand, ACC will bridge vari-
ous protocols such that conflicts among them can be re-
flected in each protocol without introducing any extra over-
head. In addition, durability and recovery algorithms can
be optimized for a protocol, but contradict with other im-
plementations or optimizations. For example, PartCC often
adopts command logging to record transactions applied to
databases, while the logging algorithm of Silo logs record
values rather than operations. A mechanism is required to
manage dependencies between different logging algorithms
to ensure correct recovery.

2. ACC OVERVIEW
ACC dynamically clusters the data store, assigns CPU

cores to clusters, and selects a concurrency control proto-
col for each cluster. Figure 2 shows a sample configura-
tion, where the data store is divided into four clusters such
that the records co-accessed by transactions (denoted as
solid lines connecting records) across clusters are minimized.
Each cluster owns a partition of the primary index and cor-
responding records, and is assigned one or more CPU cores
according to load statistics. We denote a cluster assigned
with one core as a partition and assume a concurrency con-
trol worker or a transaction worker (i.e. a thread or process)
occupies a physical core. The concurrency control for each
cluster is customized according to its access patterns. For
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example, the first cluster is configured with OCC since it re-
ceives transactions having few conflicts. For a concurrency
control protocol, we name the cluster it is running on as the
home cluster and denote other clusters as remote clusters.
The cluster routing table maintains the mapping from pri-
mary keys to cluster numbers and secondary indices point
to primary keys; both are shared by all cores.

To enable dynamic configuration of concurrency control
protocol for each cluster, ACC requires training a predic-
tive model for protocol selection offline, and reconfiguring
clusters organization and protocols online. The predictive
model incorporates a set of effective features which cover
major characteristics of a workload and uses machine learn-
ing classifiers to predict the optimal protocols. Figure 3
gives an overview of how offline model training and online
execution works. We use synthesized workloads to explore
workload variation as much as possible in the offline train-
ing. For example, we mix the stored procedures of an OLTP
application to explore the effects of the number of write op-
erations on candidate protocols. Note that it’s possible to
use an online workload trace (e.g. log) to train the model or
improve it incrementally.

The core component of online execution is a central co-
ordinator that controls the clustering and determines the
protocol for each cluster. ACC monitors transactions’ ac-
cess patterns and extracts features from the active work-
load. ACC uses load statistics to generate a new clustering
plan and lets our predictive model choose the optimal pro-
tocols using the extracted features. Then, according to the
new plan clusters are reorganized, CPU cores are reassigned,
and protocols are reconfigured accordingly.

3. DATASET CLUSTERING
ACC partitions a dataset into clusters and selects a con-

currency protocol for each cluster. Most existing trans-
actional database partitioning solutions target minimizing
cross-partition access, such that transactions should access
in average as small number of partitions as possible [3, 6,
7]. While taking this into account, ACC also needs to ad-
dress core allocation, concurrency control synchronization
overheads, and load-balancing when clustering data. For
example, if one partition has only a very few transactions,
ACC can merge it with another partition as it would be a
waste of resource to allocate a core to it. Similarly, if one
partition constitutes almost of all workload’s requests, then
we can merge all partitions together. When the workload
changes ACC should dynamically recluster the dataset with
low overhead. Therefore, ACC must address the following
goals for clustering:

1. Minimize cross-cluster accesses.

2. Maintain load-balancing and maximize throughput.

3. Recluster the dataset on the fly with minimal over-
head, while maintaining ACID properties.

4. Determine when to recluster the dataset.

In the rest of this section we describe ACC’s initial ap-
proach to clustering, but believe that integrated solutions
to the above problems require new techniques.

Clustering Many existing projects target partitioning a
database to minimize cross-partition access [6, 7]. While

these approaches work for many scenarios, they all require
the number of expected partitions to be known in advance
or rely on simple heuristics for adding partitions if a solu-
tion cannot be found [17]. In ACC we are facing several
new challenges. First, cross-cluster access cost varies with
multiple concurrency protocols. For example, it costs less
for a transaction’s home cluster running OCC to access a
remote cluster running also OCC, while it costs more if the
remote cluster runs PartCC since accessing the remote clus-
ter requires locking the whole cluster. Second, the number
of partitions is no longer a constant, but a variable that is
determined by both the workload and the number of cores
available. In addition, we also need to assign cores to parti-
tions such that we maximize throughput for clusters, while
avoiding over-assigning cores to limit synchronization over-
heads that can arise from too many workers [21].

