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ABSTRACT

Enterprises increasingly employ a wide array of tools and
processes to make data-driven decisions. However, there are
large inefficiencies in the enterprise-wide workflow that stem
from the fact that business workflows are expressed in nat-
ural language but the actual computational workflow has
to be manually translated into computational programs. In
this paper, we present an initial approach to bridge this gap
by targeting the data science component of enterprise work-
flows. In many cases, this component is the slowest part of
the overall enterprise process, and focusing on it allows us to
take an initial step in solving the larger enterprise-wide pro-
ductivity problem. In this initial approach, we propose using
a chatbot to allow a data scientist to assemble data analytics
pipelines. A crucial insight is that while precise interpreta-
tion of general natural language continues to be challenging,
controlled natural language methods are starting to become
practical as natural interfaces in complex decision-making
domains. In addition, we recognize that data science work-
flow components are often templatized. Putting these two
insights together, we develop a practical system, called Ava,
that uses (controlled) natural language to program data sci-
ence workflows. We have an initial proof-of-concept that
demonstrates the potential of our approach.

1. INTRODUCTION

It is now increasingly common for many aspects of busi-
ness decisions to be guided in some form by data. This
change in approach permeates through every level of the or-
ganization, from the CXOs down to the business analysts.
However, the task of analyzing data resides in a select sub-
set of employees, the so-called Data Science (DS) profession-
als. These professionals have the responsibility of translat-
ing complex business problems into a technical form, then
applying their data analytics skills to solve these problems,
and finally producing insights to improve business outcomes.

Our research community has built a plethora of efficient
libraries and platforms that greatly simplify the individual
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tasks of the DS workflow. While we should continue to im-
prove these tools, we must also be mindful of the larger or-
ganizational context for DS workflows. The real bottleneck
is the turn-around time for the entire workflow. A crucial
aspect of this holistic view is to improve the human produc-
tivity of the data scientists, and reduce their turn-around
time in assembling DS pipelines. We note that our larger
vision is to improve the productivity of the entire enterprise
data-to-insights workflow, and democratize DS capabilities
throughout an organization. In this paper, we start with the
data scientists, as it provides a concrete starting point. In
the future, we plan to target increasingly larger user-bases
consisting of ever-less technical users, empowering them to
directly construct and manage robust DS workflows.

To improve the productivity of data scientists, we begin
with the observation that a natural language interface im-
proves the efficiency of translating business problems into
the technical domain, by reducing the impedance mismatch.
Further, we note that the diversity of available tools, while
a boon in many ways, has the detrimental effect of increas-
ing the cognitive burden on a data scientist and steepens
their learning curve, hindering productivity. Since these
tools overlap in the problems that they solve, we propose
using a natural language interface to abstract away the de-
tails of the underlying libraries and let a user cleanly specify
their task at the conceptual level, automating the transla-
tion to executable code.

The second key observation in our work is that this trans-
lation to executable code is facilitated by the templatized
nature of the workflow. Each individual task in the work-
flow (e.g., “Train a decision tree model with the given set of
hyper-parameters.”) maps to a short code sequence specific
to the underlying library or platform in use. By maintain-
ing a library of such task templates, we can translate a task
specification in natural language into executable code by in-
stantiating the template.

Further, we note that the DS workflow often proceeds
through a well-defined sequence of logical stages, from data
loading and cleaning, through feature engineering, to model
training and visualization. This observation prompts us to
build workflow tools that guide the data scientist through
these stages by composing the templatized tasks at each
stage. In this paper, we propose an interactive interface
that eases the exploratory workflow in this way.

Finally, with an eye on the longer-term goal of expanding
the target user-base of DS users beyond the typical data sci-
entist community, we make the observation that this work-
flow tool should take the form of an intelligent, learning
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Figure 1: The Data Science workflow for Example 1. Tasks are shown in rectangles, and meta-tasks in ovals. The pipeline is

highlighted in dotted blue boxes.

agent. Such an agent can be capable of learning from its in-
teractions with data scientists by logging them and compil-
ing a knowledge base for this context. This knowledge base
includes such facts as which methods and tools are most
effective, how optimal model hyper-parameter values relate
to the dataset characteristics, what visualizations and met-
rics speed up the exploratory workflow, etc. The intelligent
agent can then guide the user through the various stages
of the workflow, recommending the most effective decisions
the user can make at every step along the way. Thus, we
believe we can pool together the experience and expertise
of advanced data scientists, and democratize it to novices
through an intelligent recommendation system.

Combining these ideas, we introduce Ava, an intelligent
chatbot agent that interacts with data scientists using con-
trolled natural language. Conversations in the controlled
natural language are mapped to a state machine, and that
state machine is used to unambiguously interpret the conver-
sation, composing a workflow from individual templatized
tasks. Thus, a key technical contribution of this work is
proposing a way to unambiguously convert conversations to
compositions for data analysis. In addition, we also pro-
pose an architecture for such an agent that not only uses
predefined hard-coded rules to guide novice users through
the workflow, but also learns from the interactions about
what works and what doesn’t. We demonstrate how our
initial prototype based on this architecture is already capa-
ble of addressing some of the challenges we described above.
Overall, we take an initial step in building conversational
agents that in the future can be used by non data scientists
too.

