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“

◉Graph Engine on modern servers for both

navigational and analytic queries.

◉Leverages Transaction Processing.

Take-away
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Navigational vs Analytic Graph Queries

Navigational

High-throughput

Accesses few vertices/edges

Analytic

Resource-intensive

Accesses a large fraction of graph

e.g., Pair-wise shortest path,

“Can he see my LinkedIn prof.”

e.g., PageRank,

Graph clustering
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Existing Graph Engines

◉Optimized either for navigational (e.g., Neo4j), 

or for analytic queries (e.g., GraphLab)

◉Limited scalability on many-core

◉Poorly leverages large, NUMA Memory

◉No fast, concurrent updates
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Janus

◉Runs both type of queries as well as 

concurrent updates

◉Exploits emerging server hardware; many-

cores, large DRAM/NVM.

◉Built on Transaction Processing engine (FOEDUS)

Reason 1 : Concurrent/serializable update. Obvious.

Reason 2 : Scalability. To parallelize a query.
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Parallelizing a Graph Query as Transactions

◉Serializability is must; otherwise loop forever.

◉Scalability is must; many-cores, large NUMA.

Single-Source Shortest-Path (SSSP)
“Distributed GraphLab”

[Low et al, VLDB’12]

Parallel workers issue

millions of concurrent

transactions.
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Janus Architecture

Insert/Delete

Ingestion Xcts

Reads

Writes
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Partitioning Graph and Workers

◉NUMA-aware partition

for permanent graph,

intermediate data,

and workers.

◉Locality matters. Co-locate data w/ workers.

◉Needs a database that supports flexible 

partitioning and data-worker co-location.
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Pair-wise shortest-path Impl. in Janus

◉Good-old Dijkstra.

◉A NUMA-aware worker.

◉Serializable Reads on Graph.
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SSSP Impl. In Janus

◉Distributed Bellman-Ford

◉Analytic-workers 

cooperatively maintain 

global memory.

◉Processes billions of 

highly contended Xcts

on Intermediate Data

Node Dist.
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Distance hashtable
Activation bitmap

Intermediate Data on 

global memory

Analytic Workers

“Mostly Optimistic Concurrency Control” [VLDB’17]
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Experiments

◉Shortest-Path

Navigational : Pair-wise

Analytic : SSSP

◉Compared with Neo4J (navigational) and 

Distributed GraphLab

◉H/W: HP DragonHawk, 240-Cores and 12 TB 

DRAM (not yet NVRAM) on 16-Sockets

# Nodes # Edges
SMALL 2 M 37 M
MEDIUM 97 M 1600 M
LARGE 403 M 6500 M
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Loading and Navigational Throughput
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Analytic Query Runtime
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Conclusions

◉Janus : graph engine on future servers for 

navigational/analytic queries.

◉Transaction is the key, breeding edge to 

massively parallelize big-data analytics.
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Open Questions

◉Not a panacea! e.g., Topic Modeling

Where's good fit?

◉Autonomous Partition/Query Optimization e.g., 

when to activate/propagate nodes in what order

◉Fast resume/failover with NVM


