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ABSTRACT
Interactive data visualizations have emerged as a prominent way
to bring data exploration and analysis capabilities to both techni-
cal and non-technical users. Despite their ubiquity and importance
across applications, multiple design- and performance-related chal-
lenges lurk beneath the visualization creation process. To meet
these challenges, application designers either use visualization sys-
tems (e.g., Endeca, Tableau, and Splunk) that are tailored to domain-
specific analyses, or manually design, implement, and optimize
their own solutions. Unfortunately, both approaches typically slow
down the creation process. In this paper, we describe the status of
our progress towards an end-to-end relational approach in our data
visualization management system (DVMS). We introduce DeVIL,
a SQL-like language to express static as well as interactive visu-
alizations as database views that combine user inputs modeled as
event streams and database relations, and we show that DeVIL can
express a range of interaction techniques across several taxonomies
of interactions. We then describe how this relational lens enables
a number of new functionalities and system design directions and
highlight several of these directions. These include (a) the use of
provenance queries to express and optimize interactions, (b) the ap-
plication of concurrency control ideas to interactions, (c) a stream-
ing framework to improve near-interactive visualizations, and (d)
techniques to synthesize interactive interfaces tailored to end-users.

1. INTRODUCTION
The necessity for ease of exploration and analysis of big data

volumes from both technical and non-technical users has turned
interactive data visualizations to first class citizens in a wide va-
riety of applications. Data exploration tools and decision-support
systems [38, 50, 51], knowledge exploration interfaces [6, 54], ma-
chine learning and statistical suites [2, 3], or news media outlets [1]
are just a few examples that expose end-users to interactive visual-
izations. This ubiquity of interactive visualizations highlights the
importance of the visualization creation process. Yet this process is
challenging with an ambitious goal set to fulfill the exploration and
analysis needs of end-users. Consider the following example:
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Figure 1: Example of an interactive visualization.

EXAMPLE 1 (REVENUE BREAKDOWN WITH CROSSFILTER).
Figure 1 visualizes the revenue breakdown of a company coupled
with a crossfilter interaction technique [17]. Each individual
chart performs a sum aggregation on revenue group by region (top
left), by year (top right), by month (middle right), by day of week
(bottom right), and by region (bottom left). For this example, we
used the TPC-H benchmark. An interactive selection on the years
(orange box at the top right) filters the other charts to the selected
years 1997 and 1998. The green and gray portions of each bar
correspond to the group-by sum aggregation for the non-filtered
and filtered partitions, respectively.

Creating the example interactive visualization relies on multiple
areas of expertise. First, an expert must abstract out the domain-
specific analyses and needs (e.g., the revenue breakdown is useful
for decision-support). These analyses and needs are typically en-
coded as queries (e.g., group-by sum aggregations) or even hand-
written programs. Then, a designer lifts these analyses into a more
efficient visual domain by choosing or creating the appropriate vi-
sualizations and interactions (e.g., horizontal and vertical bar charts
in a grid layout coupled with crossfilter interaction capabilities).
Finally, a developer implements the design and optimizes the data
layout and query or program execution to ensure that user inter-
actions are sufficiently responsive. This process iterates, possibly
many times, between design and prototyping until the desired de-
sign and performance characteristics are met.

There are two common ways to develop an interactive visual-
ization: express it in a data visualization system or implement it
by hand. Unfortunately, both approaches typically slow down the



iterative creation process. Data visualization systems are easy to
use but limited to particular domain or type of interactions. For
instance, Tableau [51] is an interactive interface to general OLAP
queries, Splunk [50] is specialized for filter and aggregation oper-
ations over temporal log data, and crossfilter [17] uses linked se-
lection interactions to identify correlated dimensions in a dataset.
To overcome the limited functionality of off-the-shelf data visual-
ization systems, application developers often implement the visual-
ization by hand, and end up making ad-hoc design or performance-
related choices that are heavily tailored to the specific interaction
and design decisions in the visualization. These choices lead to a
brittle interface that is difficult to modify without needing to rewrite
much of the implementation. Furthermore, the prevalent use of
event driven code makes interactive visualizations hard to main-
tain, extend, optimize, and reason about [61].

We believe that a declarative, relational approach towards build-
ing interactive visualizations can ease much of the developers bur-
den. To this end, we are extending the Data Visualization Man-
agement System [20] (DVMS) to support composition of interac-
tive visualizations and help insulate visualization developers from
low-level design and optimization choices. There are a number of
challenges that must be addressed:

Challenge 1: Language Design Consider implementing the inter-
active visualization of the above example under a client-system ar-
chitecture. A manual implementation involves sophisticated server-
side functionality to handle asynchronous requests from clients and
client-side logic to handle user inputs by translating them to server
requests (e.g, convert the selection of the year bars to a server re-
quest for crossfiltering). The client-side logic is then enhanced with
logic for updates to the visualization state based on the server re-
sponse. Furthermore, the developer would have to handle the com-
munication between the two ends either using a response-request
scheme (e.g., AJAX calls) or through persistent connections (e.g.,
WebSockets). Under both schemes there is a network latency dur-
ing which the visualization state may be inconsistent. In response,
the application developer would need to introduce consistency poli-
cies across a large set of programming abstractions to maintain con-
sistent visualization state. This process highlights that the applica-
tion developer is required to have a wide range of expertise to han-
dle the multitude of programming abstractions involved in the over-
all system architecture. Instead, DVMS proposes a single language
to the applications designers that is (a) expressive enough to sup-
port a wide variety of interactive visualizations, (b) easy enough to
analyze and reason about to allow for automated optimizations and
design choices, (c) familiar to developers to avoid time-consuming
learning curves, and (d) coupled with debugging capabilities.