Our initial prototype uses a Partition-Merge approach to
generate the plan of cluster layouts and cores assignment.
In the partition step, we employ existing partitioning tech-
niques [3, 6, 7] to split the dataset into clusters as the same
number of available cores, then compute the utilization for
each cluster. The utilization of a cluster is defined to be the
ratio of number of operations that fall into the given cluster
to the total number of operations:

U(c) =
|{o : o access c}|

|O|

where c is a given cluster, O is the set of all operations, and
o ∈ O is a single operation.

In the merge step, we merge clusters considering utiliza-
tion and cross-cluster access cost. To make sure no core is
assigned to a cluster with low utilization, we put all clus-
ters having utilization that is below a predefined threshold
into a pile and merge the two clusters with the lowest utiliza-
tion. If the merged cluster has a utilization that is above the
threshold, it is moved out of the pile. Otherwise, the new
cluster is put back to the pile and the first step is repeated.
This process ends if 1) all the clusters have utilization that
is greater than the threshold, or 2) there is only one cluster
left. In the second case, the only cluster left is merged with
the cluster with highest utilization.

To reduce cross-cluster access cost, we also merge clusters
having high percentage of cross-cluster access. Let i, j be
two records and eij be the access cost when they are in-
volved in a single transaction. The affinity of two clusters
is defined to be the ratio between cross-cluster access to the
total records co-access within the two clusters:

A(c1, c2) =
wk

∑
i∈c1,j∈c2 eij∑

i,j∈c1 eij +
∑

i,j∈c2 eij

where wk is the weight introduced by concurrency con-
trol protocols running on these clusters. Clusters with high
affinity will be merged together. Finally, we assign cores
to the cluster that is proportional to their utilization, while
factoring the overhead of additional worker contention.

Reclustering Another challenge ACC faces is to mini-
mize the continuous need of reclustering. Reclustering re-
quires reorganizing primary indices in each cluster, which
introduces high latch contention to running transactions. To
minimize this contention, we freeze the original indices, mi-
grate data in frozen indices into newly built indices, and
operate with tiered indices. This method allows original
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indices serve most transactions and avoids most latch con-
tention. We leave incremental reclustering to future work.

For secondary indices, if they align to the partitioning of
the primary indices, they are partitioned in the same way.
Otherwise, if secondary indices are rarely modified, we repli-
cate them among all cores to reduce latch contention. If
they are frequently modified, we can dedicate a few cores to
process index access requests, which minimizes the synchro-
nization overhead of index latches.

4. WORKLOAD MODELING AND
PROTOCOL SELECTION

ACC uses a model composed of classifiers to predict the
optimal protocol for a workload. Obtaining this model re-
quires solving three problems: how to engineer features to
model workloads, how to efficiently extract features from a
database at runtime, and how to synthesize workloads to
train the model.

Workload Modeling To model workloads for candidate
protocols, we first find workload characteristics that affect
the protocols’ comparative performance and design corre-
sponding features to capture these effects. While ACC cur-
rently supports PartCC, OCC, and 2PL, we plan to extend
it to more protocols and variants in the future.

ACC uses four features to model the comparative perfor-
mance of PartCC, OCC, and 2PL given a workload. We
track the ratio of read operations (ReadRatio), the aver-
age number of records accessed by transactions (TransLen),
and the probability of concurrent transactions reading or
writing the same records (RecContention). These features
model record conflicts across transactions, which is a criti-
cal factor influencing the performance of PartCC, OCC and
2PL. The fourth feature CrossCost represents the cost of all
cross-cluster transactions and influences the applicability of
PartCC.

Feature Extraction The basic process of feature extrac-
tion involves concurrency control workers collecting work-
load statistics in parallel and reporting them to a centralized
coordinator. The coordinator then extracts features from
these details. With many cores, a potential bottleneck of
this process is the centralized feature extraction, which will
delay the response to workload variation. ACC removes this
bottleneck by moving central extraction to concurrency con-
trol workers. However, applying this idea to extract consis-
tent feature values among different protocols is challenging
when transaction workers of various protocols use different
signals to reflect the same feature. For example, detecting
record conflicts in OCC may be reflected with transaction
aborts, whereas in PartCC queue length and lock wait time
may be used. We address this challenge by making feature
extraction independent of running protocols. The basic idea
is to build a separate process by sampling transactions or
operations.