2. THE DATA SCIENCE WORKFLOW

In this section, we begin with an example and then for-
malize key terminology.

EXAMPLE 1. A data scientist Daisy starts with a business
problem, namely: “Predict which customers are most likely
to respond to a direct email offer for a personal loan”. As
illustrated in Figure 1, she begins by loading some relevant
data about customers from databases or files. She may use

basic statistics and visualizations like histograms or scatter
plots to better understand the data as well as gain intuition
into the relevant features. She may find the need to impute
missing postal Zip codes or bucket dates by month. She pro-
ceeds to carve out training and test datasets, and build a
classification model using logistic regression. Finding that
the model has poor precision and recall, she decides to use
a decision tree instead. After confirming that the classifi-
cation accuracy has improved, she fine-tunes various hyper-
parameters such as tree depth or splitting criterion. She may
iteratively visualize the tree or use an ROC curve to guide
this model tuning. Finally, she settles on a model and ap-
plies it to current customer data to make her predictions
about which customers are most likely to leave/churn.

As illustrated in the example above, the DS workflow is
composed of various logical stages, such as Data Loading
and Model Training. At each logical stage, Daisy performs
a number of physical tasks, such as loading one or more
datasets from CSV files or databases, or training a Deci-
sion Tree model. In fact, while Daisy goes through roughly
the same sequence of logical stages to model every business
problem, she may perform very different tasks at each stage.
For instance, when asked to predict inventory needs for the
holiday season, she may go through a workflow with simi-
lar stages, but load data from different sources and train a
regression model rather than a classification one.

Thus, the data scientist faces a number of choices of tasks
at every stage, and must decide which task is best suited for
this problem. These decisions are informed by prior experi-
ence and rules of thumb (e.g., decision trees might not work
well if the number of observations is very small). In addition,
the decisions are guided by meta-tasks such as statisti-
cal analysis and visualization. For instance, histograms and
null-value counts are used to guide the imputation method
used for data cleaning, as well as the choice of bucketing
or encoding used for feature engineering. Similarly, metrics
such as precision and recall (for classification) or R? (for
regression), and visualizations such as Receiver Operating
Characteristic (ROC) curves are used to guide model selec-
tion, including hyper-parameter tuning.
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Figure 2: A timeline of an actual Ava conversation for the data science task in Example 1.

The outcome of this exploratory process is a DS pipeline
that results in a model used to gather insights and solve the
business problem at hand. The pipeline (shown in dotted
blue boxes in Figure 1) excludes the extraneous steps (shown
in black) that were incidental to the exploration, but will be
cleaned up in the final output. For example, when asked to
repeat the process for the same problem again, Daisy can
use the already cleaned data (foregoing the Data Cleaning
stage), directly train only the Decision Tree (skipping the
mis-step of training the Logistic Regression model), and may
even skip the meta-tasks like data and model visualization.
Only this subset of tasks forms the pipeline in our terminol-
ogy.

A workflow is thus a (usually cyclic) graph consisting of
tasks and meta-tasks, conceptually grouped into stages.
The pipeline is a subgraph of the workflow. The Data
Science problem is one of searching for the best pipeline,
and the exploratory steps involved make up the workflow.

2.1 Data Science Workflow is Templatized

The DS workflow is composed of a small, predefined set
of stages and a well-defined sequence in which they occur
in the workflow (possibly iteratively). Each stage is itself
composed of a number of tasks.

The tasks in the workflow are typically performed by writ-
ing code in a general purpose programming language like
Python, R or Scala, and using libraries like scikit-learn [12],
caret [17] or Spark [38]. Usually, the code used to perform
a certain task follows a corresponding template: a certain
sequence of library calls. The listing below shows a code
template for the task of training a decision tree using the
Python scikit-learn library, wherein the data scientist is only
required to select and set a few parameters, such as node
splitting information criterion criterion and decision tree
depth max_depth. Thus, the semantics of tasks typically
lend themselves to a clean separation of specification (pa-
rameter values) and template, making it possible to com-
pose the task code simply by substituting parameters into a
pre-defined code template.

from sklearn import tree

classifier = tree.DecisionTreeClassifier (
criterion={{criterion}},
max_depth={{max_depth}})

model = classifier.fit (training_set, labels)

Observe that the DS workflow typically proceeds through
a templated sequence of logical stages, each consisting of
templatized tasks. This observation highlights an oppor-

tunity: We can build a user interface that is specifically
tailored for this workflow, which is simpler than general
purpose programming languages without significantly con-
straining the data scientist’s capabilities.

A conversational interface simplifies the composition of
workflows from task template libraries. The use of natural
language allows a data scientist to provide the specification
of the tasks without intimately familiarizing themselves with
the specific details of the diverse and ever-changing ecosys-
tem of libraries underlying the task templates.