Challenge 2: Performance Optimization Prior research has found
that increased latency has a detrimental effect on data exploration
sessions [49], and modern visualization interfaces are designed to
create the expectation of high interactivity. Unfortunately, although
a number of optimization techniques have been developed in the
visualization and database communities [22], optimizing perfor-
mance continues to be a manual process. On one hand, existing
visualization optimization techniques [31, 33, 34, 37, 47, 52] are
specialized for specific scenarios that are neither applicable nor
most suitable for every interactive visualization design. On the
other hand, databases employ query optimizers that embody a wide
range of optimizations [4, 8, 11, 18, 19, 29, 35, 40]. Yet they re-
main inaccessible because interactive visualizations are written im-
peratively, and it is unclear how different optimizations affect the
end-to-end latency. Ultimately, each technique was developed in
isolation, with its own set of performance and design assumptions,

and the developer is left to manually combine these ideas together.
In addition, the ability to use them from an end-to-end perspective
relies on end-to-end information, which is difficult to analyze or not
available in imperatively written systems. In this direction, a single
data model can keep track of end-to-end information and can be
flexible enough to decide between or combine multiple optimiza-
tion techniques.

Challenge 3: Design A core use case for interactive visualizations
is to abstract out patterns from existing analyses, encoded as e.g.,
python scripts or SQL queries, and lift them into a more efficient
interactive domain [25]. In our example, the intended analyses is
encoded as SQL queries that we mapped to charts in the visual
space coupled with a crossfilter interaction. Even on the same data
set, visualization developers need to prepare interfaces that adapt
to a multitude of needs (some known, some unknown) and chang-
ing circumstances. In our example, the group-by day chart may not
be important for decision-support, yet we included it in the inter-
face. As a result, some current systems simply incorporate all com-
mon interactions into their interfaces [45], creating overcrowded
and cluttered displays. To avoid cluttered displays, some visualiza-
tion designers carry out user studies to decide the set of interactions
to put on their interfaces. In this case, some interactions are often
overlooked, as the scope of what analysts do with the data set is
too large in big data scenarios. Even though both of these extremes
are undesirable [11, 35], visualization designers are still using these
methods as it is very hard to find the middle ground. To this end,
a DVMS can keep track of users’ interaction history and propose
design choices to application developers based on them.

In the spirit of prior relational approaches towards web devel-
opment [21, 36] and interactive data cleaning [42], our primary
hypothesis is that a single, well-understood abstraction—relational
languages—can be suitable for both expressing the entire visualiza-
tion application, and extending the application with richer design,
development, and optimization support. In the following sections,
we present our data model and DeVIL, our SQL-like language, for
static and interactive visualization and our DVMS system architec-
ture (Section 2). Then, we discuss our recent research efforts for a
DVMS ecosystem (Section 3), which is a set of DVMS extensions
to facilitate the visualization creation process. In particular, we in-
troduce provenance for visualization interactions to provide novel
functionality and optimizations (Section 3.1), introduce distributed
consistency ideas to visualization interactions (Section 3.2), im-
prove nearly-interactive visualizations (Section 3.3), and synthe-
size novel interactive interfaces tailored to the user (Section 3.4).

2. OVERVIEW
In this section we provide an overview of our end-to-end rela-

tional approach for expressing interactive visualizations, as well as
a description of the current system. The direct benefit of our rela-
tional approach is that we can bring traditional, well-founded op-
timizations from the database literature (e.g., query optimization,
physical database tuning, and view maintenance) to the visualiza-
tion domain. In addition, this approach allows us to push down
further optimization and design choices into the DVMS, by analyz-
ing familiar SQL-like statements and corresponding workflows.

To better illustrate key points in our discussion we use a simple
linked brushing [10] example that most visualization toolkits and
systems implement imperatively:

EXAMPLE 2 (LINKED BRUSHING). Figure 2 visualizes
sales data and shows step-by-step an application of linked brush-
ing: initially, a static visualization is composed of a scatterplot
that correlates the sales revenue and profit of each product, and a
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Figure 2: Brushing and Linking example.

histogram that shows the stock price again for each product. (1)
shows a mouse drag interaction that selects a rectangular region
in the scatterplot, alongside all marks (i.e., circles) inside the se-
lection. The subset of products that corresponds to the highlighted
circles are “selected” by turning red, as are the histogram bars
corresponding to the selected products. After finishing the selec-
tion, the user may deselect and reset the visualization (2), keep the
points highlighted, or perform another selection.

2.1 Data Model and Language Overview
In this section, we will first “relationalize” static visualizations.

Then we introduce user interactions as event streams that we subse-
quently use to express interactive visualizations as database views
involving joins between event streams and static visualizations. We
will first assume a single user, single interaction scenario, and then
discuss our current approach to support multiple interactions.

2.1.1 Static Visualizations
In line with prior work in the visualization community [46, 56],

we model a static visualization as a mapping from a set of database
relations R = {R1, . . . ,R∣R∣} in the data domain to relations in
the visual domain. We model the visual domain using two types
of relations: Marks relations that describe the circles, polygons,
and other shapes to be rendered in the visualization as well as a
Pixels type of relation that models the rasterized pixels shown to
the user. Each relation of the former type corresponds to a specific
mark type (e.g., line, circle, or rectangle), with attributes including
the geometry and visual encoding of the corresponding marks. The
later type is a special pixels relation P(x, y, RGBA) that mod-
els the color and transparency encoding at every pixel coordinate.
However, its contents are not materialized; rather, they are main-
tained by the rendering device. Modeling it as a relation, however,
is useful for analysis purposes, as we elaborate on in Section 3.2.

The mapping of the static visualization encapsulates the data
transformations (e.g., aggregation and scaling) that encode data
summaries as geometry and visual encodings (e.g., height and color
of a circle). In our work, the data is represented under the relational
model, and the mapping is expressed using relational queries.

For example, DeVIL 1 shows a query that maps sales data in the
relation Sales(productId, price, profit, revenue,
productName) to a marks relation SPLOT_POINTS that rep-
resents the circles of the scatterplot in Figure 2. Each projection
clause defines an attribute of the circle mark, such as the radius
as well as stroke and fill colors. The linear_scaleUDFs
linearly transform the sales revenue and profit to their correspond-
ing pixel coordinates—the UDF uses the scale_x and scale_y

SPLOT_POINTS =
SELECT
8 AS radius,
'gray' AS stroke,
'gray' AS fill,
linear_scale(Sales.revenue, scale_x) AS center_x,
linear_scale(Sales.profit, scale_y) AS center_y,
productId
FROM Sales, scale_x, scale_y;
P = render(SELECT * FROM SPLOT_POINTS);

DeVIL 1: Static visualization for the scatterplot of our example.

relations, which include the minimum and maximum values of the
revenue and profit attributes, to compute the transformation. The
last attribute, namely, productId, is typically used in visualiza-
tions as a way to ensure a correspondence between the rendered
mark and the input record—Section 3.1 will describe provenance
extensions that enable this correspondence in a declarative manner.
Finally, marks relations are rendered using the render table UDF.
Similar selection queries and render functions can be used to define
the static visualizations of the histogram and axes in Figure 2.