For our initial system we develop an algorithm to esti-
mate concurrent record access to extract record contention
(RecContention) without heavyweight synchronization be-
tween workers. Each record is associated with a counter for
contention detection and each worker runs this algorithm
independently. It is composed of two lightweight repetitive
phases, a mark and a detection phase. In the mark phase,
concurrency control workers sample a fixed number of record
accesses and mark these records accessed by incrementing

counters. In the detection phase, workers sample a config-
ured number of record access and check records’ counters.
For each counter, if a counter is zero there is no contention
on this record (i.e. not marked by other workers). If a
counter is more than zero, the worker copies the counter’s
value and checks whether this record is marked by itself –
and if so it decrements the local value. Then, the worker
adds the value (i.e. number of other workers marking this
record) to its local contention counter, which acts as a proxy
for record contention. After a time period, it clears all marks
and repeats the process.

Model Training We build a model by training on syn-
thesized workloads. Using synthesized workloads can effec-
tively explore a feature space, making the trained model ro-
bust to predict the ideal concurrency control. We synthesize
workloads using various stored procedure mixes and access
distributions (e.g. vary theta for Zipf) to evenly explore fea-
ture space using well known search algorithms. Note that it
is also possible to use online workloads to train this model
or improve it incrementally. For example, we can use work-
load trace (i.e. logs) to generate training cases by running
all protocols in a database replica.

5. MIXED CONCURRENCY CONTROL
As clusters in ACC can use different concurrency con-

trol protocols, the use of simultaneous protocols requires
addressing two challenges: how to enforce an isolation level
across protocols with minimal overhead and how to enable
fast logging and recovery with mixed protocols running.

Enforcing Isolation Across Protocols To guarantee a
given isolation level, workers of mixed concurrency control
need to detect and coordinate transaction conflicts among
concurrently running protocols (e.g. OCC and 2PL work-
ers writing the same record), which can be a performance
bottleneck with mixed concurrency control. For example,
Callas [20], which mixes concurrency control protocols, co-
ordinates such conflicts by introducing an additional lock-
ing mechanism that is independent of different protocols;
if a transaction reads or writes a record, Callas requires
the transaction to acquire a lock beforehand. This lock-
ing mechanism limits the scalability of protocols that strive
to eliminate lock overhead (e.g. OCC or PartCC). We iden-
tify that the primary cause of conflict coordination overhead
is from different protocols accessing the same records. To
eliminate such overhead, we propose a Data-oriented Mixed
Concurrency Control (DomCC ), where a subset of records
(i.e. clusters) are assigned a single protocol to manage all
concurrent record read and write operations, which we term
as a protocol mananging the cluster. For example, a trans-
action that is dispatched to a cluster that is managed by
OCC may also access records in a cluster that is managed
by 2PL; here, this transaction will need to follow the con-
currency control logic of 2PL when it accesses these records.
Note that for each candidate protocol, only one protocol in-
stance exists in the whole system regardless of the number
of clusters using that protocol.

Figure 4 shows the framework of mixing the three proto-
cols in DomCC. We see the the life cycle of a transaction is
divided into four phases: Preprocess, Execution, Validation,
and Commit. In the Preprocess phase, if the transaction
needs to access clusters that are managed by PartCC, all
partition locks of these clusters are acquired in DomCC.
Note that the clusters a transaction needs to access are
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Figure 4: Mixing PartCC, OCC, and 2PL

known before it starts. Then, DomCC starts to execute
the transaction logic. For each record access, it first exam-
ines the cluster it belongs to and subsequently the protocol
managing the cluster; then it executes corresponding concur-
rency control logic according to the protocol managing the
record. For example, if OCC manages a record, the transac-
tion reads the timestamp and the value of this record using
the logic of OCC; if 2PL manages the record, the transac-
tion acquires a lock before reading or writing the record.
Next, when the transaction enters the Validation phase, it
executes OCC validation for records managed by OCC. Fi-
nally, in the Commit phase DomCC applies all writes and
releases locks to make these writes visible to other trans-
actions. Specifically, it releases partition locks for PartCC,
record locks for 2PL, and write locks for OCC. Note that we
assume a rigorous 2PL here.