2.2 Data Science Workflow is Exploratory

Another key feature of this workflow is that it is highly
exploratory. At every stage of the workflow, the data scien-
tist must choose the most suitable task and parameters from
a large number of choices. Therefore, a simplified interface
must respect this exploratory nature of the workflow and
not constrain the data scientist to define the pipeline a pri-
ori. Further, there is an opportunity here to build an inter-
face that is intelligent enough to make the search procedure
more efficient by guiding the user to the most likely opti-
mal choices at every stage. We believe that this exploratory
aspect of the workflow is best served by an intelligent inter-
active agent.

3. INTRODUCING AVA

A key challenge in DS is the search problem of identi-
fying the best pipeline for the business problem at hand.
A plethora of languages, libraries and tools have simplified
the individual tasks in the workflow. There are also tools
available to build, validate, persist and manage pipelines.
However, we believe that despite the remarkable advance-
ments in this ecosystem, the data scientist is still left with
the time-consuming steps of learning how to use the various
tools (each with its own pros and cons) and gluing together
tasks performed using these tools into a workflow, all while
faced with the challenge of making decisions to navigate the
search space of possible pipelines.

3.1 Overview and Example

Motivated by the arguments in Section 2, we introduce
Ava, an intelligent chatbot that is aimed at simplifying this
search process. It uses a natural language chat-based inter-
face to abstract away the details of the underlying machine
learning and data analysis/visualization environments, let-
ting the user focus on the business problem. Ava interac-



tively guides the data scientist through the process of decid-
ing among the various tasks to be performed at every stage
of the workflow. It does so using a conversation storyboard
that mimics the decision-making process of a data scien-
tist. Further, Ava automatically recommends tasks as well
as presents statistical data and visualizations to aid the data
scientist in the process of exploratory analysis. We envision
that Ava will eventually manage data movement between
tasks (orchestrating multiple subsystems such as databases
and machine learning libraries) as well as between machines
(intelligently spawning appropriate instances in the cloud on
demand), thereby improving user productivity even further.

However, we acknowledge that the capabilities of such an
interface will likely lag behind the fast-evolving libraries in
the underlying ecosystem. To minimize any frustration on
the part of the experienced data scientist, Ava always allows
a user to seamlessly drop into a familiar programming inter-
face (the Jupyter Notebook) at any stage in the workflow.

Throughout this process, Ava logs its interactions with the
data scientist, producing a rich dataset that we will eventu-
ally compile into a growing knowledge-base for DS pipelines.
We envision that this process of constantly learning from
user interactions will make Ava more intelligent over time,
helping data scientists find the optimal pipeline ever faster.

While we don’t elaborate on this point further in this pa-
per, we note that the chat logs provide a natural way to
document the choices that are made. Chat logs are eas-
ier to read (compared to examining a stitched sequence of
code), to review/revisit decisions, and to reuse portions of
the decisions in building future pipelines.

EXAMPLE 2. We have used our current Ava prototype to
execute the workflow in Example 1 in an initial user study.
Figure 2 shows a timeline view of the resulting conversation
for a sample user. Ava interactively guides Daisy through
the successive stages of the workflow. At each stage, Ava
uses natural language questions to clarify Daisy’s intent and
then executes the appropriately instantiated code template.
Awva also proactively reports meta-information that might
help Daisy take the next action, like automatically report-
ing the cross-validation accuracy after training a model. In
future, Ava will also learn to make recommendations, such
as proposing that a decision tree may be a more accurate
model than logistic regression in a similar context.

Note that all the interaction with Ava is through natu-
ral language. Internally, in this initial prototype, Ava loads
data from a database or from a file into a Pandas data frame,
uses the Pandas library [24] for data transformation, visual-
izes data using Matplotlib [15], and uses scikit-learn [12] for
machine learning. (An initial implementation to use Tensor-
flow [9] is also in the works.) Ava seamlessly orchestrates all
these systems and libraries together without requiring any
such knowledge on the part of the user. In our current imple-
mentation, Ava can run the machine learning tasks either on
the user’s device (typically a laptop) or on a remote instance
in our private academic cloud (which we can easily extend to
public clouds like Amazon AWS or Microsoft Azure). Cur-
rently, Ava uses simple heuristics that we have encoded to
make recommendations. In future, Ava will use statistical
analysis of the datasets at hand to find relevant informa-
tion in its knowledge base (consisting of expert knowledge,
thumb-rules, and historical logs) to make its recommenda-
tions.

jupyter ava

Ava: Your Data Science assistant

You: Survived
Load data Ava: To evaluate your model we
need train and test data. Do you wish
to load the test dataset? You can also
split the data into train and test.
Hint: You can instruct me to split the
data by saying "do a

import pandas as pd

file_path = "train.csv"

loaded data = pd.read_csv(file_path,encoding="utf-8")
X = loaded_data.copy(deep=True)

#Selecting Features 2 :
columns = [column.strip() for column in "Pclass,Age,Sex".split(|lrain_split_percentage -

exclude_columns = [column.strip() for column in "PassengerId,|test split_percentage split". e.g "do a

for col in exclude_columns: 60-40 split".
You: do a 60-40 split
Ava: Splitting the data into train and
test ...
Ava: The are 2 values for the column
Survived. The supported binary
classification algorithms are decision
Fill Missing Data trees, logistic regression and SVM
from sklearn.preprocessing import Imputer Hint: Type "Run name-of-the-
imputer = Imputer(missing_values="NaN", strategy="mean', axis=0,| algorithm" to select an algorithm. e.g.
imputer=imputer.fit(X) n it i
X=imputer.transform(X) 'run logistic regression