DeVIL supports the specification and usage of record and ta-
ble user-defined functions. However, they are restricted to pure
functions without side-effects. The only exception is for rendering
functions, that may produce visual side effects—they can only be
executed on marks relations, and logically produce the pixels table.

The above reviews the procedures described in [20] and illus-
trates how static visualizations can be expressed as database views.
Next, we describe our extensions towards interactive visualizations.

2.1.2 Interactive Visualizations
DeVIL models interactions as the effects of user interactions on

database views. To do so, we capture user-generated low-level
events (e.g., mouse down, move, and up) as event streams, and
extract compound events (e.g., mouse drag) as patterns over the
streams of low-level events. Then, we introduce interactive visu-
alizations as database views involving event streams. This model
allows us to draw a direct analogy between an interaction and a
database transaction in that each compound event, that defines an
interaction, may either transition the database to a new version or
rollback to the version right before the beginning of an interaction.

Next, we introduce streams of user-generated low-level and com-
pound events in our data model and express interactive visualiza-
tions as database views that involve event streams, visual primi-
tives, and base data. Then, we provide a technical definition of an
interaction and provide constructs for composition of interactions.

Events When a user performs an interaction such as dragging a
mouse, it is interpreted by most systems (e.g., browsers, GUI frame-
works) as a sequence of low-level events such as mouse down,
or mouse move. For this reason, we model user interactions as
event streams of low-level events, and high-level interactions (e.g.,
mouse drag) as compound events atop streams of low-level events.

To capture event streams of low-level events, we adopt the data
model of CQL [7]: given an alphabet of low-level events with pre-
defined schemas Σ (e.g., Σ = {mouse down, key press, . . .}), we
model a stream of low-level events as an (unbounded) set of ordered
pairs ⟨s, t⟩, where s ∈ Σ and t is the time when a user performed s.

To extract compound events from low-level event streams we
could leverage a number of automata-based approaches that iden-
tify complex patterns in event streams [7, 13, 28, 30, 47, 58]; reg-
ular expression-based languages such as Proton [30] are used in
the user interface literature to recognize user gestures. We borrow
these ideas in a sequence matching language similar to SASE [58],
which compiles into a nondeterministic finite automaton (NFA).



C =
EVENT MOUSE_DOWN AS D, MOUSE_MOVE* AS M*, MOUSE_UP AS U
WHERE FORALL m IN M m.y > 5
RETURN

(D.t, D.x, D.y, 0 AS dx, 0 AS dy),
(M.t, D.x, D.y, (M.x - D.x) AS dx, (M.y - D.y) AS dy)

DeVIL 2: Event statement to generate a compound event stream.

DeVIL 2 is an example event statement that defines a compound
event stream C as a sequence of mouse down, repeated mouse move,
and mouse up events; we allow kleene closures to express repeated
events. Non-matching event types (e.g., a key press) as well as
events that fail predicates in the WHERE clause are filtered from the
input stream and not processed by the NFA. For instance, (e.g., D.y
> 20 removes mouse down events below 20 pixels from the input
stream. The only exceptions are existential and universal quanti-
fiers, such as the FORALL predicate in the example, which trigger
a reject state upon failure. Finally, the RETURN clause defines a
sequence of union-compatible projection statements, and concate-
nates all statements that can be evaluated by the matching events.
For instance, DeVIL 2 first emits the mouse down event, followed
by each move event along with its distance from the down event.

t x y dx dy Input event
0 5 15 0 0 MOUSE_DOWN(0,5,15)
1 5 15 1 2 MOUSE_MOVE(1,6,17)

. . . more MOUSE_MOVE events . . .
40 5 15 5 -5 MOUSE_MOVE(40,10,10)

MOUSE_UP(41,10,10) terminates the query

Table 1: Contents of the event table C in our example after a po-
tential sequence of user-triggered low-level events.

As a concrete example, Table 1 illustrates the state of the rela-
tion C during a user’s drag movement. The mouse down at t=0
inserts the first record, based on the first projection statement of
the RETURN clause. Note, no record is inserted in C, at t=0, due
to the second projection statement because it involves mouse move
events that have not happened yet. Subsequent mouse move events
insert corresponding records into C based on the second projection
statement of the RETURN clause. For every mouse move, no record
is inserted in C due to the first projection statement because it does
not involve mouse move events. Finally, the mouse up event tran-
sitions the NFA to an accept state and terminates insertions into the
relation. Note, no record is inserted in C due to the mouse up event
because it is not involved in any projection statement.

As we will demonstrate next, an interactive visualization can be
expressed as a view over the complex event table C and the database
relations and views. Thus, insertions into C will trigger view up-
dates that change the visualization in response to user interactions.
The EVENT statement defines the boundaries of an atomic user in-
teraction, and we currently use it to define transaction boundaries—
the start and accept states correspond to the beginning and end of
the transaction, and the reject state corresponds to an abort.

The key difference from traditional transactions is that the “un-
committed” state—in this case, the state of the visualization through-
out the mouse move events—is exposed to the user in the form of
visualization updates. In the current system, abort is equivalent to
clearing the compound event table C in order to roll back to the state
of the visualization before the interaction. Finally, to prevent never-
ending transactions, we constrain statements to sequences that end
with a non-repeating event. As a result, the underlying NFA can
transition only once to an accept state that ends the transaction and
commits by persisting the new visualization state.

Putting it Together We now describe how to express the brushing
interaction in Figure 2 as a view over database relations and user
event streams.

selected = SELECT SP.productId
FROM C, SPLOT_POINTS@vnow-1 AS SP
WHERE in_rectangle(bbox(C), SP);

SPLOT_POINTS = SELECT ..., 'gray' AS fill
FROM Sales, scale_x, scale_y
WHERE productId NOT IN selected
UNION
SELECT ..., 'red' AS fill
FROM Sales, scale_x, scale_y
WHERE productId IN selected;

DeVIL 3: Selection interaction for the example scatterplot.