We now show that the mixed execution of PartCC, OCC,
and 2PL is conflict serializable. For two committed transac-
tions t(i) and t(j), we consider four cases:

• If t(i) and t(j) conflict in requesting partition locks of
PartCC, either t(i) or t(j) will wait in the Preprocess
phase until the other transaction finishes. Therefore,
in this case no conflict-cycle exists for the two trans-
actions.

• If t(i) and t(j) conflict in requesting record locks of
2PL, either t(i) or t(j) will wait or abort in the Execu-
tion phase until the other transaction finished. There-
fore, in this case no conflict-cycle exists for the two
transactions.

• If t(i) and t(j) conflict in OCC, there is also no conflict-
cycle since OCC can guarantee the conflict serializabil-
ity of t(i) and t(j) and no conflicts exist for other two
protocols.

• Otherwise, no conflicts exist; therefore, any schedules
of t(i) and t(j) are serializable.

In addition to providing conflict serializability, DomCC
can detect or avoid deadlocks. We assume any deadlock
introduced within a single protocol can be avoided or de-
tected by the protocol itself. Therefore, we must examine
whether deadlocks exist across protocols. We observe that in
each phase there is a distinct protocol making transactions
wait due to transaction conflicts. Therefore, transactions
blocked by a protocol will not wait for transactions blocked
by other protocols in earlier phases. This means there is no
wait-cycle across the three protocols, so DomCC can detect
or avoid deadlocks. Finally, all candidate protocols release
write locks at the end of transactions. Given that the OCC
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Figure 5: Increasing the percentage of cross-partition transactions
in two ways: i) increase the number of non-partitionable partitions;
ii) increase the percentage of cross-cluster transactions

implementation is also strict, this guarantees that DomCC
is strict and thus recoverable. While our particular config-
uration of DomCC provides these properties with no mod-
ification to the underlying protocols, an interesting area to
explore is how to guarantee the same properties while min-
imizing lock time, adding more protocols or variants, and
supporting different phase orderings.

Durability and Recovery To accomplish efficient log-
ging and recovery in the presence of many cores, ACC ex-
ploits recovery algorithms from SiloR [23] that achieves dura-
bility and fast recovery using parallel logging. While origi-
nally designed for Silo OCC, we extend it to 2PL and PartCC.
SiloR depends on time periods called epochs. A global epoch
is periodically advanced and transactions belonging to the
same epoch are logged together (i.e. batch logging) to guar-
antee serial order among transactions belonging to different
epochs. The key to enabling SiloR is computing transaction
IDs (TIDs) according to timestamps of the records a trans-
action has touched. For each record of 2PL, it is assigned
a timestamp and 2PL can use the same method as OCC to
compute TIDs. For PartCC clusters, we assign each cluster
a timestamp such that records belong to the same cluster use
the same timestamps and adopt Silo’s approach to compute
TIDs.

A challenge for recovery with mixed concurrency control is
how to support multiple durability and recovery algorithms
at the same time, which we believe is still an open question.
Supporting multiple forms of logging is desirable if a log-
ging algorithm specifically designed for a concurrency con-
trol protocol can achieve faster logging and recovery. Com-
mand logging designed for PartCC, for instance, can min-
imize overhead to transaction processing by only recording
the procedure ID and parameter values (i.e. logical logging)
and fully parallelizing recovery by taking advantage of par-
titioned executors. SiloR, on the other hand, does not rely
on partitions but adopts value logging, which logs record
values updated by transactions (i.e. physiological logging),
to parallelize recovery. The overhead of SiloR is that value
logging requires writing more data than command logging.
The challenge of mixing the two algorithms is that it is dif-
ficult to identify dependencies between logged transactions
and values and serialize them during recovery.