You: run decision trees

Ava: Pick a splitting criterion for the
decision tree. The choices are gini
and entropy.
You: entropy
Ava: How deep do you want your
decision tree to be?

columns.remove(col)
X =loaded_data[columns]
column_names = X.columns

Encode Categorical Features

X=pd.get_dummies (X)
column_names = X.columns

#Selecting Label
y=loaded_data["Survived"]

Train Test Split

import numpy as np
from sklearn.model_selection import train_test_split
train_indices, test_indices = train_test_split( xrange(X.shape[|

from sklearn import tree . . X Hint: Enter an integer value. Deeper
g::iii:::gg;:.;::;i?:‘;f‘;ﬁgii}“s‘n"‘““e’““: ©entIoPY | decision trees are more complex.

from sklearn.model selection import cross_val_score You: 2

dt_clf_entropy cv_scores = cross_val_score(dt_clf entropy, X_tri Ava: Enter the number of features to
consider when looking for the best
split. The choices you have are:

« An integer number, which will
set the max_features at each
split
A decimal number, in this case,
max_features is a percentage
and int(max_features *
n_features) features are
considered at each split

testing dt_clf_entropy

from sklearn.metrics import accuracy score
dt_clf_entropy predicted labels = dt_clf entropy.predict(X_test
dt_clf_entropy_prediction_accuracy =accuracy_score(y_test, dt_c

.

Visualize Decision Tree

from IPython.display import Image
from sklearn.externals.six import StringIO

import pydotplus

dot_data = StringIO()
tree.export_graphviz(dt_clf entropy, out_file=dot data,

filled=True, rounded=True, « If auto, then
feature_names = [c.encode("utf-8")for ¢ in column ) _
class_names = [str(v) for v in loaded data max_features=sqrt(n_features)
special_characters=True) « If None, then
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png(), width=400, height=400) max_features=number of
features
You: auto

Ava: The accuracy after cross
validation is 0.785. Do you want to
run your model on the test data?
Hint: Type "Yes" to see the accuracy of
the algorithm on the test data.

You: yes

Ava: The testing accuracy is 0.776.
What do you want to do next?

ROC Hint: Type "show ROC plot" to see a
ROC plot of the classifier you chose. If
your current choice of classifier is
decision trees type "show decision tree"|

tmatplotlib inline
import matplotlib.pyplot as plt
from sklearn.metrics impert roc_curve, auc

fpr,tpr, _ = roc_curve(y_test, dt_clf_entropy_predicted_labels) |to visualize the tree.
roc_auc = auc(fpr, tpr) ) i
plt.figure() You: show decision tree

plt.plot(fpr, tpr, label="
plt.plot([0, 1], [0, 1], "
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")

Ava: ROC generated. Do you want to
e view any otherplots?
plt.show() Hint: Type "show ROC plot" to see a
ROC plot of the classifier you chose. If
your current choice of classifier is
decision trees type "show the decision
tree" to visualize the decision tree. Type
"No" to move on to the next
conversation.
. You: No
r s Ava: You have tried
| o « decision tree with
e max_features:auto,
B max_depth:2, criterion:entropy

C curve (area = %0.2f)" % roc_auc) |Ava: Decision tree generated. Do
&l you want to view any other plots?
You: show roc

so far. Would you like to try out a
different model?

Hint: Type "yes" to select a new
algorithm. Type "No" to exit the
convesation.

Nol

Figure 3: Ava in action. The right panel is the chat window.
The conversation between the user and Ava is carried out
in this chat window. Actual code is created and run in the
left panel using the regular Jupyter Notebook interface.
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Figure 4: Overview of Ava’s control flow architecture.

3.2 Client-Server Jupyter Notebook Design

The conversational nature of Ava naturally lends itself to
using a notebook style of interaction. Ava currently uses the
Jupyter Notebook environment. This notebook style also al-
lows a data scientist to “take over” from Ava and switch to
their current mode of operations. Thus, Ava is a productiv-
ity accelerator to existing data science workflows.

The Jupyter Notebook [26] is an interactive computing
environment that is widely used by data scientists. As the
user types in code (typically in Python or R), the code can
be executed, and results, including tables and figures, are
produced inline with the interface. Thus, a notebook can be
produced with the code, intermediate results, and the final
results. Juypter also has a client-server architecture. In the
server side of the Jupyter Notebook framework, there is a
programming language specific kernel. This kernel manages
the interactive context and controls code executions that are
triggered by the client. The client communicates with the
kernel using a REST-based API. It is possible to run the
client and the server on different machines. Ava taps into
this existing architecture of Jupyter as described in more
detail in Section 3.3.