To start off, we may specify the set of selected marks using a
join between C and the scatterplot marks relation SPLOT_POINTS,
as shown above in DeVIL 3: bbox is shorthand for a query that
computes the selection box of the mouse drag events in C, and
in_rectangle is shorthand for a predicate that checks whether
a mark SP intersects with the selection box.

As the event query populates C, the selected relation will up-
date accordingly. By redefining the scatterplot marks relation to
perform different projections for selected and non-selected records,
we are able to express brushing. Similarly, we can update the
contents of the histogram to highlight bars related to the selected
records. Because both views coordinate on the selected view
we have the desired effect of linked brushing for our example.

The main challenge in expressing this interaction is that these
statements introduce recursion—the selected view depends on
the SPLOT_POINTS view and vice versa. To address these is-
sues, DeVIL disallows recursive statements by allowing the devel-
oper to specify past versions of relations. Specifically, develop-
ers can specify the committed state of a relation i transactions ago
by adding the suffix @{vnow-i} to a relation name; the syntax
@{tnow-j} specifies the state of a relation j events ago within
the current transaction. This versioning approach highlights the
relationships between our notions of transactions and interaction
events, and simplifies support for interactions such as undo or mouse
trails. For example, DeVIL 3 computes the selected marks by per-
forming hit testing on the marks SPLOT_POINTS@{vnow-1},
which is the version of SPLOT_POINTS at the beginning of the
current interaction as expressed by the event statement in DeVIL 2.

What is an Interaction? The interactive visualization in DeVIL 3
provides us with a better understanding of what we consider as
an interaction in DeVIL. More specifically, we technically define
an interaction as an object that encapsulates an event stream along
with the view statements that involve the event stream. With this
abstraction in mind, we can better analyze interactions and intro-
duce critical operations of the visualization design process (e.g.,
add or remove interactions to or from static visualizations). For in-
stance, adding a single interaction to a static visualization results
in introducing an event stream along with the rewrite of the cor-
responding view statement, as we showed in DeVIL 3. Beyond
expressing a single interaction, composition of interactions is an
important task for the visualization domain, that we discuss next.

Composition of Interactions DeVIL can combine multiple inter-
actions as sequences to support multi-step operations, or as inter-
leaved in parallel to support simultaneous inputs such as the mouse
and keyboard. One difficulty is to define how the two interac-
tions share state. In DeVIL, an interaction is defined by an event
stream as well as the views that use the stream, as we discussed
above. Now, suppose the developer defines I1 as a brushing in-



teraction and I2 as an interaction to drag a set of marks. Suppose
the designer wants to express I1 + I2 as a brushing action to se-
lect marks followed by a drag action to move the set of selected
marks—I2 will need information about the marks selected by I1.
Although it is well known how to combine two NFAs (i.e., for intro-
duction of a single event stream for both interactions), it is unclear
how to unambiguously combine the view statements of the two in-
teractions. We currently rely on the developer to define a merging
function merge(I1, I2)→ Icombined that transforms a sequence of
two interactions, I1 followed by I2, into a combined interaction.
The function can re-write a subset of the statements in I2 and has
read-only access to the relations in I1.

The second difficulty is reasoning about conflicts, ambiguities,
or unintended effects that can arise from interaction composition.
Although some recent debugging tools [15, 27] visualize the inter-
nal state, manually analyzing the internal state of complex inter-
faces is tedious and low-level. There is a need for tools that can
warn developers of potential interaction-related errors, or illustrate
possible interpretations of a set of interaction statements. Towards
this direction, we are currently studying the extent that two DeVIL
interaction statements can be statically analyzed and prompt the
application designers for potential erroneous behavior—hence, ex-
pediting the time-consuming debugging process. For example, we
can disambiguate interaction statements by changing the event state-
ment definitions [30]; partitioning when the event statements are
evaluated by time (state of the visualization) or space (type of wid-
gets or marks); or assigning interaction priorities. Resolution rules
for one combination of interactions may be templated and applied
to others with similar semantics.

So far we have laid out the fundamental concepts of DeVIL.
Next, using only these concepts, we evaluate the expressivity of
DeVIL against taxonomies of interactions.

2.1.3 Expressivity and Applications of DeVIL
We have found that the primary classes of interaction techniques—

interactive selection, changing visual encodings, adding or remov-
ing marks, coordinated views, and undo/redo—that are common
across several interaction taxonomies [57, 63] can be readily ex-
pressed in DeVIL based on the constructs presented above.

Interactive selection allows users to point to and select objects
in the visualization, and is a building block for more complex vi-
sual interactions [37, 46, 57]; it was expressed above as a join be-
tween the user’s interaction event stream and the rendered marks
relations. Visual encodings can change how input data is visual-
ized (e.g., by color, by position, or by different types of marks) and
naturally translates into modifications of a projection clause (e.g.,
change from gray to red color in DeVIL 3). Adding or removing
marks is natively supported by inserting or removing data in the
underlying database relations and performing view updates, or by
manipulating selection predicates. Coordinated views, such as the
multi-view selection in Figure 2, can be expressed by sharing re-
lations between multiple marks relation definitions, as we showed
with the selected view. Finally, undo and redo is supported by
the versioning semantics within and across interactions.

We have shown that a wide range of interactive visualizations
can be expressed using well understood constructs from the rela-
tional world. This relational lens enables us to directly borrow
database concepts such as query optimization, physical database
tuning, or view maintenance to the interactive visualization do-
main. In the subsequent sections, we will use this lens to 1) in-
troduce provenance to visualization interactions in order to pro-
vide novel functionality and optimizations (Section 3.1), 2) ap-
ply and extend distributed consistency ideas to visualization inter-
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Figure 3: DVMS System Architecture.
actions (Section 3.2), 3) improve nearly-interactive visualizations
(Section 3.3), and 4) synthesize novel interactive interfaces that are
tailored to the user (Section 3.4).

