
1/15

Janus: Transactional Processing of

Navigational and Analytical Graph

Queries on Many-core Servers

Alkis SimitsisHideaki Kimura Kevin Wilkinson
(speaker)

Hewlett Packard Labs

2/15

“

◉Graph Engine on modern servers for both

navigational and analytic queries.

◉Leverages Transaction Processing.

Take-away

3/15

Navigational vs Analytic Graph Queries

Navigational

High-throughput

Accesses few vertices/edges

Analytic

Resource-intensive

Accesses a large fraction of graph

e.g., Pair-wise shortest path,

“Can he see my LinkedIn prof.”

e.g., PageRank,

Graph clustering

4/15

Existing Graph Engines

◉Optimized either for navigational (e.g., Neo4j),

or for analytic queries (e.g., GraphLab)

◉Limited scalability on many-core

◉Poorly leverages large, NUMA Memory

◉No fast, concurrent updates

5/15

Janus

◉Runs both type of queries as well as

concurrent updates

◉Exploits emerging server hardware; many-

cores, large DRAM/NVM.

◉Built on Transaction Processing engine (FOEDUS)

Reason 1 : Concurrent/serializable update. Obvious.

Reason 2 : Scalability. To parallelize a query.

6/15

Parallelizing a Graph Query as Transactions

◉Serializability is must; otherwise loop forever.

◉Scalability is must; many-cores, large NUMA.

Single-Source Shortest-Path (SSSP)
“Distributed GraphLab”

[Low et al, VLDB’12]

Parallel workers issue

millions of concurrent

transactions.

7/15

Janus Architecture

Insert/Delete

Ingestion Xcts

Reads

Writes

8/15

Partitioning Graph and Workers

◉NUMA-aware partition

for permanent graph,

intermediate data,

and workers.

◉Locality matters. Co-locate data w/ workers.

◉Needs a database that supports flexible

partitioning and data-worker co-location.

9/15

Pair-wise shortest-path Impl. in Janus

◉Good-old Dijkstra.

◉A NUMA-aware worker.

◉Serializable Reads on Graph.

Node Dist.

A 5

B 13

C 3

Distance hashtable

A:5

… …

Relaxation min-heap

S

A

T

BC

5

3

10

7

6

From Edges

S A:5, C:3..

A T:6

… …

Graph Data

Intermediate Data on

worker-local memory

G
lo

b
a

l
M

e
m

o
ry

Serializable Reads

Navigational

Worker

(Snapshot Reads

from NVM as of

same epoch)

“FOEDUS”, [SIGMOD’15]

10/15

SSSP Impl. In Janus

◉Distributed Bellman-Ford

◉Analytic-workers

cooperatively maintain

global memory.

◉Processes billions of

highly contended Xcts

on Intermediate Data

Node Dist.

A 5

B 13

C 3

Distance hashtable
Activation bitmap

Intermediate Data on

global memory

Analytic Workers

“Mostly Optimistic Concurrency Control” [VLDB’17]

11/15

Experiments

◉Shortest-Path

Navigational : Pair-wise

Analytic : SSSP

◉Compared with Neo4J (navigational) and

Distributed GraphLab

◉H/W: HP DragonHawk, 240-Cores and 12 TB

DRAM (not yet NVRAM) on 16-Sockets

Nodes # Edges
SMALL 2 M 37 M
MEDIUM 97 M 1600 M
LARGE 403 M 6500 M

12/15

Loading and Navigational Throughput

1

10

100

1000

10000

100000

1000000

Navigational Query
Throughput [TPS]

Neo4J Janus
1

100

10000

1000000

small medium large

m
s
e

c

Data Loading Time

Janus GraphLab Neo4j

D
id

 N
o

t
F

in
is

h

D
id

 N
o

t
F

in
is

h

13/15

Analytic Query Runtime

1

100

10000

1000000

small medium large

m
s
e

c

Janus GraphLab

D
id

 N
o

t
F

in
is

h
small medium large

analytics-only mixed

Mixed WorkloadAnalytics-Only Workload

14/15

Conclusions

◉Janus : graph engine on future servers for

navigational/analytic queries.

◉Transaction is the key, breeding edge to

massively parallelize big-data analytics.

15/15

Open Questions

◉Not a panacea! e.g., Topic Modeling

Where's good fit?

◉Autonomous Partition/Query Optimization e.g.,

when to activate/propagate nodes in what order

◉Fast resume/failover with NVM