6. PRELIMINARY RESULTS
Prototype We have developed a prototype of several

ACC components based on Doppel, an open-source main-
memory OLTP database [11]. In our prototype, clients issue
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Table 1: Workloads for testing mixed concurrency control

Well
Partitionable

Partially
Partitionable

Not
Partitionable

High Conflicts WL1 WL3 WL5
Low Conflicts WL2 WL4 WL6

 0

 0.5

 1

 1.5

 2

 2.5

WL1 WL2 WL3 WL4 WL5 WL6T
h
ro

u
g
h
p
u
t 

(M
ill

io
n
 t

x
n
/s

)

PartCC OCC 2PL Hybrid ACC

Figure 6: Throughput in various workloads

one-shot transaction requests using pre-defined stored pro-
cedures, where all parameters are provided when a transac-
tion begins and transactions are executed to the completion
without interacting with clients. Stored procedures are writ-
ten in Go1 and issue read/write operations using interfaces
provided by the prototype. Each one-shot transaction is dis-
patched to a transaction worker, which runs this transaction
to the end (commit or abort).

Transaction workers are extended to extract features from
the current workload and report them to a central coordi-
nator. The coordinator automatically selects and switches
protocols online. Our prototype currently supports mixing
PartCC of H-Store, OCC from Silo, and 2PL No-Wait based
on VLL [14], which co-locates locks with records. Note that
we have compared two 2PL variants No-Wait and Wait-Die,
and find that 2PL No-Wait performs better than Wait-Die
in most cases because of much lower synchronization over-
head of lock management [13]. We additionally include a
hybrid approach of 2PL and OCC (denoted as Hybrid) [19],
which uses locks to protect highly conflicted records and uses
validation for the other records. Here, we statically analyze
a workload to configure the set of records using 2PL. Our
prototype automatically selects protocols using a predictive
model based on a DecisionTree [1] and supports switching
protocols online. We are currently working on data cluster-
ing and recovery for mixed protocols.

Experiment Settings All experiments are run on a sin-
gle server with four NUMA nodes, each of which has an
8-core Intel Xeon E7-4830 processor (2.13 GHz), 64 GB of
DRAM and 24 MB of shared L3 cache, yielding 32 physical
cores and 256 GB of DRAM in total.

We use YCSB [5], Smallbank [4], and TPC-C [2] in our
experiments. We generate 10 million tuples for YCSB, each
occupying 500 bytes. Each transaction in YCSB consists of
20 operations mixed with read-only and read-modify-write
operations. We generate 10 million tuples for each table of
Smallbank and use 32 warehouses for TPC-C. YCSB and
Smallbank are partitioned by primary keys and TPC-C is
partitioned via warehouse ID.

Mixed Concurrency Control We use YCSB to eval-
uate the performance benefits of mixed concurrency con-
trol under different numbers of cross-partition transactions
and record conflicts rates. Key access is skewed using Zipf
with theta = 1. We vary the number of cross-partition

1https://golang.org/
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transactions in two ways, which is shown in Figure 5. The
workload is initially well partitionable, which means there
is no cross-partition transactions. Note that each partition
is also a cluster here. Then, we vary the number of non-
partitionable partitions (e.g. P4-P6 in Figure 5). Within
non-partitionable partitions, the percentage of cross-partition
transactions is 100%. Therefore, these partitions (e.g. P4
to P6) can be merged into a cluster along with their respec-
tive cores. Next, we increase the percentage of cross-cluster
transactions to make transactions access records in different
clusters and potentially protocols.

We first compare the throughput of ACC with that of sin-
gle protocols and Hybrid using the workloads in Table 1. For
highly conflicted workloads we use 50% read-modify-write
operations and for lowly conflicted workloads we use 100%
read operations. For the partially partitionable workload, it
includes 16 non-partitionable partitions and the other 16
partitions have no cross-partition transactions. Figure 6
shows the results. We see that ACC has almost the highest
throughput in all workloads. For WL1 and WL2, it adopts
PartCC since the workload is well partitionable. For non-
partitionable workloads (WL5 and WL6), it uses 2PL and
OCC respectively according to the record conflict rates. Fi-
nally, for partially partitionable workloads (WL3 and WL4)
ACC outperforms other protocols due to mixing candidate
protocols. Specifically, it can apply PartCC to the part of
the workload that is partitionable and OCC or 2PL to the
part of the workload that non-partitionable based on how
conflicted the workload is. ACC has up to 3.0x, 2.1x, 1.8x,
and 1.8x higher throughput than PartCC, OCC, 2PL, and
Hybrid respectively.