2.2 DVMS Architecture
Figure 3 shows the DVMS architecture. The Interaction Man-

agement (IM) Engine translates DeVIL programs into a visualiza-
tion workflow: Each DeVIL statement is an assignment statement,
where the right hand side defines an operator whose output is the
left hand side of the assignment statement; relations and views in-
volved in the right hand side are treated as inputs to the operator.
Then, IM performs static analysis (e.g., detecting ambiguity be-
tween interactions), offline optimization (e.g., rule-based optimiza-
tion, and physical database planning), and generates appropriate
view definitions based on the visualization workflow. These views
are evaluated by the Executor which ultimately outputs the pix-
els table P that is perceived by the user. The Event Recognizer
compiles the event statements in the DeVIL program into state ma-
chines, and matches them against the stream of user input events.
Matches are inserted into the corresponding Events tables in the
Storage Manager. In addition, the Storage Manager stores the base
relations, intermediate results, and the materialized views and their
definitions. The inserts trigger the Executor to recompute the view
definitions, which ultimately updates the marks and pixels tables.

The Online Optimizer captures event and visualization state in-
formation throughout the user’s interactions and dynamically re-
optimizes the visualization. For instance, Sections 3.3 describe
how we can leverage performance and online prediction models
to re-optimize the interactions and visualization design. Finally,
the Provenance component spans the three major components, and
provides lineage and logging support to enable further interaction
optimizations and functionality, as we elaborate on in Section 3.1.

Our current implementation uses a modified SQLite3 parser to
parse DeVIL programs, and a ECMAScript-compiled instance of
SQLite3 to store the base data and compute the mark tables. A table
UDF computes layouts, while both row and table render UDFs map
the mark tables to DOM SVG and canvas elements.

3. DVMS ECOSYSTEM
In this section, we present our DVMS ecosystem—a set of ex-

tensions to facilitate the interactive visualization creation process.
Many of these extensions are in their early stages and we describe
our current approaches and findings.



3.1 Provenance for Visualizations
A DeVIL program is translated into a visualization worfklow.

Provenance operations over visualization workflows can trace be-
tween the inputs (e.g., data items, marks of former visualization
states, or events) that generated elements of the output (e.g., marks
of the current visualization state). Our main observation is that
provenance (more specifically, lineage) operations can serve as prim-
itives for a wide range of important functionality in the visualiza-
tion domain including linking and coordination of views, interac-
tive debugging of applications [27], deconstruction and restyling of
visualizations [23], data explanations [44, 59], or provenance visu-
alization [9, 26, 41].

Linking and Coordination In our example of scatterplot speci-
fication in DeVIL 1, we noted that productId is an annotation
connecting output circles of the scatterplot to the corresponding
product. Then, we used the productId to specify the selected
view and we introduced the interactive versions of both the scatter-
plot and the histogram based on the selected view.

The shortcomings of this approach are two-fold. First, this ap-
proach breaks our data model because developers must manually
augment their queries with provenance annotations; if these queries
change, then the annotation strategy must also change. Second, an-
notations can introduce significant overhead and the space of opti-
mization strategies for a given visualization workflow is infeasible
for an end-developer to manually explore. For instance, in the ex-
ample above we could have annotated the marks of the scatterplot
and histogram with mark ids and materialized the correspondences
between scatterplot points and histogram bars in a separate table
(i.e., circleId → barId). If the two plots visualize subsets
of products the developer should also consider ways to keep the
mapping only for the intersection of the subsets. However, increas-
ing the number of linked views increases the number of correspon-
dences quadratically and this strategy quickly becomes unwieldy.

Our primary observation is that the above annotations are simply
manual instrumentations of the workflow to express a backward
query from the selected marks to the input records, and a forward
query from those records to the histogram bars. We have extended
DeVIL to support backward and forward trace statements. Follow-
ing is an example of how we can accomplish our brushed linking
example using a backward trace operator:

B = BACKWARD TRACE
FROM SPLOT_POINTS@vnow-1 AS SP, C
WHERE in_rectangle(bbox(C), SP)
TO Sales;

▷ SPLOT_POINTS without productId
SPLOT_POINTS = SELECT ..., 'red' AS fill

FROM B
UNION
SELECT ..., 'gray' AS fill
FROM (Sales MINUS B)

HIST = SELECT ..., 'red' AS fill
FROM B
UNION
SELECT ..., 'blue' AS fill
FROM (Sales MINUS B)

DeVIL 4: Linked brushing using provenance operations.

The BACKWARD TRACE statement above resembles the structure
of a SELECT query. More specifically, the FROM clause along with
the WHERE clause denote a join among the event stream C and the
scatterplot that determines the selected circles. The TO clause de-
notes the relation to trace backwards the result of the join—in this
case the Sales relation. The interactive histogram and scatterplot
are defined based on the partition {Sales∖B, B}: circles and bars

for the backward traced subset B are colored red while the unse-
lected marks in Sales∖B are colored gray and blue, respectively.
Hence, events on the stream C change the backward traced sub-
set that, in turn, changes the histogram and the scatterplot with the
desired linked brushing effect.

Beyond linking and coordination, provenance can support a large
range of functionality including:

Interaction Debugging: provenance is traditionally used for work-
flow debugging. For the visualization domain, there are three main
debugging operations [27], all enabled through provenance sup-
port. First, provenance can expose the state of the visualization
workflow (i.e., data, marks, pixels, and events) for inspection. Fur-
thermore, provenance can identify input-output dependencies be-
tween operators of the workflow. Finally, provenance along with
the temporal semantics of DeVIL (i.e., @vnow-k) lets developers
inspect and debug previous states of the workflow through the ver-
sioning mechanism.

Deconstruction and Restyling: Harper et al. [23] present a tech-
nique to extract data from marks in a D3 visualization and re-
visualize the data using new visual enocdings. Their technique re-
lied on D3, which annotates each mark with the full data object
that was used to generate the mark. Native provenance support can
support such restyling techniques out of the box.

Visualization Explanation: outlier explanation techniques [44,
59] rely on the ability to trace outliers in the visualization back to
their inputs in order to identify the inputs to the explanation gen-
eration algorithms. Thus provenance support can allow such tech-
niques to be modeled as a user defined function and be enabled
for any DeVIL visualization. Further, the explanations themselves
may also be visualizations using additional DeVIL statements.

Provenance Visualization: the problem of provenance visualiza-
tion [9, 26, 41] is very challenging; partly because it quickly de-
volves into a network visualization problem. DeVIL presents an
interesting special case where the provenance generated by the vi-
sualization workflow can use the DeVIL specification itself as hints
for how to render the provenance data.