At a high-level, Ava is built on the Jupyter Notebook
framework. An extended IPython kernel serves as the chat
server. The chat server is responsible for parsing the chat
messages, extracting the semantic information about the
task to be performed, identifying when further clarification
is required, and finally generating the executable code. The
Ava chat client has an instant messaging-like interface, and
runs above the regular notebook client, as shown in the
screenshot in Figure 3. The user interacts directly with the
chat client, providing instructions and answering questions
using chat messages. When the specification for some task
is completed, the Ava chat server triggers Python code gen-
eration. After executing this code, Ava updates the Jupyter
Notebook with both the code and its result. Thus, a user
can take over from Ava at any point, and directly write
code in the notebook. This aspect is crucial, as it allows
advanced users to jump back to the usual mode of “driving”
the data analysis process, minimizing frustration when the
task at hand can’t be done using Ava. (Although, at this
point the one-to-one correspondence between a chat and the
associated code is lost.)

3.3 Control Flow Architecture

Figure 4 shows Ava’s control flow architecture. The user
chats with the conversational agent in a Controlled Natural
Language. The conversational agent consists of a chat client
and a chat server, and matches the input with patterns in

the AIML files (more details about how Ava uses AIML is
presented below in Section 3.5). The conversational agent is
responsible for steering the conversation towards a full task
specification.

The chat server consists of a pair of processes, one that is
the AIML interpreter (a Java process), and the other that
is the iPython kernel.

The chat client sends the messages that are typed by the
user to the IPython kernel, using IPython’s REST-based
communication API. The IPython kernel then passes the
chat message that it received to the AIML interpreter (which
is part of the chat server). The IPython kernel communi-
cates with the AIML interpreter using JPype [5]. Once the
AIML interpreter matches the chat message with a pattern
in the AIML files, it sends a response back to the IPython
kernel using JPype. The IPython kernel, then relays back
the response to the Ava chat client using the kernel’s REST-
based API. The conversation between Ava and the user con-
tinues until a full task specification is reached.

Once a specification is complete, the system signals the
task code generator, which in turn looks up its template
repository to identify the template that best matches the
task specification. Its argument identifier extracts the tem-
plate parameters from the chat messages, and the template
instantiator fills out the chosen template with the user-
specified parameter values. The generated code is now ex-
ecuted on the underlying DS platform. Both the code and
the results are also presented back to the user in the Jupyter
Notebook client. The chat server logs all interactions to later
be compiled into a knowledge base, and consults it to guide
the workflow towards the optimal pipeline.

Note that the discussion above described how the template
code generates Python code to run in the Jupyter Note-
book client. This same mechanism can be used to call out
to other machine learning platforms, by simply having the
template code invoke APIs in the machine learning platform
(e.g. TensorFlow), which can be run as a separate process.
Ava is currently packaged as a Docker [25] image, which also
allows for easy packaging and deployment of all the associ-
ated components.

3.4 Controlled Natural Language (CNL)

While natural language is highly expressive and capable
of representing arbitrary concepts, this expressiveness comes
with ambiguity and poses a challenge for automatic semantic
inference. CNLs [29] provide a middle ground that balances
the expressiveness of natural language with ease of seman-
tic inference by restricting the vocabulary and grammar in
the language. Thus a CNL constrains the input to be more
concise, with a less general sentence structure, making it eas-
ier to parse and extract meaning from the input sentences.
(CNLs have been used successfully in many domains, includ-
ing air traffic control [30].)

The sentence structure for Ava’s CNL is: <ACTION
VERB> <NOUN> <PREDICATE>. For example, a data sci-
entist can say Run logistic regression with penalty 12 and
solver liblinear to instruct Ava to fit a logistic regression
classifier. Here, “Run” is the ACTION VERB, “logistic regres-
sion” is the NOUN and “with penalty 12 and solver liblinear”
is the PREDICATE. This simple sentence structure makes it
easy for Ava to identify the action to be taken in response
to the user’s input as well as the parameters associated with
the action.
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Figure 5: The storyboard powering Ava, excerpted and truncated for brevity.

3.5 Artificial Intelligence Markup Language

In addition to CNL processing, Ava has to maintain a
conversational context. We briefly describe our approach
here.

The conversational context is represented by a state ma-
chine, which has the following key elements:

e The current state of the conversation, e.g., What stage of
the workflow are we in? What dataset and model variables
are in scope?

e The allowable inputs that will trigger a state transition,
e.g., What can the user say at this stage in the workflow
to choose a task or move to the next stage?

e The corresponding actions that Ava must take when the
user effects a state transition, e.g., What code should be
ezecuted when the user asks to train a decision tree?

The state machine is wrapped up with a layer that im-
plements the actual chat/conversation. We use the pop-
ular XML dialect, Artificial Intelligence Markup Language
(AIML) [34], to represent the state machine for our chatbot.
Each unit of conversation in AIML, called a category, con-
sists of a pattern that represents a possible user input and
a template that represents an action that the chatbot can
take. An example listing is shown below:
<aiml>

<category>

<pattern>HELLO</pattern>
<template>Hi,there!</template>
</category>
</aiml>

We have created various AIML files to script each possible
interaction that Ava can have. We also use existing open-
source libraries for parsing AIML, and running a conversa-
tional agent, using developer-defined callbacks for processing
user input and effecting state transitions.