Next, we increase the percentage of cross-cluster transac-
tions. The test starts with the partially partitionable and
highly conflicted workload (i.e. WL3). The result shown in
Figure 7 demonstrates how the throughput of ACC varies
with more cross-cluster transactions involved. At first, ACC
mixes PartCC and 2PL by using PartCC to process the
well-partitionable workload part and 2PL to process the
rest of the highly conflicted and non-partitionable work-
load. With more cross-cluster transactions introduced parti-
tion conflicts increase; thus, ACC adopts 2PL for the whole
system. Note that although ACC uses 2PL, it has slightly
higher throughput than 2PL because it leverages the partial
partitionability to avoid some conflicts as lock contention
across cores is reduced due to clustering.

Adaptivity We then evaluate ACC’s adaptivity in re-
sponse to selecting a single protocol for the entire data store
according to workload variation. If PartCC is used, the
whole store is partitioned such that each CPU core owns a

6



 0

 1

 2

 3

 4

 5

 15  30  45

T
h

ro
u

g
h

p
u

t 
(M

il
li

o
n

 t
x

n
/s

)

Time (s)

PartCC
OCC
2PL

ACC

Figure 8: Adaptivity Test (YCSB)
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Figure 9: Adaptivity Test (Smallbank)
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Figure 10: Adaptivity Test (TPC-C)

Table 2: Prediction Accuracy and F1 Score

YCSB Smallbank TPC-C
Zipf H/C Zipf H/C Zipf H/C

Accuracy 0.9 0.89 0.94 0.83 0.92 0.97
F1 Score 0.86 0.85 0.98 0.94 0.8 0.94

partition (i.e. a cluster). We currently generate partitioning
plans offline. If OCC or 2PL is used, the partitioned stores
are merged back into a single cluster (i.e. shared store).
We use YCSB, Smallbank, and TPC-C to test ACC over
the same workload variation in Figure 1. For the workloads
with low and high record conflicts, we use read-only trans-
actions (e.g. OrderStatus in TPC-C) and write-intensive
transactions (e.g. NewOrder and Payment Mix in TPC-
C) respectively. To generate non-partitionable workloads,
we use 100% cross-partition transactions and skew partition
access distribution (i.e. Zipf with theta = 0.3). Skewed
partition access means a subset of partitions receive more
transactions than other partitions. Partitionable workloads
have no cross-partition transactions, as well as no skewed
partition access. For all tests record access distribution is
Zipf with theta = 1.5.

Figures 8–10 show the test results of how overall through-
put evolves for three benchmarks. We see that ACC can
adaptively choose the optimal protocol for the three work-
loads. Specifically, ACC starts with OCC for the work-
load that is not partitionable and has low record conflicts.
When the workload becomes well-partitionable and has high
record conflicts, ACC switches from OCC to PartCC, where
it needs to partition the whole store first. ACC contin-
ues to process transaction requests during the partitioning
and switches to PartCC when partitioning is done. Then,
more partition conflicts are introduced in the workload; thus,
ACC merges the partitioned store and switches from PartCC
to 2PL. The dip in performance for ACC during workload
shifts is due to lag while using the prior protocol and a short
period where workers reorganize clusters and indices. The
throughput improvement of ACC over PartCC, OCC, and
2PL can be up to 4.5x, 3.5x and 2.3x respectively, and ACC
can achieve at least 95% throughput of the optimal protocol
when it uses this protocol, demonstrating that the overhead
of ACC is minimal.

Prediction Accuracy To test the accuracy of our pre-
dictive model, we train our model using a Zipf distribution
and generate test cases using Zipf and Hot/Cold distribu-
tion with various mixes of stored procedures. Note that we
only evaluate test cases that are not included in the training
of our predictive model. For example, we use different theta
values to train and test the model. We run each test cases for
all protocols, extract features from our prototype, and label

the test case with the protocol having the highest through-
put. Then, we test how accurately our model can predict
the optimal protocol using the extracted features. Table 2
shows the prediction accuracy and F1 scores using Zipf and
Hot/Cold distribution in three benchmarks. We generate
1000 test cases for each benchmark. We see that the pre-
diction accuracy (i.e. the ratio between the number of cases
ACC predicts the optimal protocol over the total number of
test cases) ranges from 83% to 97% and F1 scores is from
80% to 98%. This indicates that our predictive model can
be accurate even under distributions that have never been
trained before.