We believe the connection between provenance and interactions
offers insights in both areas. Typical lineage systems material-
ize and index the system’s lineage information to speed up lin-
eage queries, but materialization and indexing costs can be sub-
stantial [60]. In addition, the amount of provenance data can easily
be so large that the cost of querying it is substantial. Despite these
limitations, it is clear that important classes of provenance queries
can be optimized to respond in interactive latencies—we have seen
that linked brushing can be expressed as provenance statements and
numerous existing systems [17, 31, 33, 39] have scaled interactive
linked brushing to large datasets. We believe this is possible be-
cause most applications such as visualizations do not use lineage
data per se, but feed it as input to aggregation or filtering queries
(e.g., DeVIL 4). This lets the provenance subsystem avoid unneces-
sarily materializing lineage data that will not be used. We are study-
ing how this observation can be combined with physical database
design methods to optimize both provenance workloads as well as
interactive visualization workflows.

3.2 Concurrent and Consistent Interactions
Interactive visualizations are increasingly expected to operate in

environments where the amount of time needed to respond to user
inputs is unpredictable. This may be due to a visual interface that
issues data processing tasks over an unpredictable network such as
the internet, or due to multi-tenancy issues such as concurrent use
of a backend data processing system.



(a) (b)
Figure 4: (a) The user hovers over a month to update the bar-chart. (b) A MVCC design: when users issue concurrent requests, a new copy
of the chart is created for each request, resulting in the small multiples visualization.

Traditionally, when datasets small enough to be loaded locally
and processed nearly instantaneously, interactive visualizations can
simply write synchronous code to handle data processing. How-
ever, the advent of “big data” and client server visualization archi-
tectures have made it difficult, if not impossible, to guarantee sub
100ms responses times. When user inputs cannot be processed
quickly enough, visualization systems either block user inputs or
the interface until the processing is completed (e.g., a wait icon),
or allow the processing to occur asynchronously from further user
inputs. As described in prior work [61], the former can drastically
degrade the user experience, while the latter is susceptible to logi-
cal errors caused by arbitrary interleavings of the user requests that
are notoriously challenging debug and program correctly.

The database community is currently developing novel techniques
to reduce data processing times to sufficiently low levels that can
support even interfaces that block user input [8, 18, 31]. In other
words, these approaches are focused on one design criteria—query
latency—as the means to improve usability. Given the user-facing
nature of interactive visualizations, we hypothesize a broader de-
sign space that can be optimized. For example, users performing
tasks that do not require order, such as finding if a series of data
pass a threshold condition, might be more resilient to asynchronous
updates. Another hypothesis in the design space is cumulative vi-
sualizations could alleviate the need for order and memory in many
asynchronous visualizations, such as non-displacing visualization
of data onto different regions on a map.

In order to answer these questions, we believe it is important to
understand the user-level constraints that help direct system level
optimizations. Consider that a single study [32], which found that
an additional delay of 500ms negatively impacts visual exploration,
has served as a guiding post for many visualization optimization
research, mentioned previously. To this end, we have designed a
series of user studies to understand the design constraints around
asynchrony in interactive visualizations; the results will be used to
develop a declarative asynchrony management component for in-
teractive visualization systems.

These studies are important because every visualization system
currently makes implicit assumptions about how asynchrony is han-
dled. A system may choose to disallow asynchrony by blocking
user input, require that the user never sees outdated requests, or
simply enable asynchrony without any form of coordination (e.g.,
vanilla AJAX-based systems). In each case, it is not clear whether
the choice is too conservative and leave performance on the table,
or simply incorrect because it can cause the user to be confused or
reach incorrect conclusions.

One benefit of DeVIL’s relation-based model is that it is natural
to borrow ideas from classic database concurrency control. For in-
stance, blocking user input can be viewed as serially ordering user

inputs by locking the entire interface (e.g., pixels table in DeVIL)
until the pixel table has been updated. Turning off concurrency
control is equivalent to vanilla AJAX-based asynchrony. Similarly,
locking, OCC, eventual consistency, and other concurrency control
mechanisms may be applied to DeVIL programs.

In this light, we hypothesize that the classic database notion of
serializability is too stringent in the context of interactive visualiza-
tions, and that it is possible to change what “serializability” means
by studying how different types of reorderings affect the user’s ac-
tions and conclusions. Understanding the user-level constraints of
reordering could in turn promote UI designs that are more resilient
to unpredictable time to response, imposing a less stringent require-
ment on data processing times to enable usable interactions.

Our baseline user study shows participants a simple interactive
visualization consisting of a single interaction widget (e.g., slider)
that changes the contents of a single visualization (e.g., bar chart).
We study how two orthogonal dimensions affect the speed and ac-
curacy that participants complete a range of judgment tasks. The
judgment tasks are designed to vary in difficulty from identifying
whether a target bar ever exceeds a threshold value to identifying a
trend over time. Some tasks, such as the threshold task, are friendly
to asynchrony because the order that the visualization updates due
to user interactions does not affect the answer, while other tasks,
such as trend estimation, requires that the order of user inputs is
reflected in the order of visualization updates.

In our experiments we vary the mean request latency to under-
stand how user interactions change as response latency increases.
We have independently two classes of policies. Reordering (con-
currency control) policies vary how user input are handled and
include no order constraints(No CC); fully serializing responses
(Serial); enforcing responses to be in-order by discarding out-
of-order responses (Discard); or only rendering the result of the
most recent interaction and discarding the rest (Most Recent).
We also study visual design policies—the one we study is a form
of “multi-visual concurrency control” (MVCC), which replicates the
bar chart for each inflight request so that their updates to the pixels
do not conflict. As an example of MVCC, consider Figure 4.a: when
the user hovers of the month facets, the single bar chart is updated
directly. In contrast, a MVCC variant will create a copy of the bar
chart (e.g., a new “version”) for each month that the user hovers
over, as shown in Figure 4.b.