3.6 Task Template Repository

As we observed in Section 2.1, the code for executing a DS
workflow task is highly templatized. In Ava, each such tem-
plate is represented using a text file with placeholders for the
various parameters that can be set. We maintain a reposi-
tory of such templates, along with a mapping from specific
tasks, such as Model Training for Decision Tree, to the cor-
responding code template file. These templates are specific
to the underlying libraries or tools that Ava uses, and are
manually created by us in this initial implementation. In
the future we plan to augment it using static analysis tech-
niques to automatically generate templates from the source
code and documentation of the underlying library.

3.7 Conversation Storyboard

Ava’s conversations with the user are guided through a
storyboard, which is represented as a set of AIML files. The
storyboard describes the dialogue between the data scientist
and Ava in CNL, and the actions that Ava must take in
response. These responses are often questions that Ava must
ask the user in order to disambiguate their intent and arrive
at a complete task specification.

Figure 5 visualizes an excerpt of the storyboard in the
form of a set of flowcharts. The first flowchart is a high-level
view of the different stages of the DS workflow. Correspond-
ing to each stage, the figure shows a separate sub-flowchart.
The Model Selection (MS) flowchart describes how Ava uses
multiple prompts to identify whether the user is interested
in a classification, regression or clustering method. The
flowcharts for Classification (C) and Unsupervised Learn-
ing (U) further detail how Ava talks to the user to identify
the specific method (say Decision Trees) and its parameters
(information criterion and maximum tree depth). When the
task specification is complete, the storyboard also instructs
Ava to load the corresponding task template and execute it.

A particular workflow therefore plays out as a conver-
sation with Ava, which is modeled as a walk through the
flowchart graph. Note that the storyboard is also a template
for the entire DS workflow (in contrast to the task-specific
template library described in Section 3.6). Over time, as
Ava grows its knowledge base, we envision that much of the
storyboard will be automated, reducing the need for user
prompts. For instance, Ava may eventually learn what de-
cision tree hyper-parameters to use, so that those prompts
in the storyboard are replaced by lookups in the knowledge
base.

3.8 Salient Aspects

The finite state machine (FSM) framework is crucial to
Ava’s ability to unambiguously convert from conversations
in CNL to executable code. The FSM states, through the use
of CNL, make interpretation of the conversation tractable
and unambiguous. The FSM transitions allow Ava to drive
the conversation towards a complete task specification. Fi-
nally, the task templates allow Ava to generate and execute
the code for a task, decoupling underlying libraries from the
chat engine.

Ava’s modular architecture allows implementation of each
component using the appropriate technologies. This modu-
larity also allows us to easily extend Ava’s capabilities, such
as adding new machine learning methods or libraries.



4. EXPERIMENTS

We designed single-subject and multiple-subject trials to
analyze the efficiency of Ava in constructing data science
pipelines. We present our experimental design and results
in this section.

4.1 Single-Subject Trial

We conducted this experiment with a single user playing
the role of Daisy in the DS workflow in Example 1. We
chose the specific Kaggle task [7] where the goal is to iden-
tify customers for direct marketing. For training, we used
a 15% sample of the 1GB customer dataset, consisting of
25000 rows and 1934 columns. This experiment was run on
a MacBook with a dual-core Intel i7 processor and 8GB of
memory. Ava was configured to generate code using the Pan-
das, Matplotlib and scikit-learn libraries. Our current Ava
prototype has a small number of hand-written templates in
its template repository. The knowledge base consists of a
set of hand-written rules providing user assistance (includ-
ing recommendations) based on prefix-based exact matching
of the state of the current conversation. Figure 2 visualizes
the conversation flow in the form of a timeline with timings
measured from our user study for an actual user. Figure
3 shows a screenshot of the interaction with Ava. All the
interaction between Ava and the user occurs through chat
messages in (controlled) natural language, although Ava also
presents the generated code and graphs in the Jupyter Note-
book interface alongside the conversation window.

A key objective in this experiment was to study Ava’s re-
sponse time, which we define as the time it takes for Ava
to respond to a given user request, not including any time
spent in executing generated code for a task. Our measure-
ments showed that the average response time was 93 ms,
whereas the maximum was 558 ms. Thus, we believe that
our CNL/AIML framework in Ava has fast response times,
which is crucial for a chatbot framework. We note that the
total time to assemble the final DS pipeline in this case was
12 minutes (this includes the time to actually run the ma-
chine learning models in scikit-learn). Of these 12 minutes,
only 2 seconds were spent in Ava’s client-server engine. We
expect that novice users faced with this DS problem would
likely spend many more minutes putting together the same
pipeline by writing code. Additionally, since an expert user
can always drop down to the notebook programming inter-
face, Ava does not significantly impair their productivity
even in the worst case (2 seconds in this case). We believe
that Ava’s proactive presentation of meta-information and
recommendations would likely improve productivity for even
the experts.