These preliminary results demonstrate the promise of ACC’s
ability to maximize throughput in the presence of varied
workloads.

7. RELATED WORK
A large body of work exists relating to transactional data-

base systems. Here, we discuss a limited set of projects re-
lated to partitioning, optimizing protocols for main-memory
systems, and mixed concurrency control protocols.

Data Partitioning Many existing projects target gen-
erating database partitions. Andreev et. al. proposes a
method using Linear Programming [3] to generate k-way
balanced partitions. Schism [6] models the relationship be-
tween database tuples as a graph then use METIS [9] to
partition it. Similarly, SWORD [12] uses hypergraphs to
partition large databases with replication. To deal with
large dynamic datasets, Leopard [7] proposes an online parti-
tioning method based on scoring. These approaches require
the number of expected partitions to be known in advance.
However, this constant is not given in ACC but determined
online according to the workload. In addition, ACC requires
dynamic core allocation and considers the effect of multiple
form of concurrency control, which makes the problem dif-
ferent. Recent efforts have explored partitioning when the
number of partitions can expand or contract based on heuris-
tics. E-Store [17] handles partitioning by using a two-tiered
approach where hot records are partitioned separately from
large cold blocks. Clay [15] incrementally partitions tuples
based on affinity between records and the load capacity of
underlying partitions.

Optimizing Single Protocols Several research projects
focus on optimizing concurrency controls for main-memory
databases. H-Store [8] proposes a partition based concur-
rency control using coarse-grained locking to minimize con-
currency control overhead (e.g. latching and locking). Heka-
ton [10] improves the performance of 2PL and OCC by
using multi-version based lock-free hash tables for main-
memory databases. Silo [18] develops an OCC protocol
that achieves high throughput by avoiding all centralized
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contention points among CPU cores. Doppel [11] proposes
a scalable concurrency control protocol for communicative
operations under high contention workloads. Tictoc [22] ex-
tracts more concurrency by lazily evaluating transactions’
timestamps. These projects mainly consider optimizing a
single concurrency control and are orthogonal to ACC.

Mixing Multiple Protocols Several projects mix multi-
ple protocols in single database systems. Callas [20] provides
a modular concurrency control mechanism to group trans-
actions and provide customized concurrency control for each
group. To enforce isolation across groups, each record is as-
sociated with a lock and transactions need to acquire these
locks before any record operations. This has greatly intro-
duced extra cost to original protocols especially for proto-
cols trying to minimize locking overheads (e.g. PartCC and
OCC), while our design allows a protocol to keep its execu-
tion unchanged. Meanwhile, Callas does not cover mixing
logging and recovery algorithms. Hsync and MOCC [16,
19] adopt a hybrid 2PL and OCC concurrency control. ACC
considers more protocols and supports adaptively switching
among them.

8. CONCLUSION
In this paper, we introduce Adaptive Concurrency Con-

trol (ACC), a main-memory database system for many-core
machines. It supports clustering a data store and dynam-
ically selecting concurrency control protocols for each clus-
ter. We outline new key challenges in data clustering, work-
load modeling, mixing protocols, and evaluate a prototype
demonstrating promising preliminary results. We believe
incorporating multiple state-of-the-art concurrency control
protocols into one single database systems and adaptively
clustering the data will address the critical challenge of var-
ied and mixed OLTP workloads in the presence of many
cores and massive main-memory systems.

Acknowledgments
The authors thank Neha Narula and Mike Stonebraker whose
insights and discussions with lead to the initial ideas for
ACC. The authors would also like to thank the reviewers,
Zechao Shang, Sam Madden, and Mike Franklin who pro-
vided valuable feedback. This work was in part supported
by the Intel Science and Technology Center for Big Data.

9. REFERENCES
[1] Scikit-Learn. http://scikit-learn.org.

[2] TPC-C. http://www.tpc.org/tpcc/.

[3] K. Andreev and H. Räcke. Balanced graph
partitioning. In Proceedings of the Sixteenth Annual
ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’04, pages 120–124, New York,
NY, USA, 2004. ACM.
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