Figure 5 shows the average completion time for the threshold
task under the above policies and visualization. Combined with
measures of users’ interaction behavior, the results suggest that
concurrency-friendly policies allow users to generate more and make
use of concurrent requests and subsequently reduce the task com-
pletion times, as compared to concurrency-unfriendly policies. Al-
though each of the above policies have little difference when there



Figure 5: Comparison of average completion time of threshold
task by policy, under different delay conditions.

is no response delay (in fact, MVCC is slightly slower), there is a
clear difference when random delay (mean=2.5sec) is introduced.
No CC and Most Recent take the most time to complete. Most
Recent only shows the most recent user input (e.g., if the user
drags a slider, she only sees the data at the position the slider stops).
In both cases, users appear to serialize their own input—by hover-
ing over a facet, waiting to see the visualization update, and then
performing the next interaction—in order to understand the changes
reflected in the chart. In contrast, we hypothesize that Serial
and Discard improves completion times because the order that
the visualization updates remains in the same order as the user in-
puts (though Discard may drop some updates). Finally, MVCC
has the lowest completion time; from analyzing user event logs, we
find that users hover over a large number of facets to issue many
requests, and wait for multiple visualizations to appear. We have
run this experiment on a perceptually more difficult judgment task
and found these effects to be more pronounced.

The above are promising results from a preliminary study. We
are currently performing a larger scale study under a wider range of
tasks, latency profiles, reordering, and design policies. The longer
term goal is to identify a set of design principles for asynchronous
visualization interactions, and to ultimately extend DeVIL with
asynchrony constraints that specify how new user events trigger
view updates to the marks and pixels relations.

3.3 Improving Near-interactive Visualizations
Modern interactive visualization systems [51, 55] typically con-

sist of a client and server (perhaps on the same machine), and
painstakingly optimize the performance of their interfaces—by build-
ing auxiliary data structures, pre-computing large portions of the
visualization state, pre-computing samples, or materializing inter-
mediate data—all in the effort to reduce the latency to respond to
user inputs. In most situations, the applications are able to sup-
port sub-second latencies that are nearly interactive (150−700ms),
but still slower than the < 100ms threshold for interactivity. For
instance, Tableau Web [53] heavily optimizes their client includ-
ing the use of HTML5 canvas, while other visualization systems
precompute every possible view [14].

We believe a major contributing factor to the near interactive la-
tency is the request-response model of interaction, where the sys-
tem waits for a user to perform an interaction, which triggers a
query and render request that the system processes. Waiting until
the user performs the request means that even minor variations in
processing or network transfer times can affect usability. Although
the previous section described our approaches to support concur-
rency as a response to latency, we are also developing techniques
to push these near-interactive visualizations past this final thresh-
old.

To this end, we are exploring a continuously streaming frame-
work between the client and server that is composed of two char-

acteristics. First, given a bandwidth bound, the server continuously
sends data at bandwidth capacity to the client; the contents of the
data stream are based on a shared speculative model of the user’s
intents [18]that the client continuously sends to the server. This
user intent model estimates the probability P (ai, t) ∈ [0,1] that
the user will perform action ai within time t. Second, the data that
is sent to the client is progressively encoded in a way so that the
client can, at any time, render the partial set of data it has received
from the server.

This framework is well suited for settings such as interactive vi-
sualizations, where an offline phase has pre-generated data struc-
tures such as data cubes or materialized views. For instance, many
modern visualization systems pre-compute datacubes and store them
as individual slices of data tiles [8, 33]. In such a setting, the client
typically needs to request a tile and fully download the tile before
it can fully render the contents in the visualization. However, data
tiles can readily be progressively encoded, say, by using wavelet
compression. Progressively encoded offline data structures allows
the server, when the user intent model is relatively uniform, to in-
terleave data relevant to a large range of future actions so that some
visualization is always available.

We find that this framework is similar to the partial task schedul-
ing problem addressed by He et al. [24]. In their work, tasks are
annotated with hard deadlines, and the schedule may partially ex-
ecute a task; the utility of a partially executed task is modeled by
a concave function. He et al. find that the problem of maximizing
the total expected utility can be modeled as a convex optimization
problem. We can translate our streaming problem into one where
each task is to fetch a data tile, the deadline is 100ms from the
time that the user requests the tile, and the utility is defined by the
particular progressive encoding technique.

He et al. [24] assume that task deadlines are fixed and tasks can
be discarded once the deadline has passed. In contrast, we only
have access to the user intent model, which continuously changes
in response to user actions. To address the lack of a well defined
deadline, we scale the utility function for a given data tile in propor-
tion to its likelihood. In addition, if the deadline for a tile passes,
we simply reschedule it the next time the scheduler is executed. Fi-
nally, to address the continuous changes in the user intent model,
we periodically re-run the scheduler (in our case, every 50ms), and
are looking into more incremental approaches that do not require
rerunning the scheduling algorithm for minor changes in the model
predictions.

The above approach is predicated the accuracy of a user intent
model. Past works focus on predicting the logical action—roll-up,
drill-down, pan, zoom—in the form of a SQL query that the user
will perform. However, such predictive models encounter sparsity
issues due to the large number of possible operations that a modern
visualization interface will provide; thus there is an inherent ten-
sion between predictive accuracy and the scope of the operations
that can be predicted. Our main observation is that user express
their interactions using a constrained input modality (typically a
mouse) for which simple models work very well. Because DeVIL
preserves the logical mapping from pixel locations to the interac-
tions that can be expressed, it allows us to develop a highly accurate
predictive model that is well suited for near-interactive visualiza-
tions. Using off the shelf models [12], the model is 82% accurate
at predicting the widget that the user will interact with in 200ms.
This allows the server to accurately speculate the user’s intended
requests and fetch partial results for a large fraction of them. A
secondary benefit is that the predictive model can be trained from
any type of mouse trace data, and is not dependent on data collected
for a specific visualization.



3.4 Precision Interfaces
Previously, we discussed how to create interactive visualizations.

Now, we present methods to help developers decide what to build.
Automating visualization design is important for two reasons:

First, the “one size fits all” design approach that creates a sin-
gle visual analytic interface for all users is suboptimal. Different
users are interested in different types of exploration and analysis.
But user requirements are a moving target: they are often fuzzy,
variable and unpredictable. Creating tailor-made interfaces from
scratch can turn out to be a slow, iterative design process. One way
to solve this problem is to let users compose their own interfaces,
with tools such as Mac Automator, Scratch [43] or Sikuli [62]. But
this solution requires patience and manual effort even from end-
users without technical expertise.