4.2 Multiple-Subject Trials

Inspired by the results of the single-subject trial, we con-
ducted a more detailed study to test our hypothesis that Ava
significantly improves productivity of its non-expert users,
with only a small learning curve. In this study, we asked
users to complete the same data science task using both Ava
as well as Python packages, and measured various metrics
of productivity.

Participants. We recruited graduate students from
the Computer Sciences Department at the University of
Wisconsin-Madison for this experiment. All students in this
user group had exposure to machine learning and data sci-
ence through their coursework, but were not otherwise ex-
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Figure 6: Distribution of the time taken by participants to
complete the first model.

perienced in these domains. We administered a Python pro-
ficiency test and picked 16 participants who passed this test.

Task and data description. The task that we chose
for this study was one of predicting customer churn for a
telecommunications firm [4]. The objective of the task is to
develop a model to classify which customers are most likely
to refrain from renewing their contract when it ends. We ob-
tained a dataset consisting of historical details and account
usage information for customers of the telecommunications
firm, along with labels that indicate whether or not they
renewed their contract. These labels, however, were skewed
in that only 433 of the 3333 customers had terminated their
contract. We sampled a subset consisting of 2300 customer
records and provided it as training data to the participants.
The remaining 1033 customer records were used as a held-
out test set to evaluate the models developed by the partic-
ipants. All participants used the same machine, which was
a MacBook with 2.8 GHz Intel Core i7 processor and 16GB
of memory.

Each participant performed this task once using Ava and
once using the Python packages (pandas and scikit-learn).
In both cases, the participants were required to follow a
10-step procedure to develop a data science pipeline. The
pipeline included steps for feature selection, model training,
cross-validation, and visualizing data that described the ac-
curacy of the constructed model(s). For simplicity, we lim-
ited the choice of machine learning algorithms to logistic
regression, support vector machines and decision trees. We
limited the duration of the task to 30 minutes when using
Ava and to 60 minutes when using Python. Participants
were instructed to explore as many models (combination of
learning algorithm, features and hyper-parameter choices) as
they could within this duration. They were free to use any
documentation, tutorials or code samples from the Internet
to help them complete the task. Note that the participants
were given no training or instruction on the usage of Ava.

More details about the dataset as well as the exact task
description are available at (2, 3].

Results: Productivity Improvement. We used three
different metrics to measure productivity. These metrics
are: a) the time taken to complete the first model, b) the
number of models that were constructed in a fixed amount
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Figure 7: Distribution of the time taken by participants to
complete the first model.

of time, and c) the time taken to complete successive models
after the first model was constructed. As a overview of our
findings (described in detail below), with Ava we saw big
productivity improvements in each of these three metrics.

Note that all time measurements include the actual pro-
cessing time for the analytics steps (within the underlying
machine learning and the visualization libraries), in addition
to the time spent by participants in manually proceeding
through the steps in the analysis task.

First, we consider the time taken by the participants to
train their first working machine learning model. The dis-
tribution of the results using this metric is shown as box
plots [31] in Figure 6. Of the 16 participants, only 13 were
able to complete their first model using Python within the
allotted task duration of 60 minutes. On average, these par-
ticipants took 45 minutes to do so. On the other hand, all
16 participants completed their first model using Ava within
14 minutes, with an average time of about 7 minutes. Thus,
we observed a improvement of more than 6x in this produc-
tivity metric.

Second, we consider the number of models that the par-
ticipants were able to train within the allotted duration us-
ing each approach. Only one of the participants was able
to train more than one model using the Python packages
within 60 minutes. On the other hand, every participant
was able to explore at least 7 models using Ava, and on av-
erage, each participant explored about 11 models within the
allotted 30 minutes. Thus, Ava produced at least an order
of magnitude improvement in productivity by this metric.

Finally, we note that the participants spent less than 3
minutes training each successive model after the first one
using Ava. This time was about half a minute faster than
the average time per successive model using Python for the
single participant that completed training of more than one
model.

Results: Learning Curve. Of the 16 participants in
the study, half were randomly chosen to perform the task
using Python packages before doing so with Ava (we denote
this group using the label Group-PA). The remaining half
were asked to perform the task using Ava before doing so
with Python (denoted as Group-AP). Comparing the pro-
ductivity differences between these groups using the two ap-

60 |-

Joas

40 -

30 -

Time (minutes)

20 ]

ok ]

Group-PA Group-AP
(Python) (Ava)

Figure 8: Distribution of unbiased task completion times.

proaches allows us to reason about the learning curves with
these two approaches. The distributions of the time taken
to train the first model for these two groups are shown in
Figure 7.

When performing the task using Python packages, the 8
participants in Group-PA (who used Python before Ava)
took, on average, 51 minutes to train their first model. On
the other hand the 8 participants in Group-AP (who used
Ava before Python) took 7 minutes to train their first model.
Figure 8 compares the time taken by the participants to
train the first working model in Python and Ava, when they
did not have any prior knowledge of the task.

Also, familiarity with the task as well as the data science
process (by completing the task in Ava first) allowed the
participants in Group-AP to take only 27 minutes to reach
the same milestone. Contrast this 14 minute (27%) improve-
ment in productivity with the negligibly small 1 minute im-
provement (from 7 minutes down to 6 minutes) to train the
first model using Ava in Groups-AP and -PA respectively.
Further, we saw only a negligibly small difference in the av-
erage number of models trained by the participants using
Ava in the two groups.

We consider these observations as indicating that novice
users can be nearly equally productive with Ava regardless
of their prior experience in or familiarity with the data sci-
ence process. We cannot, of course, extend these conclusions
directly to expert data scientists since they were not part of
this study.

Other Observations. Since we held out a subset of the
labeled data from the participants in the study, we were
able to compare the accuracy of their models on this (un-
seen) test set. A surprising observation was that the “best”
model trained by participants using their cross-validation ac-
curacy scores often had far lower accuracy scores on the test
set. Clearly, empowering users with the ability to explore a
large number of models in a short time had the unintended
consequence of encouraging them to create highly over-fitted
models. Furthermore, nearly all the participants seemed to
have overlooked the skew in the labels (class frequencies)
in the datasets, thereby obtaining models that had much
higher prediction accuracies for one class than for the other.

These and other observations indicate that, despite data
science training and some amount of hand-holding, users can



still make mistakes that impair the accuracy and usability of
the DS pipelines that they create. A data science workflow
tool such as Ava must be built with sanity checks and knowl-
edge of best practices to guide non-expert users away from
such mistakes. In particular, we are looking to add checks
against over-fitting as well as detection of class frequency
imbalance into our Ava storyboard to address the specific
issues that we observed. We note that this aspect of pro-
viding expert guidance or cautionary flags is an additional
interesting aspect of Ava. Analogous to how automation
helps drivers of cars with autonomous features, with Ava
we can build safe-guards that warns its user when the user
starts to tread into an “unsafe” territory.

5. RELATED WORK

There has been significant research in understanding natu-
ral language, dating back to the “Imitation Game” proposed
by Turing in 1950 [32]. The quest to demonstrate an Artifi-
cial Intelligence (AI) capable of behaving indistinguishably
like humans spurred research into early chatbots such as
ELIZA [36], PARRY [13] and ALICE [35]. The Loebner
Prize competition [6], conducted annually since 1991, was
the first formal instantiation of a Turing test.

In recent years, the explosion of mobile web usage as well
as improvements in natural language parsing have led to a
resurgence in chatbots. These chatbots are designed with
much more pragmatic ends in mind, such as virtual as-
sistants that help book flight tickets or order pizza deliv-
ery. Many recent language understanding services such as
Microsoft LUIS [37],Watson Conversation [8] and Amazon
Lex [1] are designed to ease development of such chatbots.
Due to their closed-source nature and licensing restrictions
however, we chose to build our research prototype Ava using
the open-source AIML [34] chatbot framework instead.

An important observation is that practical conversational
interfaces can function reasonably well while understanding
only a restricted subset of natural language. Such a “con-
trolled natural language” (CNL) removes ambiguity in in-
terpretation, thereby easing development of such interfaces.
This approach has therefore found increasing use, includ-
ing in air traffic control [18,30]. Some CNLs can also be
mapped to first-order logic for unambiguous interpretation
(e.g. [14,29]), and we build on this insight to control Ava’s
chat language.

There has been a large body of research aimed at simpli-
fying data access for non-programmers through the use of
natural language, dating back to late 1960s. We direct the
interested reader to the comprehensive survey [10] of nat-
ural language interfaces for databases (NLIDBs) for a re-
view of the progress made over several decades. In the early
NLIDBSs, the acceptable input query grammar was usually
tailored to the specific data schema, reducing their general
applicability. More recent work, including Microsoft En-
glish [11], Precise [27], Nalix [22], Nalir [21], Athena [28§]
and Nauda [20], has sought to overcome this shortcoming
by translating to SQL in a generic fashion. While systems
such as Microsoft English [11] and Athena [28] rely on a se-
mantic model of the database to correctly interpret natural
language queries, others like Precise [27] and Nalir [21] use
only the names of database elements and their synonyms.
Most recently, EchoQuery [23] demonstrated a conversa-
tional, speech-based interface. Ava too advocates using nat-
ural language as the interface to data systems. We believe

research on NLIDBs to be complementary to our own, since
we target the broader data science domain rather than the
database interface.

There is broad recognition that various aspects of DS
pipelines must be optimized (e.g. [16,19,33]), and we have
a similar overall goal. We advocate a specific approach for
part of this problem using chatbots; many other aspects
in previous work, such as smarter parameter selection, are
complementary with our proposed approach.

6. CONCLUSIONS AND FUTURE WORK

The true democratization of data requires dramatic sim-
plification of the methods that are used to extract insights
from data. In this paper we present a small step in this di-
rection. We present the initial version of Ava, which targets
improving the productivity of data scientists. Ava uses con-
trolled natural language as the “programming” interface, and
has an architecture for building a knowledge base that can
improve the overall productivity in performing data analysis.
There are numerous open research challenges even in this ini-
tial version, including managing and mining the knowledge
base, and even larger issues in making the Ava approach
accessible to non-data scientists.
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