Second, automating design decisions simplifies software devel-
opment and empowers non-technical users. Many professionals
manipulate databases on a daily basis, but have neither the knowl-
edge nor the interest to write applications. For most scientists;
analysts; business consultants; and journalists, good practices of
software engineering is all but a priority. Those users rely on IT
services to generate “dashboards” or run queries on their behalf.
For instance, financial institutions hire consultants and tactical de-
velopers to build ad-hoc “reporting applications.” Yet, this process
is costly, it creates heavy strategic dependencies, and it increases
the exposure of potentially sensitive data.

How can we automate interface design? A promising direction
is to exploit user interaction logs. Rather than running extensive
user studies or creating overly cluttered interfaces, DVMS can in-
fer the goals of end-users directly from the queries or scripts that
they have submitted to the system. Furthermore, many analyses
involve modifying parameters or scripts in structured, incremental
ways, rather than complete program rewrites. For instance, a user
will repeatedly tune filtering or grouping clauses in a SQL query
before tweaking the query in another way to study another facet
of the data. To illustrate, we examined a sample of 125,600 SQL
queries from the log of Sloan Digital Sky Survey (SDSS) [5, 48],
taken between November 28th and 30th, 2004. We managed to map
more than 99.1% of those statements to only 6 query templates. We
suggest to exploit this structure: for each possible “tweak” of the
query templates, we can create an interaction on a custom interface.

A key challenge is that analysts have their own preferred lan-
guage (e.g., SQL or python), and developing automated ways of
detecting and mapping syntactic changes in program code for ev-
ery language to interaction semantics is infeasible. Our primary
observation is that all programs are parsed into abstract syntax trees
(ASTs) before execution, and that tweaks and incremental program
changes amount to subtree differences at the AST level. Thus, an
AST-based approach can generalize to nearly any language.

Even for the same language, the AST structure of the same, say,
SQL query can be different when parsed by different parsers. In
addition, since each widget corresponds to one or a few fixed pat-
terns of sub-tree differences, these patterns will also be depending
on the specific parser. Therefore, although the number of possible
widgets is limited, we are still unable to automatically mine fixed
patterns of tree differences and map them to the set of predefined
interactions and widgets. Instead, we assume that a developer with
a basic understanding of the language parser can express a set of
mappings in a simple SQL-like [16] language to express AST dif-
ferences that are interesting (e.g., a change of a numeric parameter
of a function). We then compare each pair of queries in the query
log, and map the queries that satisfy the predefined rules to the set
of interactions (e.g., to a slider) as stated in the program. The fol-
lowing is an example of a program written in the language:

Figure 6: Interaction graphs, derived from the query log of the
SDSS Skyserver database (November 2004).

FROM Project//ProjectClauses as a

WHERE a@old subset a@new

MATCH: InteractionName;

The first statement is a simple XPath-like statement, which defines
a variable named a and binds it to all nodes in the AST trees whose
node type is ProjectClauses and is the child of a Project
node. Since we are comparing a pair of query (q1, q2), a@old and
a@new references the project clauses of q1 and q2 respectively. The
second statement is a boolean expression, and the third statement
matches the pair of queries to the interactions stated if the second
statement returns true.

This program returns sets of query pairs, such that each query in
the pair can be transformed into the other via the specified transfor-
mation. To infer an interface from those results, we operate in two
steps. First we build an transformation graph, in which each ver-
tex represents a query and each edge a transformation. Then, we
assign widgets to the transformations. For instance, we may use
text boxes, drop down lists or radio buttons to express changes in
a Project statements. The challenge is to cover as many queries
as possible, while keeping the interface simple.

Technically, we express widget assignment as a knapsack prob-
lem. We assume that each widget w has a predefined visual com-
plexity Cvis(w) and activation cost Cact(w). Furthermore, we
suppose that each widget can cover a known range of interactions
(i.e., edge labels in the interaction graph). We seek the set of wid-
gets that allows the users to jump from any query of the log to any
other with the smallest possible effort. If Qi ∈ L represents the
programs in the log, w ∈ G the widgets on the interface, penalty
and max vis two parameters, we express the problem as follows:

argmin
G

1

∣L2∣ ⋅ ∑
Qi,Qj∈L

2

minw∈G {Cact(w) if w covers (Qi,Qj)
penalty otherwise

s.t. ∑
w∈G

Cvis(w) < max vis

The objective function describes the average user cost necessary to
navigate between two log entries. If several widgets cover the same
pair of programs (Qi,Qj), then the function picks the best one. If
no widget can express the transformation, then the function applies
a penalty. The constraint enforces that total complexity of the in-
terface stays lower than max vis . We currently solve the problem



(a) Original SDSS interface.

(b) Generated interface - prefers
simplicity.

(c) Generated interface - prefers
coverage.

Figure 7: Original and generated interfaces, based on the Sky-
Server query log.

with a greedy heuristic. By modifying the parameters penalty and
max vis , as well as the relative costs of the widgets, we can produce
a wide range of candidate interfaces and chose the one that fits the
use case best.

Figure 6 depicts a sample of the transformation graph of SDSS,
that we obtained with 8 hand coded transformation queries. Each
edge color denotes an interaction type. Typically, we find that this
graph is extremely dense: the two most frequent interactions cover
12% and 70% of our sample query log, respectively. Figure 7
shows the original SDSS interface, as well as two mock-ups that
we generated from the output of our system. It turns out that only a
subset of the current interface is used for any given analysis session,
and thus it can be drastically simplified.

Our plan is to explore richer graph structures, penalty functions,
and interactions across a number of languages. In addition, there
is opportunity to combine Precision Interfaces with Scalable In-
teraction analysis to generate analysis-specific, performance-aware
interfaces in real-time.

4. CONCLUSION
Database technology has long benefitted from applying declara-

tivity and data independence ideas to novel domains—from stream
processing, to web content, to sensor networks. The ideas in DVMS
aim to bring user experience, interface design, and perception into
the declarative mindset. The introduction presented existing chal-
lenges faced by interactive visualization developers that can benefit
from such an approach. Likewise, focusing on interactive visual-
izations bring forth novel constraints and solutions that can help
push the database community forward.
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